
Lecture 24

Lecturer: Max S. New
Scribe: Matt Wang

April 10, 2023

Today we’ll talk more about effects and CBPV.

1 Review

Last time we saw how to add beeps and boops to CBPV with the two rules:

Γ | · ⊢ M : B

Γ | · ⊢ beep;M : B

Γ | · ⊢ M : B

Γ | · ⊢ boop;M : B

We also added the following strictness rule

Γ | · ⊢ M : B1 Γ | B1 ⊢ N : B

Γ | · ⊢ N [beep;M] = beep;N [M] : B

and similarly for boop. For other effects besides beeps and boops we are going to add
additional equations that help us reason about our programs and tell us something
more about how the compiler has to be implemented.

One equation for beep and boop we can add is beep; boop;M = boop; beep;M .
This equation tells us any sequence of beeps/boops can be reordered arbitrarily. With-
out this commutativity rule, the canonicity theorem we wanted was that any term
M was equal to some sequence of beeps and boops with unique ordering. With this
new rule only the total count of beeps and boops matters.

Similarly, if we were to add the not very-useful rule beep;M = boop;M then we
only care about the total number of operations. We could also add beep; beep;M =
beep;M we only care if we beep before the next boop. Whatever equation we add
to our language depends on the purpose of the program. Now we’ll consider some
effects with more natural equations.

2 Mutable State

To keep it simple, say we have one global boolean memory location that we can read
from or update. Without assuming we have any particular connectives, we can make
the following rules to set state:

1

Lecture 23 2

Γ | · ⊢ M : B

Γ | · ⊢ set 0;M : B

Γ | · ⊢ M : B

Γ | · ⊢ set 1;M : B

To read from state without introducing a boolean connective, we’ll perform a
case split on the current state of the memory location instead of giving a single read
operation that returns a boolean:

Γ | · ⊢ M0 : B Γ | · ⊢ M1 : B

Γ | · ⊢ ifread M0M1 : B

Note: ifread requires an empty context.
If this is to act like mutable state, then we want to add in equations that internalize

the intuitive semantics. First we’ll add in the following linearity rules:
Any computation substituting in a set of a bit commutes with any computation

with substitution into the computation:

N [set b;M] = set b;N [M]

For ifread, if we substitute a read statement into a program commutes with reading
the bit first:

N [ifreadM1M2] = ifread(N [M1])(N [M2])

We have the following intuitive laws:

• put; get
set i; ifreadM0M1 = Mi

• put; put
set i; set i′;M = set i′;M

• get; get
ifread(ifreadM0M1)(ifreadM2M3) = ifreadM0M3

More generally:

ifread(ifreadM0M1)M2 = ifreadM0M2

ifreadM0 (ifreadM1M2) = ifreadM0M2

Note: if our language had concurrency then these laws wouldn’t hold, e.g. the put;
get law tells us that setting a bit and then reading is an atomic operation. These laws
also wouldn’t be valid if we could explicitly observe whenever the state is accessed,
e.g. running a profiler on the program. When we want a particular equation to hold,
it’s up to us to determine whether things are actually observable or if we care.

EECS 598: Category Theory Lecture 23

Lecture 23 3

3 Non-determinism/Backtracking

We can add non-determinism to our language by adding a fail and ambiguous oper-
ation:

Γ | · ⊢ fail : B

Γ | · ⊢ M0 : B Γ | · ⊢ M1 : B

Γ | · ⊢ amb M0M1 : B

Other than re-naming, so far the amb operation is the same as if. We give them dif-
ferent names because they differ in the equations we impose. Some natural equations
for reasoning about non-determinism would be

• Associativity: amb (amb M0M1)M2 = amb M0(amb M1M2)

• Left cancel: amb fail M1 = M1

• Right cancel: amb M0 fail = M0

• Idempotency: amb M M = M

• Fairness: amb M0M1 = amb M1M0

These are exactly the rules for the algebraic theory of semi-lattices, which are
equivalent to idempotent commutative monoids. The canonicity result for this calcu-
lus is that under these equations, we can prove that any term

Γ | · ⊢ M : RetBool

is an element of the free semi-lattice on Booleans which is just the finite power set,
i.e. M = ⌊S⌋ ∈ P(Bool). So M could fail (∅), return true ({1}), return false ({0},
or be ambiguous ({0, 1}. Most programming languages do not support all of these
equations, e.g. Prolog is not unbiased because you can observe the ordering of choices
taken.

