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What we’ve learned

We’ve learned about categories, functors, natural transformations, etc., but the goal
of this class was to learn how to apply these things to computer science. Here are
some of the key points I want you to take away:

(I) Models of logics are (structured) posets, and models of programming calculi
are (structured) categories. Order theory and category theory are the exact
mathematical fields that let us reason about logics and programming calculi,
respectively.

(II) In logic, the well-behaved, or “nice”, connectives are some kind of meet or join.
In type theory/programming calculi, the “nice” type connectives are modeled
most generally by representable predicators (covariant or contravariant).

(III) Logics and calculi are weakly inital models. This means that, given the syntax,
we can construct a Lindenbaum algebra where the following holds: for any
other model M , we can define a semantics J.K : L → M , where J.K is unique
up to unique isomorphism: there is a unique natural isomorphism to any other
homomorphism L → M .

L M

J.K

∼=

For logics, we get a simpler characterization: the model is simply unique.

(IV) We can use initiality to prove properties, or metatheorems, about the logics.
For example, we’ve proved:
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• Soundness and consistency (like you can’t prove falsity starting from an
empty context in IPL)

• Convervativity properties. In logic, one such property was that adding the
Heyting implication to IPL doesn’t allow us to prove any new theorems.

• The law of the excluded middle is not provable in IPL (using soundness)

• Soundness of STT as a logic: ¬(· ⊢ M : 0)

• Soundness of the equational theory of STT: ¬(true = false), by soundness
using our set model

• Canonicity: for all · ⊢ M : 1 + 1, there exists a unique bit b ∈ {0, 1} such
that M = ib(). We showed this using the gluing model, which is one of the
most powerful techniques we’ve covered.

• Conservativity of equational theory

(V) These techniques are not just things we can use to study systems after they have
been defined. We can use them to go from an idea of a model to a well-behaved
calculus where we can prove the above nice results using similar methods. This
was an introductory class, so we just got a taste of this, but categorical logic is
an ongoing research program that aids in the design of new calculi and logics.

Topics to Check out

These are all topics I considered covering this semester, and so I have provided ci-
tations to papers that I recommend as good introductions or references on their
categorical semantics, rather than the original references:

(I) Recursion: recursive functions and types [Abramsky and Jung, 1995, Freyd,
1991]

(II) Monads [Moggi, 1991, Wadler, 1993]

(III) Linear logic, which is closely related to call-by-push-value[Benton, 1995, Melliès,
2009]

(IV) First-order logic, higher order logics, modal logics [Shulman, 2016]

(V) Program logic: Hoare logic, Bunched implications, Separation logic [Bizjak and
Birkedal, 2018, Pym et al., 2004]

(VI) Dependent type theory (which works as a foundation for proof assistants), Ho-
motopy type theory, Modal type theory[AWODEY, 2018, Gratzer et al., 2022,
Seely, 1984]

(VII) Parametric Polymorphism/Parametricity [Hermida et al., 2014]

(VIII) Gradual Typing/Graduality [New and Licata, 2018, New et al., 2019]
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