
Lecture 19: Equivalence of Categories

Lecturer: Max S. New
Scribe: Daiwen Zhang

March 22, 2023

Contents

0 Preface [00:01:05]-[00:04:23] 1

1 Isomorphism of Categories [00:04:24]-[00:07:45] 1

2 Examples: Par and Set∗ [00:07:46]-[00:25:36] 2

3 Equivalence of Categories [00:25:37]-[00:30:36] 5

4 Examples: Un1 ≃ C [00:30-37]-[00:36:50] 5

5 ESO., Full and Faithful [00:36:51]-[00:49:02] 7

6 Proof of Par ≃ Set∗ [00:49:03]-[00:54:12] 8

7 Pred(X) ≃Mono(X) [00:54:13]-[01:07:21] 9

8 SetX ≃ Set/X: [01:07:22]-[01:17:05] 11

0 Preface [00:01:05]-[00:04:23]
[00:01:05]

Do you know where Category Theory was invented? It was right here at the University
of Michigan! (by Saunders Mac Lane and Samuel Eilenberg in 1941) [Page 1, Emily
Riehl’s Category Theory in Context]

Instead of talking about adjunction, today we are going to discuss a big and
important topic that we have not covered yet: when is one category C “the same” as
another?

1 Isomorphism of Categories [00:04:24]-[00:07:45]
[00:04:24]

What we might mean by saying two categories are the same? Literally, that might
mean they have the same definition, but we really like something weaker than that.

1

Section 2 2

Maybe I have some category C, and I have another category D that’s very, very similar
to it. But maybe I’ve alerady proved a bunch of things about this other category D
and I would like to use them. Maybe I know that D has products, or coproducts,
and I know it’s essentially the same category as another category C and I want to
have that C has coproducts. So, there already is a notion that we have for when two
categories should be the same, and that is isomorphism of categories.

What does that mean? Remember that we have the (large) category Cat, whose
objects are small categories, and its morphisms are functors. So, for any categories,
we have a notion of when two objects of the category are the same, by probing them
with other morphism of the category, and that is isomorphism.

In any category, we have the notion of an isomorphism. We might say that
between C and D I want some functor F : C → D and some functor F−1 : D → C
going backwards,

C D
F

F−1

such that

F−1F = idC,

FF−1 = idD.

Just like there’s no problem with saying C is the same category as D when they’re
exactly the same, we can say C and D are the same when there is an isomorphism
between them. The problem is this definition is too strict to be useful.

2 Examples: Par and Set∗ [00:07:46]-[00:25:36]
[00:07:46]

Let’s look at an example from the homework and is related to programs that might
crash. Let Par be the category,

Par0 := (small) sets,

Par(X, Y) := X −⇀ Y,

where the objects were small sets and the morphism from X to Y was a partial
function from X to Y , with a subset D ⊆ X and a total function D → Y .

D

X Y

⊆ f

We callD the domain of the function with a notion of composition as well. In addition,
we say that the function f is undefined on any points outside of the domain.

On the other hand, there is another very natural definition, especially when you’re
looking at the syntax of programs that might crash, which is that we don’t really
have any partial functions if we add a crashing term to our language. Instead, we

EECS 598: Category Theory Lec. 19 [2023-03-22]

Section 2 3

have a slightly different structure. We have that the crashing program is a legitimate
program, but it represents undefinedness. And that is captured by a different category
called the category of pointed sets, Set∗, where a pointed set is a pair of: X, a set,
and an element x ∈ X.

(Set∗)0 := (X set) and x ∈ X,

Set∗ (x ∈ X, y ∈ Y) := f : X → Y s.t. fx = y.

The way we’re going to think about this x, the distinguished point, is that this
point represents “undefined”. So in our set of programs, this X would be the closed
programs of a given type, and x would be our crash program, our exit.

Then, a morphism between x ∈ X and y ∈ Y , is going to be a function from X to
Y that preserves this undefined point or base point. Notice that there is no way to
give the empty set a pointed set structure because it doesn’t have any points. Also,
this idea is basically the same with the notion of a pointed topological space, where we
have a distinguished base point that we need to take into account some calculations.
In fact, there is a more general definition, but we will stick to this concrete one.

We can verify that both of Par and Set∗ are actually categories. The composition
on Par was described in the homework, and we can see that the morphisms f of Set∗
preserves the base point property.

