Problem Set 6

Released: March 20, 2023
Due: March 31, 2023, 11:59pm
Last modified: Mar 23, 2023, 10pm

Modifications:

- Clarify Problem 2 part 2.

Submit your solutions to this homework on Canvas in a group of 2 or 3. Your solutions must be submitted in pdf produced using LaTeX.

Definition 1. Let \mathcal{C} be a cartesian category. A natural numbers object (NNO) in \mathcal{C} consists of

- An object $N \in \mathcal{C}$
- Morphisms zero : $1 \rightarrow$ Nand succ : $N \rightarrow N$
- such that for any $z: 1 \rightarrow V$ and $s: V \rightarrow V$ there exists a unique morphism $\operatorname{rec}(z, s): N \rightarrow V$ that satisfies
$-\operatorname{rec}(z, s) \circ$ zero $=z$
$-\operatorname{rec}(z, s) \circ \operatorname{succ}=s \circ \operatorname{rec}(z, s)$
Diagrammatically,

Problem 1 Programming with Peano

Let \mathcal{C} be a bicartesian closed category with a natural numbers object (N, zero, succ).

- Define a morphism add : $N \times N \rightarrow N$ that when \mathcal{C} is the category of sets is the usual addition operation on natural numbers.
- Prove that zero is a left and right unit of add. That is

$$
\operatorname{add} \circ\left(\text { zero } \circ!, \mathrm{id}_{N}\right)=\operatorname{id}_{N}: N \rightarrow N
$$

and

$$
\operatorname{add} \circ\left(\mathrm{id}_{N}, \text { zero } \circ!\right)=\operatorname{id}_{N}: N \rightarrow N
$$

HINT: depending on how you define add, one of these two will be easy and one will require the uniqueness property of an NNO.

- Prove that addition is commutative:

$$
\text { add } \circ\left(\pi_{2}, \pi_{1}\right)=\text { add }
$$

Definition 2. Let \mathcal{C} be a cartesian category and $X \in \mathcal{C}_{0}$ an object of \mathcal{C}. An X-list object consists of

- An object $L_{X} \in \mathcal{C}_{0}$
- Morphisms nil: $X \rightarrow L_{X}$ and cons: $X \times L_{X} \rightarrow L_{X}$
- such that for any $n: X \rightarrow V$ and $c: X \times V \rightarrow V$ there exists a unique fold $(n, c): L_{X} \rightarrow V$ satisfying

$$
f o l d(n, c) \circ n i l=n: 1 \rightarrow V
$$

and

$$
\text { fold }(n, c) \circ \text { cons }=c \circ\left(\pi_{1}, \text { fold }(n, c)\right): X \times L_{X} \rightarrow V
$$

Problem 2 Functoriality of Lists

Assume that \mathcal{C} is a cartesian category, and for each $X \in \mathcal{C}_{0}$ we have an X-list object $\left(L_{X}, \operatorname{nil}_{X}, \operatorname{cons}_{X}\right)$.

- Extend the list operation to a functor $L_{-}: \mathcal{C} \rightarrow \mathcal{C}$.
- Show that if \mathcal{C} is a cartesian closed category, the action of the functor can be internalized as a family of morphisms

$$
\operatorname{map}^{X, Y}: \mathcal{C}\left((X \Rightarrow Y),\left(L_{X} \Rightarrow L_{Y}\right)\right)
$$

(where $A \Rightarrow B$ is the exponential B^{A}) such that when $\mathcal{C}=$ Set, this agrees with your definition of L_{-}:

$$
L_{f}=\operatorname{map}^{X, Y}(f)
$$

