Problem Set 6

Released: March 20, 2023 Due: March 31, 2023, 11:59pm Last modified: Mar 23, 2023, 10pm

Modifications:

• Clarify Problem 2 part 2.

Submit your solutions to this homework on Canvas in a group of 2 or 3. Your solutions must be submitted in pdf produced using LaTeX.

Definition 1. Let C be a cartesian category. A natural numbers object (NNO) in C consists of

- An object $N \in \mathcal{C}$
- Morphisms zero : $1 \rightarrow N$ and succ : $N \rightarrow N$
- such that for any $z : 1 \to V$ and $s : V \to V$ there exists a unique morphism $rec(z,s) : N \to V$ that satisfies
 - $rec(z, s) \circ zero = z$
 - $rec(z, s) \circ succ = s \circ rec(z, s)$

Diagrammatically,

$$1 \xrightarrow{zero} N \xrightarrow{succ} N$$

$$\downarrow rec(z,s) \qquad \downarrow rec(z,s)$$

$$V \xrightarrow{s} V$$

Problem 1 Programming with Peano

Let \mathcal{C} be a bicartesian closed category with a natural numbers object (N, zero, succ).

• Define a morphism add : $N \times N \to N$ that when C is the category of sets is the usual addition operation on natural numbers.

• Prove that zero is a left and right unit of add. That is

$$\operatorname{add} \circ (\operatorname{zero} \circ !, \operatorname{id}_N) = \operatorname{id}_N : N \to N$$

and

add
$$\circ$$
 (id_N, zero \circ !) = id_N : N \rightarrow N

HINT: depending on how you define add, one of these two will be easy and one will require the uniqueness property of an NNO.

• Prove that addition is commutative:

add
$$\circ (\pi_2, \pi_1) =$$
add

• • • • • • • • •

Definition 2. Let C be a cartesian category and $X \in C_0$ an object of C. An X-list object consists of

- An object $L_X \in \mathcal{C}_0$
- Morphisms $nil: X \to L_X$ and $cons: X \times L_X \to L_X$
- such that for any $n : X \to V$ and $c : X \times V \to V$ there exists a unique $fold(n,c) : L_X \to V$ satisfying

$$fold(n,c) \circ nil = n : 1 \to V$$

and

$$fold(n,c) \circ cons = c \circ (\pi_1, fold(n,c)) : X \times L_X \to V$$

Problem 2 Functoriality of Lists

Assume that C is a cartesian category, and for each $X \in C_0$ we have an X-list object $(L_X, \operatorname{nil}_X, \operatorname{cons}_X)$.

- Extend the list operation to a functor $L_{-}: \mathcal{C} \to \mathcal{C}$.
- Show that if C is a cartesian *closed* category, the action of the functor can be *internalized* as a family of morphisms

$$\operatorname{map}^{X,Y} : \mathcal{C}((X \Rightarrow Y), (L_X \Rightarrow L_Y))$$

(where $A \Rightarrow B$ is the exponential B^A) such that when C = Set, this agrees with your definition of L_- :

 $L_f = \operatorname{map}^{X,Y}(f)$

.