## Problem Set 1: Logic and Order Theory

Released: January 9, 2023 Due: January 23, 2022, 11:59pm

Submit your solutions to this homework on Canvas in a group of 2 or 3. Your solutions must be submitted in pdf produced using LaTeX.

If you haven't already, sign up to scribe and present homework solutions on the course gitlab repo.

## Problem 1 Distributivity

A lattice (poset with finite meets and joins) is *distributive* when binary meets and joins satisfy a distributive law:

$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$

We say that propositions P and Q of a logic are *equivalent* when the judgments  $P \vdash Q$  and  $Q \vdash P$  are both provable.

- 1. Show that IPL satisfies this distributive law in that for any propositions A, B, C, the propositions  $A \wedge (B \vee C)$  and  $(A \wedge B) \vee (A \wedge C)$  are equivalent.
- 2. Show that any Heyting lattice (poset with finite meets, joins and an implication operation) is a distributive lattice.

## Problem 2 Intuitionistic and Classical Logic

The law of excluded middle or principle of omniscience is the following axiom scheme: for all propositions A the axiom

 $\overline{\Gamma \vdash A \lor \neg A}$ 

The law of double negation elimination is the axiom scheme

$$\Gamma \vdash \neg(\neg A) \supset A$$

Since the first model of intuitionistic logic that is not a boolean algebra is a 3 element Heyting algebra, it is easy to get the impression that intuitionistic logic is about "multi-valued logics" where there is some "third" truth value other than just true and false. But this is not entirely accurate: for instance there are many boolean algebras with more than 2 elements (the powerset of any set) that are useful models of classical logic. Furthermore, while there might be more than 2 elements in a model, *within* the logic, we can never separate any proposition from true and false.

- 1. Show that in IPL extended with the law of excluded middle, the law of double negation elimination is admissible and vice-versa.
- 2. The following might be called the "intuitionistic law of excluded middle", for all  $\Gamma, A$ :

$$\overline{\Gamma \vdash \neg (\neg (A \Longleftrightarrow \top) \land \neg (A \Longleftrightarrow \bot))}$$

Intuitively this says "no proposition is not equivalent to true and not equivalent to false", where we are using the notations  $\neg B = (B \supset \bot)$  and  $B \iff C = (B \supset C) \land (C \supset B)$ .

Show that the intuitionistic law of excluded middle is derivable for all A in IPL. A full proof tree for this will be quite large, so I encourage you to develop intermediate reasoning principles to make this proof clearer.

## Problem 3 Conservativity Results

Fix a set of propositional variables, but no axioms. In this problem we will prove that  $\operatorname{IPL}(\top, \wedge, \supset)$  is a *conservative extension* of  $\operatorname{IPL}(\top, \wedge)^1$ . That is, we will show that for any judgment  $\Gamma \vdash A$  where the propositions in  $\Gamma$ , A are generated using only  $\top, \wedge$  and propositional variables, if there is a proof that uses the implication  $\supset$  then there is a proof that doesn't use it. In other words,  $\supset$  doesn't let us prove anything new about propositions that don't involve  $\supset$ . This means that we can use the richer logic of  $\operatorname{IPL}(\top, \wedge, \supset)$  to prove results that hold in any poset with finite meets, even those that don't support an implication structure. And while  $\supset$  can't allow us to prove anything new, it might allow us to write a *shorter* or more *intuitive* proof.

To prove conservativity, we will show that the inclusion (a monotone function of posets)  $i : \operatorname{IPL}(\top, \wedge) \to \operatorname{IPL}(\top, \wedge, \supset)$  is an *order embedding*: if  $i(P) \leq i(Q)$  then  $P \leq Q$ . Recall that the ordering here is provability of the hypothetical judgment  $\vdash$ , so this means if  $P \vdash Q$  in  $\operatorname{IPL}(\top, \wedge, \supset)$  then  $P \vdash Q$  in  $\operatorname{IPL}(\top, \wedge)$ .

Key to this proof is the *initiality* property of each variant of IPL:

<sup>&</sup>lt;sup>1</sup>This conservativity result also holds when both have disjunction, but the proof is slightly more complex

- For any poset P with finite meets and an assignment  $\sigma(X) \in P$  for each propositional variable, there is a unique monotone function  $\overline{\sigma} : \operatorname{IPL}(\top, \wedge) \to P$  that preserves finite meets and respects the assignment of propositional variables  $\overline{\sigma}(X) = \sigma(X)$ .
- An analogous property holds for  $IPL(\top, \land, \supset)$  but the poset P must have an implication as well and  $\overline{\sigma}$  is the unique monotone function preserving finite meets, respecting the assignment  $\sigma$  and preserving the implication.
- 1. First show that for any poset P, the set of contravariant homomorphisms  $\text{Bool}^{P^o}$ , with the point-wise ordering:

$$f \le g = \forall x \in P.f(x) \le g(x)$$

has finite meets and an implication.

- 2. Next, for any P we can define a function  $Y: P \to \text{Bool}^{P^o}$  defined by  $Y(x)(y) = y \leq x$ . Show that
  - Y is monotone.
  - Y preserves any finite meets that exist.
  - Y is an order embedding: if  $Y(x) \le Y(y)$  then  $x \le y$ .
- 3. Show that if  $i: P \to Q$  and  $j: Q \to R$  are monotone functions and  $j \circ i: P \to R$  is an order embedding then i is an order embedding.
- 4. Use the initiality property of  $IPL(\top, \land, \supset)$  to construct a monotone function  $f: IPL(\top, \land, \supset) \rightarrow Bool^{IPL(\top, \land)^o}$  that makes the following diagram commute:



Note that you will need to use the initiality of  $IPL(\top, \wedge)$  to show the diagram commutes.

Then since Y is an embedding, we have that the inclusion i is an embedding.

• • • • • • • • •