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1 Review of Formal Systems So Far

The overarching theme of this course has been to develop categorical semantics of
syntactic systems. Over the course of this semester, we have formalized multiple syn-
tactic systems and constructed some natural mathematical models for them. Some
nuances about the system, such as the distinction between contexts and types in
STT, cannot be internalized so naturally by its typical model, so we introduce some
additional structure to which refines the model to some intermediate notion which is
almost tautologically sound and complete.

Similar to the case with IPL and STT, today we will define a sound and complete
CT-structure for Call-by-push-value whose model is formed by an adjunction between
a category of values and a category of effects. A summary of syntactic systems and
their associated semantics, and models can be found below:

Syntax (Sound and Complete) Semantics Typical Models
IPL Propositional CT-Structure Heyting Algebra
STT CT-Structure biCCC
CBPV CPBV CT-Structure Adjunction

2 CBPV CT-Structure

2.1 CT-Structure

Recall the following fragment of the judgmental structure of Call-by-push-value. We
can see that it contains nearly the same components that should be familiar to us
from STT:

• Value Contexts: Γ

• Value Types: A1, A2, . . .

• Values: Γ ⊢ V : A
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• Implicitly, we should also have a notion of substitution between value contexts
such that Γ′ γ−→ Γ

In a sense, we want CBPV to be an extension of STT. It should therefore be an
unsurprising result that a similar presentation of the CT-Structure for STT appears
as a component of the for Call-by-push-value. We define CBPV’s CT-Structure as
follows

Definition 1. A CBPV CT-Structure consists of the following data:

I. A CT-Structure V representing the values. Recall that this means we have:

• A cartesian category Vc where . . .

– objects Γ1,Γ2 ∈ (Vc)0 represent contexts

– morphisms γ ∈ Vc(Γ1,Γ2) represent substitutions

• A set VT which represent types

• forallA ∈ VT a predicator TmV A : V op
c → Set

• Such that for each type A ∈ VT we have a context soleA representing
TmV A, i.e., i : Y (soleA) ∼= TmV A

II. A category Ec representing effectful behavior such that

• objects Ξ ∈ (Ec)0 correspond to combinations (referred to as term con-
texts) of value contexts Γ and computation context ∆ found in syntax in
the judgments of the form Γ | ∆ ⊢ M : B

• morphisms ξ ∈ (Ec)1(Ξ,Ξ
′) represent substitutions over both the ∆ and

Γ component of the contexts. Recall that in CBPV we have two rules of
substitution in the term judgment,

γ : Γ′ → Γ Γ | ∆ ⊢ M : B

Γ′ | ∆ : M [γ]

Γ | ∆ ⊢ N : B′ Γ | • : B′ ⊢ M : B

Γ | ∆ ⊢ M [N ]

We can then informally think of morphisms between contexts as internal-
izing a (pseudo-syntactical) judgment that combines both notions of substi-
tution into a single rule:

(γ|δ) : Γ1 | ∆1 → Γ2 | ∆2 Γ2 | ∆2 ⊢ M : B

Γ1 | ∆1 ⊢ M [γ | δ] : B

where δ is a term given in the following cases

δ =

{
∗ if ∆1 = ·,∆2 = ·
N if ∆1 = ·,∆2 = • : B, and Γ2 | ∆1 ⊢ N : B

where ∗ represents the trivial computation
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III. An object I ∈ (Ec)0 representing the empty computation context · | ·. Note that
unlike the empty context in a CT structure, I is not necessarily a terminal object
in E .

IV. A functor ⊘ : Vc × Ec → Ec (written using infix notation) that internalizes the
structure of value contexts concatenating with term contexts in the syntax:

Γ⊘ (Γ′ | ∆) = Γ,Γ′ | ∆

with the following natural isomorphisms given by the following pointwise defini-
tions

• an “associator”1

αΓ1,Γ2,Ξ : Γ1 × Γ2 ⊘ Ξ ∼= Γ1 ⊘ Γ2 ⊘ Ξ

satisfying the “pentagon law”:

