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1 Recap (Adjoint Functors)

C D
F

G
⊣

Suppose we have functors F : C → D and G : D → C. In the previous lecture, we
covered four equivalent definitions of what it means for F to be left adjoint to G,
abbreviated F ⊣ G. Two of those definitions are given below:

1. (Definition 1.1) We have D(Fc, d) ∼= C(c,Gd). (Natural in c : Cop, d : D.)
Phrased differently, maps out of F in D are equivalent to maps into G in C.

2. (Definition 1.2) There exist “unit”, η : c → GFc, and “co-unit”, ε : FGd → d,
such that the following diagrams commute:

F FGF G GFG

F G

εF
idF

Fη

idG

ηG

Gε

We also write that F is right adjoint to G if G is left adjoint to F . As will be seen
later, adjoint functors are a weakening of the notion of equivalence of categories.

2 Examples with Posets

Here are various examples of adjoint functor pairs between categories that are posets.1

1Such pairs of adjoint functors are typically called Galois Connections, named after the famous
mathematician.
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Problem 2 2

2.1 R and Z
Consider the inclusion i from (Z,≤) into (R,≤), which is clearly a monotone function:

(Z,≤) (R,≤)i

i is not an isomorphism, as i is not surjective. In general, it is impossible to define
an isomorphism between these two posets as R and Z have different cardinalities, so
we cannot define an equivalence of categories. However, we can find left and right
adjoints for i, namely the floor and ceiling functions2, respectively:

(Z,≤) (R,≤)i

G=⌊·⌋

F=⌈·⌉

⊣
⊣

We see that F ⊣ i using either definition 1.1 or 1.2 (using r ∈ R, n ∈ Z):
1. By definition of F , Fr ≤Z n if and only if r ≤R n. This gives (Z,≤)(⌈r⌉, n) ∼=

(R,≤)(r, i(n)) as desired.

2. We see that r ≤ ⌈r⌉ and ⌈n⌉ ≤ n. These are our unit and co-unit, respectively.
The diagrams trivially commute because we are working in posets.

We can similarly prove i ⊣ G using either definition:

1. By definition of G, n ≤ Gr if and only if n ≤R r.

2. Unit is ⌊r⌋ ≤ r and co-unit is n ≤ ⌊n⌋.
Thus we get the chain of adjoints G ⊣ i ⊣ F . In general, chains of adjoints can be
arbitrarily long, and they may be cyclic (trivial example: Id ⊣ Id ⊣ · · · ). However, F
and G are not adjoint to each other, it doesn’t even make sense as F and G do not
point in opposite directions.

2.2 Bool and BoolX

Let X be a set. Recall that a function from X to the booleans can be viewed as a
predicate on X. We will construct adjoint functor pairs between the category of the
poset (Bool,⇒) and the category of the poset (BoolX ,≤) of predicates on X, where
≤ is given by pointwise ordering.3 Define ∆ : Bool → BoolX by ∆(b)(x) := b, i.e. ∆b
is a constant predicate.4 Note that ∆ is trivially monotone.

(Bool,⇒) (BoolX ,≤)

F

∆

G

⊣
⊣

2The floor function ⌊x⌋ returns the greatest integer that is at most x, and the ceiling function
⌈x⌉ returns the smallest integer that is at least x.

3P ≤ Q iff Px ⇒ Qx for all x ∈ X. (Aside: the predicates themselves are not “monotone”, as
we didn’t assume X to have underlying structure.)

4The ∆ stands for diagonal.
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We get ∆ has left and right adjoints F and G given by

FP := ∃x.Px

GP := ∀x.Px

It is straightforward to confirm F ⊣ ∆ via Definition 1.1 by noting that FP ⇒ b if
and only if P ≤ ∆b. Similarly, we note that GP ⇒ b if and only if ∆b ≤ P , thus
∆ ⊣ G. Thus we get ∃ ⊣ ∆ ⊣ ∀.5

3 STT Connectives

In the previous lecture, we discussed two examples with the product and the terminal
object. In fact, those examples can be seen as generalizations of the previous example,
where the generalization goes as follows.

3.1 I-Products

Let C be a bicartesian category. Let I be a set. We can define an I-indexed category
CI in one of several ways, such as the functor category out of a discrete category, or
as a category where the objects are an I-indexed family of objects in C where the
morphisms are pointwise morphisms. We’ve seen various examples, such as C2 = C×C
and C0 = 1.

