
Lecture 22: Call-by-push-value

Lecturer: Max S. New
Scribe: Eric Zhao

April 03, 2023

1 Review of beep-boop

Recall the language of beeps and boops we defined previously, where we had the
following two constructors:

Γ ⊢ M : A

Γ ⊢ beep;M : A

Γ ⊢ M : A

Γ ⊢ boop;M : A

Our expected canonicity result for this language stated that for all closed terms
· ⊢ M : Bool (where Bool is 1 + 1), M = (beep; | boop;)∗(ı1() | ı2()).

Remember that we can view this language in terms of monoid actions, specifically
with the monoid M of strings over {beep; , boop; }. Recall that for any monoid, there
is an adjunction:

Set ⊥ M-Act

U

FM-Act

where U takes the monoid to its underlying set and FM-Act is the free monoid action:

FM-ActX := (|M| ×X,m · (n, x) = (m · n, x))

This is the minimal way to equip a set with a monoid action, and the unit of the
adjoint is η : X → UFM-ActX such that ηx := (e,m).

This gives us the ability to interpret terms in a semantics of monoid actions:

· ⊢ M : Bool⇝ JMK ∈ UFM-Act({true, false}) = M × {true, false}

2 Eager vs. lazy semantics

Let’s look at the interpretation of terms of other types. Consider

· ⊢ M : Bool× Bool

1

Problem 3 2

We might expect the following evaluation result

UFM-Act({true, false} × {true, false}) = M× ({true, false} × {true, false})

But this is strange from the perspective of the categorical semantics, since we have in
the past always interpreted the product in Bool× Bool as a product in the category
where we are taking the semantics.

For A1, A2 ∈ M-Act, A1 ×A2 = (|A1| × |A2|,m · (a1, a2) = (m · a1,m · a2)). Since
we’re taking semantics in the category of M-Act, we would expect Bool×Bool to be
interpreted as

U(FM-Act({true, false})× FM-Act({true, false}))
= (M×{true, false})× (M×{true, false})

That is, this term doesn’t print anything; it waits for a projection to be performed,
at which it gives a Bool and produces a string. This is a lazy semantics (or call-by-
name), as opposed to the eager semantics (or call-by-value) above.

Note that the definition of products in M-Act gives us the lazy semantics for
beeps and boops: beep; (M1,M2) = (beep;M1, beep;M2). This would not be the case
in an eager language, where we would expect the RHS to beep twice.

2.1 Unit type

What about the unit type: · ⊢ M : 1? Again, we have two kinds of semantics:

• eager: FM-Act1, i.e. a series of beeps and boops and trivial value.

• lazy: 1M-Act, i.e. nothing. This semantics validates the η rule for unit types,
and acts more like a pure language; terms of unit type are just dead code.

2.2 Function types

What about function types: · ⊢ M : Bool ⇒ Bool?

• eager: FM-Act(Bool → UFM-ActBool), i.e. a series of beeps and boops, and a
function that, given a boolean, will produce more beeps and boops and another
boolean.

• lazy: UFM-ActBool → FM-ActBool. The input is not evaluated: (λx. M) (beep;N) =
M [beep;N/x]. Similar to the unit type case, this validates the η rule for func-
tions.

In the lazy case, we use the following notion of functions that are not necessarily
equivariant. It turns out that this construction has the universal property in M-Act
(e.g. M-Act(A′, X → A) ∼= M-Act(A′ × FM-ActX,A)).

X set A M-Act

X → A M-Act := (|A|X , (m · f)(x) = m · f(x))
We see that interpreting the semantics of beep-boop requires universal properties

in both Set and M-Act. This is a general pattern when modelling effects.

EECS 598: Category Theory

Problem 4 3

3 Mutable state

Let’s now consider a language with a single mutable variable of type S. The behaviour
of a program depends on the initial state of the mutable variable and will produce,
as a side effect, the final state.

· ⊢ M : Bool⇝ S → S × Bool

But instead of manually considering what the interpretation of what unit, products,
functions, etc. are, we can use a common adjunction.

Is there an adjunction F ⊣ G such that S → S×Bool is of the formGF{true, false}?
Yes, and we previously saw that this was an adjunction for any cartesian closed cat-
egory.

Set ⊥ Set

G=S⇒−

F=S×−

Then, we get the following interpretations, in which this adjunction naturally pro-
duces the right semantics for both eager and lazy languages:

type eager lazy

1 S → S × 1 S → 1
Bool× Bool S → S × (Bool× Bool) S → (S × Bool)× (S × Bool)
Bool ⇒ Bool S → S × (Bool → S × Bool) S → (S → S × Bool) → S × Bool

4 Call-by-push-value

Call-by-push value (CBPV) is a type theory to reason about effectful programs.

• CBPV subsumes both CBV and CBN: we can translate both into CBPV in a
way that preserves the equational theory.

• We get sound and complete semantics in an adjunction between “nice” cate-
gories.

In particular, we have a category V of pure values (often Set) that is very much
like a model of STT (e.g. bicartesian closed) and a category C of effectful computations
which is much like a model of UnTT (e.g. bicartesian). In this way, we’re kind of
combining together two types theories that we’ve already seen.

V ⊥ C

G

F

EECS 598: Category Theory

Problem 4 4

4.1 Basic rules

We have 2 kinds of types:

• value types A1, A2, . . .

• computation types B1, B2, . . .

“Values” (or “pure functions”), written V , are governed by the judgment Γ ⊢ V :
A, where Γ is a context of value types x : A,

“Effectful computations” (or “strict/linear homomorphisms”) are governed by the
judgment Γ | ∆ ⊢ M : B, where Γ is the same context of value types. The stoup may
be empty (no variable) or full (single linear variable): ∆ ::= · | · : B.

Then, the denotation of these terms are morphisms in V and C:

term denotation

Γ ⊢ V : A JV K : V(×JΓK, JAK)
Γ | · ⊢ M : B JMK : C(F JΓK, JBK)
Γ | · : B1 ⊢ M : B2 JMK : C(F JΓK × JB1K, JB2K)

Note that C does not necessarily generally have products, but it should have products
with F JGK. It’s also not the case in general that this is the Cartesian product; instead
it is more like a tensor product.

EECS 598: Category Theory