Γ1 × (Γ2 × Γ3)⊘ Ξ (Γ1 × Γ2)× Γ3 ⊘ Ξ

Γ1 × Γ2 ⊘ Γ3 ⊘ Ξ

Γ1 ⊘ (Γ2 × Γ3)⊘ Ξ Γ1 ⊘ Γ2 ⊘ Γ3 ⊘ Ξ

αΓ1,Γ2×Γ3,Ξ

Γ1⊘αΓ2,Γ3,Ξ

αΓ1,Γ2,Γ3⊘Ξ

((π1,π1π2),π2π2)⊘Ξ

αΓ1×Γ2,Γ3,Ξ

• a “unitor”
iΞ : 1⊘ Ξ ∼= Ξ

satisfying the “triangle law”:

1× Γ⊘ Ξ 1⊘ Γ⊘ Ξ

Γ⊘ Ξ
π1,Γ
2 ⊘Ξ

iΓ⊘Ξ

α1,Γ,Ξ

Which gives us a natural interpretation of the functor’s action on morphisms as
well. Given γ : Γ1 → Γ2 and γ′ | δ : Γ′

1 | ∆1 → Γ′
2 | ∆2:

γ ⊘ γ′ | δ = (γ, γ′ | δ) : Γ1,Γ
′
1 | ∆ → Γ2,Γ

′
2 | ∆

Note that the associator and unitor carry the monoidal structure of value contexts
into Ec, but in a way that extends to functors rather than just functions on
monoids. In fact, we can think of ⊘ paired with the associator and unitor as
a generalization of the action of the monoid of value contexts ((Vc)0, 1,×) over
the term contexts in Ec to account for morphisms as well.

1note that we can drop the parentheses unambiguously here

EECS 598: Category Theory PS 1



Problem 3 4

V. a set of computation types ETy

VI. ∀B ∈ ETy we have

• a predicator TmEB on Ec. We think of this as modeling the term judg-
ment Γ | ∆ ⊢ M : B along with the action of substitution and iden-
tity/associativity.

• a singleton context soleB ∈ (Ec)0 that represents the predicator TmEB, e.g.
Y (soleB) ∼= TmEB.

Syntactically, we think of soleB ∈ (Ec)0 as · | • : B where we have an empty
value context and singleton computation context. 2

This CT-Structure gives a categorical interpretation of the judgmental structure of
Call-by-push-value regardless of some initial signature or choice of connectives made.
This enables us to describe each type connective and its associated rules more or less
in isolation from the base type theory.

2.2 Aside: Theory Extensions from Semantics

When we define a model for syntactic systems, there may be additional structure on
the contexts or types that could be interpreted as new types, contexts, or operations
on them that were not identified in the image of our original language. For example,
in the syntax of CBPV we defined computational contexts as “stoups”:

∆ ::= · | • : B′

However, there’s (intentionally) nothing in the CT-Structure precluding us from
expressing objects in Ec that are not of this form. This ability to express constructions
outside the original system is not only intentional, it is a desirable outcome: we can
design extensions of our type theory by identifying new constructions in the semantics
and internalizing them syntactically.

3 Type Structure

Now that we’ve defined a CT-Structure for CBPV we will internalize the the canonical
connectives Clo,×,→,Ret, and + from the syntax. Fix a CT-Structure given by
(V ,E , I,⊘), then we can define the connectives as follows:

3.1 Closure Types

Definition 2. Let B ∈ ETy then a closure type for B is

2It may look like we defined a CT-Structure E , but we have not defined a product structure
over Ec. Therefore, we do not have the conventional notion of syntactic weakening or context
concatenation over term contexts.
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• An object CloB ∈ VT and

• Terms of type B are in natural bijection with values of type CloB. In other
words for some Γ ∈ (Vc)0 we have the following natural bijection

TmV (CloB)(Γ) ∼= TmE (B)(Γ⊘ I)

Recall from the syntax the introduction rule

Γ | · ⊢ M : B

Γ ⊢ proc{M} : CloB

This precisely corresponds to backward (right to left) direction of the bijection. The
forward direction is given by the universal element

TmE (B)(sole(CloB ⊘ I))

which corresponds to the elimination form

x : CloB | · ⊢ x.call() : B

3.2 Product Types

Product types are defined exactly the same as they were for STT

Definition 3. Let A1, A2 ∈ VT . A product type is an element (A1×A2) ∈ VT such
that sole(A1 × A2) is a product in Vc.