Now we generalize the example from 2.2. Instead of a function between the posets
(Bool,⇒) and (BoolX ,≤), we define a functor ∆ : C → CI given by

∆(c)(i) := c

∆(f)(i) := f

For example, in the case of I = 2, this means c 7→ (c, c), and in the case of I = 0, this
means c 7→ (). We now generalize the adjoints from section 2.2 to get that ∆ has left
and right adjoints given by the coproduct (which we will denote as Σ) and product
(which we will denote as Π), respectively:

C CI

Π

Σ

∆

⊣
⊣

If we have C is a bicartesian category, then it will have all such adjoints. We have seen
multiple categories that have these chains of adjoints, such as Set, Gluing categories,
syntactic categories, Lindenbaum Algebras, and all of them will have this type of
adjoint. We will now note how to define the unit and co-unit for Π:

5This result was first discovered by Bill Lawvere, and is possibly the first discovery of the link
between category theory and logic.
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• We can define a unit ηc : C(c,Πi(∆c)) as a “diagonal” morphism from c to
Πi(∆c).6 For example, if C was the category of sets, ηc would be given by

ηc(x ∈ c) := (x, x, . . . )

• We can define a co-unit εc : CI(∆(Πic⃗), c⃗). For there to be morphism between
these two objects, it means for each i ∈ I, we get a morphism from the product
Πic⃗ to position i of c⃗. We can do this by letting component i of the morphism
be the projection πi : Πic⃗ → c⃗i. We then define εc by as this pointwise collection
of projections, which we can denote as π⃗.

This covers almost all connectives in STT, but it does not cover the exponential.
We will address this in the following section.

3.2 Exponentials

Let C have binary products. Fix s ∈ C. We will show that the functors (−× s) and
(−)s are adjoints:

C C
−×s

(−)s

⊣

When we view this through Definition 1.1, the above diagram becomes less exciting
because it just means C(Γ × s, a) ∼= C(Γ, as), which is true by definition. We could
alternatively prove this by defining a unit η : C(a, s ⇒ (a× s)), which can be seen as
performing some “stateful” computation, and a co-unit ε : C((s ⇒ a) × s, a), which
can be seen as function application.

With this, we conclude that if you squint your eyes, every connective in STT can
be given by adjunctions. But this isn’t too crazy, we already knew they were universal
properties and thus they’re all representable.

4 Useful facts about adjoints

We discuss some useful facts about adjunctions, including one which generalizes the
previously noted fact that coproducts in a cartesian closed category are automatically
distributive.

4.1 Uniqueness

In problem set 3, we proved that isomorphisms have unique inverses: if g and g′ are
inverses of f , then g = g′. We’ve also seen that if F and G form an equivalence
of categories, and F and G′ form an equivalence of categories, then G and G′ are
isomorphic. We can obtain a result for adjoints which is similar in spirit: namely,

6An important detail here is that this “diagonal” morphism is within the category C, rather than
∆ which is a functor between categories.
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if F ⊣ G and F ⊣ G′, then G ∼= G′. To show this, we need to construct a natural
isomorphism Gd → G′d. (In fact, we can give a unique isomorphism that preserves
unit and co-unit structure, refer to Riehl for that definition.) Since F ⊣ G′, there
exists a natural isomorphism i : C(FGd, d) → D(Gd,G′d), giving us that

Gd
iε→ G′d

FGd →
ε
d

=========

Symmetrically, ifG has two left adjoints, F and F ′, then those adjoints are isomorphic.

4.2 Category of adjunctions

We can define a category of adjunctions where the objects are categories and the
morphisms are the adjunctions between two categories.7 In the diagram below, we
define composition of F ⊣ G and F ′ ⊣ G′ by F ′ ◦F ⊣ G◦G′, which we will soon show
to be an adjoint pair.

C C C D E
Id

Id

F F ′

G G′

⊣ ⊣ ⊣

Clearly each category C has an adjoint pair Id ⊣ Id with itself because C(Idc, c′) ∼=
C(c, Idc′). We get that Id ⊣ Id is identity for C because Id ◦ F = F and G ◦ Id = G.
It suffices to show that any two adjoints can be composed to give another adjoint, or
in the case of the above diagram, that F ′ ◦ F ⊣ G ◦G′. It satisfies definition 1.1:

E(F ′Fc, e) ∼= D(Fc,G′e) (F ′ ⊣ G′)
∼= C(c,GG′e) (F ⊣ G)

As desired.8

4.3 Equivalences of categories are stronger than adjunctions

Throughout this lecture and the previous lecture, it’s been hinted at that adjunction
is a weaker form of equivalence9, but it may not be immediately clear why this is
true because it’s not immediately obvious that every equivalence of categories is an
adjunction. Consider an equivalence of categories between C and D:

C D
F

F−1

⊣

7More properly, a morphism in this category is a functor with the data that it is a left adjoint,
which is more usefully viewed as a 2-category than as a 1-category.

