
Problem Set 4

Released: February 13, 2023
Due: February 24, 2023, 11:59pm
Last modified: Feb 16, 2023, 11pm

Modifications:

• (Problem 2 part 3) Change part 3 of problem 2 from actions of strings to actions
of integers. The previous version was wrong for a subtle reason. The updated
version is analogous to the original but correct. For one bonus point, you can
figure out what the correct version of the original should be.

• (Problem 3 part 1) Fix the formulation of Lawvere’s fixed point theorem in
simple type theory.

Submit your solutions to this homework on Canvas in a group of 2 or 3. Your
solutions must be submitted in pdf produced using LaTeX.

Problem 1 Product Functor

Let C be a category with all binary products. We will use the notation C2 for the
product category C ×C to avoid confusion between the two notions of product below.

• Show that taking binary products defines a functor × : C2 → C. That is, show
that if we define × on objects such that a × b is a product of a and b (with
projections π1 : a×b → a and π2 : a×b → b), then you can extend the definition
to a functorial action on morphisms.

• Let Π1 : C2 → C be the functor that projects out the first component of C2.
Prove that π1 defines a natural transformation from × to Π1. Symmetrically,
π2 is also natural.

.

1

Problem 2 2

Problem 2 Theorems for Free, Naturally

The naturality property of a natural transformation is a very strong property. So
strong in fact that for specific functors we can characterize what all of the natural
transformations between them are.

Suprisingly this has direct applications to programming languages. The reason
is that in a pure polymorphic functional language given type constructors F and
G that are functorial, all functions F (X) → G(X) that are polymorphic/generic in
X are natural transformations! Phil Wadler, building on John Reynold’s theory of
parametricity called these “theorems for free”: just from the type of a polymorphic
function, the naturality property1 gives you properties that hold for every function
of that type (Reynolds [1983], Wadler [1989]).

We will focus on a very simple example: pick F and G to be the identity functor
on types. Then what are the functions of type ∀X.X → X? Obviously the identity
function has this type but are there any other examples? If the language is pure
meaning no side-effects, then it can be proven that the function must be equivalent
to the identity function. In effectful languages we need to weaken this statement. For
instance in a language where functions might crash but have no other side-effects, the
only functions of type ∀X.X → X are the identity function and the function that
always crashes regardless of its input.

Your task is to prove these “free theorems” are true of natural transformations in
different categories that model functional languages with different effects.

1. First, prove that the only natural transformation from idSet to idSet is the iden-
tity transformation.

2. Define the category Par as follows:

• Objects are (small) sets

• A morphism from X to Y is a partial function, i.e., a pair of a subset
D ⊆ X and a function f : D → Y .

The identity partial function idX is the identity function with D = X.
To compose (D, f) : X → Y and (E, g) : Y → Z, the domain is {d ∈
D | f(d) ∈ E} and the function is g ◦ f

This category models programs that may crash.

Prove that the only natural transformations from idPar to idPar are the identity
transformation and the transformation that is everywhere undefined, i.e., has
empty domain.

3. Define the category Z-Action to be the following category:

• Objects are pairs of a set X and a monoid action of the monoid Z with
operation + and unit 0 on X.

1more generally, dinaturality or more generally still, parametricity

EECS 598: Category Theory PS 1

Problem 3 3

• A morphism from X,⊗ to Y,⊕ is a function f : X → Y that is equivariant :
for all x ∈ X and n ∈ Z, f(n⊗ x) = n⊕ f(x).

This category can be used to model programs that can increment or decrement
a counter, but perform no other side-effects

Prove that for any natural transformations α : idZ-Action → idZ-Action, there is a
number n ∈ Z such that

α(X,⊗)(x) = n⊗ x

4. BONUS: For one bonus points. Fix a set A called the “alphabet”. Define S
to be the free monoid on A, i.e., the monoid of “strings”. Define S-Action to
be the category whose objects are actions of S and morphisms are equivariant
maps.

Provide an analogous concrete description of the natural transformations idS-Action →
idS-Action.

.

Problem 3 Lawvere’s Fixed Point Theorem and Fixed-point
Combinators

There are various “diagonalization arguments” employed in logic, set theory and
computer science such as the proofs of Gödel’s incompleteness theorem, as well as
Cantor’s Turing’s and Rice’s theorems. These diagonalization arguments typically
show something is impossible to construct.

F. William Lawvere showed that we can abstract over the reasoning in these dif-
ferent proofs by proving a fixed point theorem that is valid in an arbitrary cartesian
closed category2. We will prove the following variant of Lawvere’s original formula-
tion:

Theorem 1 (Lawvere’s Fixed Point Theorem). Let x, d be objects in a cartesian
closed category C. If there is a pair of morphisms s : C(dx, x) and r : C(x, dx) such
that r◦s = iddx, then there is a morphism fix : dd → d that is a fixed point combinator
in that for any f : a → dd,

fix ◦ f = app ◦ (f, fix ◦ f)

1. Prove Lawvere’s fixed point theorem. You can either do this using cartesian
closed categories or perform the construction in simple type theory.

To prove the theorem in type theory, work in simple type theory with the only
connective being function types, with two base types X and D, two function
symbols s : (X ⇒ D) → X and r : X → (X ⇒ D) and one equation g : (X ⇒

2a cartesian closed category is a category with all finite products and exponentials

EECS 598: Category Theory PS 1

Problem 3 4

D) ⊢ r(s(g)) = g : X ⇒ D. Then construct a term · ⊢ fix : (D ⇒ D) ⇒ D and
prove that

f : D ⇒ D ⊢ fix f = f(fix f) : D

2. Use Lawvere’s fixed point theorem to prove Cantor’s theorem as a corollary:

Corollary 1 (Cantor’s Theorem). There is no surjective function from X to
its powerset P(X).

Hint: the powerset of X can be defined as 2X where 2 = {true, false}.

However, while most classical applications of this theorem are for deriving contra-
dictions, we will see later in class that this construction can be used to give semantics
to recursive functions.

.

References

John C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A.
Mason, editor, Information Processing 83, Proceedings of the IFIP 9th World
Computer Congress, Paris, France, September 19-23, 1983, pages 513–523. North-
Holland/IFIP, 1983.

Philip Wadler. Theorems for free! In Joseph E. Stoy, editor, Proceedings of the fourth
international conference on Functional programming languages and computer archi-
tecture, FPCA 1989, London, UK, September 11-13, 1989, pages 347–359. ACM,
1989. doi: 10.1145/99370.99404. URL https://doi.org/10.1145/99370.99404.

EECS 598: Category Theory PS 1