3.3 Function Types

Definition 4. Let A ∈ VT and B ∈ ETy. A function type is

• An element A → B ∈ ETy such that

• Terms of type A → B are in bijection with terms of type B that can be con-
structed with a variable of type A in the context. Let Ξ ∈ (Ec)0. Then we have
the following natural bijection:

TmE (A → B)Ξ ∼= TmE (B)(soleA⊘ Ξ)

Recall from the syntax the introduction rule for function types:

Γ, x : A | ∆ ⊢ M : B

Γ | ∆ ⊢ λx.M : A → B

As is the case with closure types, this rule corresponds with the reverse direction of
the bijection and composing with the universal property of sole(A → B) we get that
one direction is

Y (sole(A → B))Ξ ⇒ TmEB(soleA⊘ Ξ)

By the Yoneda lemma, this is determined by an element TmEB(soleA⊘sole(A → B))
which corresponds to the elimination rule:

x : A | • : A → B ⊢ • : B
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3.4 Return Types and Sum Types

Definition 5. Let A ∈ VT . A return type is defined as

• An object RetA ∈ ETy

• A natural bijection between the set of terms of type B when given some notion
of a value type A in either the computation context or the value context. Let
Γ ∈ (Vc)0 then

TmE (B)(Γ⊘ sole(RetA)) ≃ TmE (B)(Γ⊘ soleA⊘ I)

This bijection is represented by the following invertible rule

Γ, x : A | · ⊢ N : B

Γ | • : RetA ⊢ var x = • inN : B
================================

Again applying the Yoneda lemma and using sole, we can derive the introduction form
as the universal element TmE (RetA)(soleA⊘ I):

x : A | · ⊢ retx : RetA

Definition 6. Let A1, A2 ∈ VT . A binary sum type is defined as

• An object A1 + A2 ∈ VT

• A natural bijection

TmV (A
′)(Γ× (A1 + A2)) ∼= TmV (A

′)(Γ× A1)× TmV (A
′)(Γ× A2)

• As well as a natural bijection

TmE (B)((A1 + A2)⊘ Ξ) ∼= TmE (B)(A1 ⊘ Ξ)× TmE (B)(A2 ⊘ Ξ)

such that the left direction is given by composition with the universal elements
(i0, i1) ∈ TmV (A1 + A2)A1 × TmV (A1 + A2)A2

4 Typical models

V ⊥ E

Ret

Clo

Sometimes it nicer to work with all of the connectives in a type theory and con-
struct the simplest possible model to work with. A typical model for CBPV consists
of a bicartesian closed category V and a category E paired an interpretation of Ret
and Clo such that Ret ⊣ Clo. More concretely we list its components:
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I. A biCCC V

II. A (usually bicartesian closed) category E

III. An empty computational context I ∈ (Ec)0

IV. A functor ⊘ : V ×E → E which satisfies the same unitor and associator natural
isomorphisms from the CT-Structure model. However, unlike the CT-Structure
⊘ here is in adjoint triality with the following bifunctors.

• →: V op × E → E

• ⊸: E op × E → V

the adjunction of these functors is illustrated in the isomorphism between the
following hom sets. Let A ∈ V and B ∈ E, then the following bijections are
natural in A and B:

E (A⊘B,B′) ∼= E (B,A → B′) ∼= V (A,B ⊸ B′)

Here, giving axioms for ⊘ and characterizing → and ⊸ by adjointness is an
arbitrary choice: we could just as easily started with axioms for → or ⊸ and
define ⊘ by adjointness instead. Using ⊸ as the primitive is most enticing
because this means we can simply define E to be a V -enriched category, a
well-studied notion.

Notice that Ret and Clo have not been defined yet. This is because we can
describe them as a universal construction using the above bifunctors

• RetA ≃ A⊘ I

• CloB ≃ I ⊸ B

5 Weak Initiality

The syntax of CBPV itself as before defines a CBPV c-t structure L, the Linden-
baum algebra, which satisfies an analogous weak initiality theorem to STT: it gives
a CBPV CT structure homomorphism to any other CBPV CT structure and this
homomorphism is unique up to unique natural isomorphism.

EECS 598: Category Theory PS 1