8We’ve made everything so completely abstract that we can’t possibly get the proof wrong.
9As a note, the converse isn’t true. It’s possible to have a chain of adjunctions F ⊣ G ⊣ F , where

neither F nor G are full or faithful

EECS 598: Category Theory PS 1



Problem 4 6

By equivalence of categories, we have that

Id ∼= FF−1

FF−1 ∼= Id

which respectively suggest a unit η and co-unit ε. However, there is more data to
an adjunction! Namely, we’d need our η and ε to satisfy the commuting triangles
presented in Definition 1.2, and it’s not always true that η and ε satisfying the above
natural isomorphisms are sufficient to make those triangles commute!

But there is a silver lining. It’s possible to modify at most one of η or ε to
allow both triangles to commute. We are able to derive that if F and F−1 form an
equivalence of categories, then F ⊣ F−1 and F−1 ⊣ F , but you can’t guarantee that
both η and ε will be preserved, you can only preserve one of the two.

We can get a proof using Definition 1.1:

D(Fc, d) ∼= C(F−1Fc, F−1d) (F−1 is fully faithful)
∼= C(c, F−1d) (precompose with ε)

Thus any theorem we prove about adjoint functors, we get the same result for free
for equivalence of categories! Thus it’s desirable to prove results for adjoints when
possible, as those results hold more generally. Speaking of which...

4.4 RAP(L|P) and LAPC

RAPL (“right adjoints preserve limits”) is perhaps the most famous basic theorem in
category theory, besides maybe the Yoneda Lemma.10 But we don’t know what limits
are, so we will focus on products, which are a special case of limits. Dually, there’s
also LAPC (“left adjoints preserve colimits”, or in our case, “left adjoints preserve
coproducts”).

We get by corollary of LAPC that product by a fixed object, − × s, preserves
coproducts and initial object, which could have given us problem 1.2 of problem set
5 for free!11

Suppose we have the following setup:

C D
F

G

⊣

We want to prove that products in D are preserved by G. That is, we want to show
that if the left-hand side is a product diagram, then the right-hand side is also a

10If you go out to your topology or algebra class and notice there’s a bunch of adjoint functors
flying around, it’s nice that you can instantly know that a bunch of properties are preserved by those
functors from category theory. “Oh, this is a right adjoint? By corollary, here’s a list of things it
preserves!”

11e.g. we wanted that 0× s was initial, which follows from LAPC and −× s being left adjoint.
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product diagram.

P 7→ GP

d1 d2 · · · 7→ Gd1 Gd2 · · ·

π1 π2
Gπ1

Gπ2

In more detail, if we have an object c ∈ C and morphisms fi : c → Gdi, we would like
there to be a unique morphism (f1, f2, · · · ) : c → GP such that the following diagram
commutes:

c

GP

Gd1 Gd2 · · ·

c

Gπ1
Gπ2

f1
f2

(f1,f2,... )

But oh no! We don’t know anything about GP ! What do we do? We take advantage
of the fact that F ⊣ G, which gives us natural isomorphisms i and j:

D(Fc, d) ∼= C(c,Gd)

i

j

Therefore there exists unique (if1, if2, . . . ) such that the following diagram commutes:

Fc

P

d1 d2 · · ·

Fc

if1
if2

π2
π1

(if1,if2,... )

Applying j, we get the following diagram in C:
c

GP

Gd1 Gd2 · · ·

c

Gπ1
Gπ2

f1
f2

j(if1,if2,... )
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However, we have yet to show that the above is a product diagram! We’ll get to that
in a moment. But for now, we can note that the above steps can be compressed into
a very slick looking proof:

C(c,GP ) ∼= D(Fc, P ) (by i)
∼= ΠkD(Fc, dk) (by πk ◦ −)
∼= ΠkC(c,Gdk) (by j)

All the above steps are correct. However, this does not fully prove the product is
preserved! We still need to show that the projection maps in C are specifically the
Gπk that were hit by G.12 The above 3-line proof has achieved the same results thus
far as the diagrams, but we have yet to prove we have a product diagram. No worries!
We complete the proof by noting that if g ◦ h ∈ D(Fc, d), then j(g ◦ h) = Gg ◦ j(h),
thus for f ∈ C(c,GP ) we get for any k that

j(πk ◦ i(f)) = (Gπk ◦ j(i(f)))
= (Gπk ◦ f)

Which holds for f = j(if1, if2, . . . ) as desired. Now go forth and feel free to apply
LAPC and RAPL in your future math endeavors! (If you’re a math major.)

12It does, however, prove the weaker statements that right adjoints preserve terminal objects, as
there are no product diagrams to preserve, and it proves that right adjoints of posets preserve meets
because there are no “other” morphisms G could hit.
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