The idea is that these two categories are two seemingly equivalent ways to repre-
sent the idea of a potentially failing function. In partial functions, the way we capture
failure is through undefinedness, where when given an x and it’s not in the domain,
the computation fails to run or execute; whereas with the pointed set view, we would
think of when applying the function, if it results in the base point, then it fails or
crashes. In fact, they’re really equivalent in some way.

Notice that the one element set, which is terminal in Set∗, is impossible to “suc-
ceed” with that only one base point.00:13:56

These two categories seem kind of similar, but are they actually isomorphic as
categories? We will start by defining functors between them.

First, consider the functor F : Par→ Set∗. Since the objects X ∈ Par might be
the empty set, the only thing we can generically do is adding a new base point.

F : Par→ Set∗

F (X) := X ⊎ {err}
F (D, f) := X ⊎ {err} → Y ⊎ {err},

F (D, f)(err) := err,

F (D, f)(x ∈ D) := f(x),

F (D, f)(x /∈ D) := err.

The idea is that since all elements of X represents successful computations, we can
then add in a new element that represents an error in computation. Then, given a
partial function f defined on the domain D, we need to produce a total function that
preserves the base point. The idea is that, if there’s error, it gets sent to an error

EECS 598: Category Theory Lec. 19 [2023-03-22]

Section 2 4

since we have to preserve it; if it’s x′ ∈ X and in the domain, then we can send to
f(x′), if it’s not in the domain, we send it to error. It’s straightforward to verify that
this indeed is a functor that preserves composition.[00:17:10]

Now let’s try to define functor going the other direction, G : Set∗ → Par. Here
we want to take the representation of a partial function as a base point-preserving
morphism of pointed sets, to the notion of a partial function in Par. In particular,
this means that we have to preserve undefinedness.

G : Set∗ → Par

G(X ∋ x) := X − {x}
G(f : x∈X → y∈Y) := (D := {x′ ∈ X|f(x′) ̸= y}, f |D)

So we will remove the base point which represents an undefined computation and
only return totally defined elements. Then, given such a function f , the domain will
be all the elements in X that not get mapped to y, and the function is essentially f
restricted to this domain.[00:20:30]

Now let’s check do we actually get an isomorphism of categories.

Par Set∗
F

G

On the one hand, it’s easier to check that G ◦ F is the identity as we added an error
element and then dropped it. For the other direction, start with some pointed set
x ∈ X, we mapped it to an object X − {x} of Par, and F throws in a new element
err.

x ∈ X X − {x} (X − {x}) ⊎ {err} ∋ err

G F

Id

̸=

Then when we get it back, it’s not what we started with, so it’s not possible for F ◦G
to be equal to the identity function, as it’s simply not the identity on objects.

However, the codomain set is in a base point-preserving bijection with the set X,
so we can define a function mapping x to err and vice versa. So even it’s not the
case that F ◦ G is equal to the identity, we do get there is an isomorphism between
them, which is almost as good.

F ◦G ̸= Id,

F ◦G ∼= Id.

And in fact, this isomorphism is natural in this pointed set X.
Note that this is actually the common case, not the one where the isomorphism

actually works. For the essentially same reasons, when we have something like a group
structure, a monoid, a topological space, it’s very unlikely that you’re going to do a

EECS 598: Category Theory Lec. 19 [2023-03-22]

Section 4 5

bunch of constructions and get the exact same set back. But, you can reconstruct
something that is equivalent to what you started with. So this notion of a “weak”
isomorphism, occurs far more often.

It seems hard to prove that there’s no isomorphism between categories. But, in
this case, consider the initial object in Set∗ which is the one-element set. One of
these categories has one initial object and the other one has multiple isomorphic
initial objects, so they cannot be isomorphic.

3 Equivalence of Categories [00:25:37]-[00:30:36]
[00:25:37]

It’s not worth asking whether we have an isomorphism between two categories, as
previously mentioned, it’s “evil”. Because we’re trying to demand that two sets end
up being exactly the same, i.e., two objects of a category are the same, or, equivalently,
we are requiring two functors to be the same. But remember, functors are objects
of a category, we don’t like to consider functors to be just elements of a set, we like
to consider functors to be objects of a functor category. And the right notion of two
objects of a category being the same is isomorphism in that category, so the right
notion of two functors being equivalent is natural isomorphism in functor category.

We will consider two categories to be essentially the same when we have functors
going back and forth that are each (naturally) isomorphic to the identity, and this
is call an equivalence of categories. In a lot of ways it acts like a notion of
isomorphism in that there are nice things such as we can compose two equivalences
of categories together and the composite functor will be an equivalence of categories.
And the identity functor will be an equivalence of categories. So, in a sensible notion,
equivalence of categories is an equivalence relation on categories.