4 Writing programs in CBPV

We can explain the semantics of STT terms extended with beeps and boops by trans-
lating them to CBPV.

(beep; (λx.(boop;x+ 1)))(beep; 5)

is a term in STT with numbers. It could evaluate to any of the following depending
on evaluation order:

• boop; beep; boop; 6 (call by value/eager, left-to-right)

• boop; boop; beep; 6 (call by name)

EECS 598: Category Theory Lecture 23

Lecture 23 4

• beep; boop; boop; 6 (call by value/eager, right-to-left)

There is some ambiguity in the source language syntax, not clear how it will
evaluate without knowing more about the language. We can reason about all of these
evaluation orders by different translations of the λ term into CBPV in a way that
encodes the evaluation oder. Informally, we’ll perform a translation that is syntactic
translation from arbitrary λ terms into CBPV.

First of all, our program is of type Int in STT but it is an effectful computation
that produces an int so it has type RetInt in CBPV. More generally, we have the
following translations from STT:

M : Int⇝ ⌈M⌉ : RetInt
M : Int =⇒ Int⇝ ⌈M⌉CbV : Ret (Closure (Int → RetInt))

M : Int =⇒ Int⇝ ⌈M⌉CbN : Closure (RetInt) → RetInt

The generalization of these translations to an arbitrary M of type A in CBPV is

M : A⇝ ⌈M⌉CbV : Ret ⌈A⌉CbV

M : B ⇝ ⌈M⌉CbN : ⌈B⌉CbN

and variables are directly translated in CbV but in CbN they are translated to a
closure:

x0 : A0 ⊢ M : A⇝ x0 : ⌈A0⌉CbV ⊢ ⌈M⌉CbV : Ret ⌈A⌉CbV

x0 : B0 ⊢ M : B ⇝ x0 : Closure ⌈B0⌉CbN ⊢ ⌈M⌉CbN : ⌈B⌉CbN

From this perspective we see why some of the η-rules are valid in CbV but not
CbN and vice versa. The η-rules for function and product types are about terms of
function and product types and in the translation we translate to CbN terms with a
similar connective. For things like sum types, in CbV the variables are guaranteed to
be actual values so we have stronger η-rules.

To translate functions from STT types to CbV we have

⌈C1 → C2⌉CbV := Closure (⌈C1⌉CbV → Ret ⌈C2⌉CbV)

and in CbN we have

⌈C1 → C2⌉CbN := Closure ⌈C1⌉CbN → ⌈C2⌉CbN

To translate function application MN in CbN we note that M is a function
with type above, taking a closure of type C1 and outputting C2 and we’ll pass it an
unevaluated version of N :

⌈MN⌉CbN := ⌈M⌉CbN(proc {⌈N⌉CbN})

EECS 598: Category Theory Lecture 23

Lecture 23 5

and in CbV with left to right evaluation we evaluate M to a value and N to a value
and then apply M to N :

⌈MN⌉CbV,ltr := var f = ⌈M⌉CbV,ltr; varx = ⌈N⌉CbV,lt; f.call()x

To get right to left evaluation we would just swap the order of evaluations of M
and N .

To translate sum types in CbV we can just use the sum types for value types:

⌈C1 + C2⌉CbV := ⌈C1⌉CbV + ⌈C2⌉CbV

but in CbN our output needs to be a computation type so we will translate it to
something that returns a value of a sum type:

⌈C1 + C2⌉CbN := Ret (Closure ⌈C1⌉CbN + Closure ⌈C2⌉CbN).

To translate case statements into CbV we first need to evaluate M to a value:

⌈case+M

{
i0x0 → N0

i1x1 → N1

⌉CbV := var s = ⌈M⌉CbV ; case+s

{
i0x0 → ⌈N0⌉CbV

i1x1 → ⌈N1⌉CbV

and the call by name translation is the same but with call by name evaluation
because the input is linearly used.

EECS 598: Category Theory Lecture 23