If you’ve done some like Homotopy Theory, one way to think about that is that
we have an isomorphism up to homotopy being this natural isomorphism.

So, a great deal of category theory comes from weakening equations like this that
we have from set theory to more complex concepts involving natural isomorphism.

Notice that I’m not saying equality is “evil”, what I’m saying is equality of functors
is “evil”. Equality of natural transformations or equality of morphisms in a category is
not “evil”. Equality of morphisms in a 2-category is “evil” again. In fact, one way to
look at this is there’s something called 2-categories which abstract over the structure
of the category of categories that there’s the notion of a two-dimensional morphism
between one-dimensional morphisms. So there’s a whole area, higher category theory,
goes all the way to infinite category theory, that is extremely technical and hard.
We’re going to do very low dimensional in two or one dimension, and this is genuinely
first 2-categorical concept.

4 Examples: Un1 ≃ C [00:30-37]-[00:36:50]
[00:30:37]

If we have a Cartesian category C, then we could turn in into a CT structure selfC,
and from the CT structure, we can take the unary categories of it, UnΓ for each Γ ∈ C.

EECS 598: Category Theory Lec. 19 [2023-03-22]

Section 5 6

Here we have the objects and morphisms from the definition:

∀Γ ∈ C, (UnΓ)0 := C0,
UnΓ(A,B) := Γ× A→ B.

The idea is the composition of morphisms threads this Γ everywhere.
Now, what happens if we take Γ to be the terminal object 1 ∈ C? We get

Un1(A,B) := 1× A→ B,

and from previously homework and the soundness of STT, we have that 1 × A is
always naturally isomorphic to A, i.e. 1× A ∼= A.

So, in a sense, this unary category looks almost exactly like the original category
C. And it would be nice for example if given that Un1 had coproduct, we would be
able to conclude that C had coproduct. In fact, we can, because we get that there’s
an equivalence of categories between Un1 and C, denoted as

Un1 ≃ C.

[00:33:40] Remark. If we say two morphisms in a category f and g are equal, we write

f = g. (equality)

If we have two objects of a category and we want to say they’re isomorphic, we write

A ∼= B. (isomorphism)

If we have two categories, and we want to say that they’re equivalent, we write

C ≃ D. (equivalence)

Note that when we have equality, there’s not other information that you could possibly
want; but when we have an isomorphism, there is actually data involved and that there
could be more than one isomorphism between two sets. For example, ther are two
bijections between any two 2-element sets. Similarly, with equivalences of categories,
we can have multiple different equivalences of categories, because the categories can
have automorphisms in some sense.

It turns out that we can prove that Un1 and C are equivalent categories, and in
fact here we do get an isomorphism of categories, as on objects this is actually the
identity. The construction is given by

f : 1× A→ B

f ◦ i : A→ B

g : A→ B

g ◦ π2 : 1× A→ A→ B ,

where i : 1× A→ A is the isomorphism.

EECS 598: Category Theory Lec. 19 [2023-03-22]

Section 5 7

5 ESO., Full and Faithful [00:36:51]-[00:49:02]
[00:36:51]

To show that this actually is an equivalence of categories, we could just construct the
two functors and define the natural isomorphism. But there turns out to be a slightly
easier method to do this. To understand this, we will first go back to basics and look
at a simpler version of the same problem, which is a bijection of sets.

Let’s now say we have a function f from set X to set Y :

f : X → Y.

There are different definitions for f to be a bijection:

1. • It’s surjective: ∀y ∈ Y. ∃x ∈ X. fx = y;

• and it’s injective: ∀x1, x2 ∈ X. (x1 = x2)⇐⇒ (fx1 = fx2).

2. It has an inverse, i.e., it’s an isomorphism in the category of sets:
∃f−1 : Y → X. ff−1 = id, f−1f = id.

3. ∀y ∈ Y. ∃!x ∈ X. fx = y.

Note that often it’s easier to establish for a given function that it’s injective and sur-
jective than concretely constructing the actual inverse. Now we have a generalization
of this characterization of surjectivity and injectivity to categories and functors. It
becomes more complex because we’re “one dimension higher”. We typically split it
up into three properties rather than two.

Let F : C → D be a functor.
[00:41:15]

Definition 1. F is essentially surjective on objects (eso), if and only if

∀d ∈ D. ∃c ∈ C. F c ∼= d.

This is saying that for every object of the codomain category there exists an object
of the domain category that maps to it. We don’t want to require that these are two
equal functors as it’s too strict.

[00:42:37] Next,

Definition 2. F is faithful, if and only if

∀c, c′ ∈ C. ∀f1, f2 ∈ C(c, c′). Ff1 = Ff2 =⇒ f1 = f2.

This is saying that a functor is faithful when the action onmorphisms (hom-sets)
is injective for each fixed domain and codomain. This is a more typical definition than
the one for terms in the CT structure.

[00:43:42] And the third one is also in analog to part of the injective property:

Definition 3. F is full, if and only if

∀c, c′ ∈ C. ∀g ∈ D(Fc, Fc′). ∃.g′ ∈ C(c, c′). Fg′ = g.

EECS 598: Category Theory Lec. 19 [2023-03-22]

Section 6 8

This is saying that a functor is full when the action on morphisms (hom-sets) is
surjective for each fixed domain and codomain.

[00:44:52] Combining the last two, we often say that

Definition 4. F is fully faithful (f.f.), if and only if

∀c, c′ ∈ C. F c,c′

1 : C(c, c′)→ D(Fc, Fc′) is a bijection.

We say that full and faithful together are the analog of injectivity, because we are
generalizing from the if-and-only-if between x1 = x2 and fx1 = fx2, to the bijection
from the morphisms from C(c, c′) to D(Fc, Fc′). So the reason that we split from two
concepts to three is because this notion of injectivity splits into full and faithful.

[00:46:10] Now, the main theorem that we have, is that

Theorem 1. F is Fully Faithful, essentially surjective if and only if F is an equiva-
lence of categories.

Proof. Section 1.5 (Theorem 1.5.9, Page 31) in Emily Riehl’s Category Theory in
Context.

Note that the “essential injectivity” on objects is implied, in that it’s injective on
isomorphism classes of objects, though it not actual injective on objects as we saw
from the previous examples where any one-element pointed set gets sent to the empty
set.

6 Proof of Par ≃ Set∗ [00:49:03]-[00:54:12]
[00:49:03]

Now we can use this theorem to prove that Par ≃ Set∗.

Proof. Consider the functor,

− ⊎ err : Par→ Set∗.

It’s sufficient to show that it’s full, faithful, and essentially surjective.
1) − ⊎ err is essentially surjective
Given X ∋ x, we need to come up with a set that gets mapped to something

isomorphic to it. As we did before, it’s pretty easy to see that

X ∋ x←→ (X − {x}) ⊎ err ∋ err

is a base point-preseving bijection, so it’s an isomorphism in the category of pointed
sets Set∗.

2) − ⊎ err is fully faithful
We need to show that there is a bijection between the hom-sets

Par(X, Y) ∼= Set∗(X ⊎ err ∋ err, Y ⊎ err ∋ err).

We will show that the mapping we defined is injective and surjective.

EECS 598: Category Theory Lec. 19 [2023-03-22]

Section 7 9

For injectivity, if we took two partial functions (D1, f1) and (D2, f2), and they
were equal functions, we got equal functions between these pointed sets. Then if we
got equal functions between these pointed sets, we need to confirm that they have
the same domain and then on those domains they’re defined to be the same elements.
This is pretty easy to see because we can see that the domain will be all of the
elements of X that don’t get sent to err. And so if they’re equal functions, they will
send the same points to the err, and then they’ll also send the other points to the
same value in Y .

For surjectivity, for any function g ∈ Set∗, we need to construct (Dg, g
′), a partial

function from X to Y , that will give us back the g. We can just say that the domain
of g is all the elements of X that don’t get sent to err, and g′ is defind to be the same
as g on the remaining elements, which is essentially the same as our other functor.

g : X ⊎ err ∋ err→ Y ⊎ err ∋ err

(Dg, g
′) : X −⇀ Y .

7 Pred(X) ≃Mono(X) [00:54:13]-[01:07:21]
[00:54:13]

For the rest of class, I wanted to go over two other examples of equivalence of cate-
gories that are very common and come up in a lot of applications, and one of them
is the generalization of the other.

Let’s again start with the category of sets. On the one hand, for any set X, we
can consider all the maps from X into the Booleans:

X
P−→ {true, false}

We can think of this as a predicate P on X. We can define a category Pred(X)of all
predicates on a fixed set X.

• Pred(X):

– Objects P : X
P−→ {true, false}

– Morphisms (P,Q): P ≤ Q := ∀x ∈ X. (P (x) = true) =⇒ (Q(x) = true)

We have the objects are functions from X into Booleans, and the morphisms are
poset relations.

On the other hand, we can look at another preorder, which is the all of the
monomorphisms into the fixed set X, Mono(X).

• Mono(X):

– Objects (S, i):
S

X
i

EECS 598: Category Theory Lec. 19 [2023-03-22]

Section 7 10

– Morphisms ((S, i), (T, j)):
S T

X
i j

f

, j ◦ f = i

The objects will be the pair (S, i), with the injective function i from S to X; a
morphism from S to T is going to be a function f that makes the above diagram
commutes.

[01:00:35] Now claim that there is at most one morphism between any two objects of the
category Mono(X). Recall that i : S ↣ X is a monomorphism if ∀f, f ′ : V → S, we
have (i ◦ f = i ◦ f ′) =⇒ (f = f ′). A monomorphism is kind of like a generalization of
an injective function, and in the category of set, this is exactly the same as injective
functions. Then since j is a monomorphism, if I have f : S → T and g : S → T that
are equal when composing with j, then f and g will be equal.

Notice that Pred(X) is a poset. Given two predicates P and Q, if for all x ∈ X,
P (x) = true if and only if Q(x) = true, then P and Q have to be the exactly same
on every element of X, thus they’re the same predicate.

On the other hand, Mono(X) is a only preorder, but not a poset. Because in the
category of sets, I could have many different S that are equivalent by mapping into
X. For example, given a set {a, b}, and I can have two one-element set {0} and {1}
that both send to a, they are isomorphic but not equal.

{0} {1}

{a, b}
a a

We can prove that this preorder Mono(X) is equivalent as a category to this poset
Pred(X). The construction is as follows. Given an injective function i : S ↣ X, we
map that to a predicate on X which is Pi(x) := ∃s ∈ S. i(s) = x.

S

X Pi(x) := ∃s ∈ S. i(s) = x

X

{true, false} {x ∈ X|P (x) = true}

i

P

On the other hand, given a predicate P : X → {true, false}, I can turn that into
the subset of all elements x ∈ X that satisfies the predicate.

Again, we get this nice property that one direction is actually equal to the identity
because if you start with a predicate, you turn it into a subset, and then you get the

EECS 598: Category Theory Lec. 19 [2023-03-22]

Section 8 11

same predicate that you started with. However, if you start with a monomorphism
i : S ↣ X, you turn it into a predicate, then the monomorphism into X you get is
the map of S to its image of i. So those are equivalent notions.

In fact, this is a very common pattern. We can see that here the poset is the
equivalence classes of the preorder up to order equivalence, as from a category theory
perspective there is an equivalence of categories betwen them. And, what we also get
is a concrete description in which we could replace the set of all monomorphisms into
X by the poset of all subsets of X.

8 SetX ≃ Set/X: [01:07:22]-[01:17:05]
[01:07:22]

The definition ofPred(X) is actually a way of characterizing what is special about the
Booleans in the category of sets. In fact, in Topos theory, which is kind of a subfield
of category theory, where they study the categories that generalize the structure that
you have on the category of sets. The way that they define the analog of the set of
propositions {true, false} is exactly that it satisfies this property, so that you can
define a category of monomorphism in any category. And one of the axioms of topos
says that you have this object of propositions, which is that for any X, the morphisms
into the object of propositions are equivalent to the monomorphisms into X. So if
you alerady have defined functions between your sets, you can use this to define what
the propositions should be.

Next is an example that is a generalization of this. Now let’s take the entire cate-
gory of sets. Instead of monomorphisms, consider arbitrary functions. The category
is going to be called Set/X.

• Set/X:

– Objects (S, p):
S

X

p

– Morphisms ((S, p), (T, q)):
S T

X

p q

f

, q ◦ f = p

So the objects are pairs of a set S and a function p from S into X. And the morphisms
in this category are going to be again the commuting squares. Now there can be many
functions that satisfies this because p and q are not assumed to be monomorphisms
or epimorphisms.

On the other hand, we can take the category of sets, and we can take the set X
and view it as a discrete category, i.e., a category whose objects are the elements of
X and the only morphisms is the identity morphism. And then we can consider the
category of functors from that into the category of sets, SetX . This is just a family

EECS 598: Category Theory Lec. 19 [2023-03-22]

Section 8 12

of sets indexed by X. So the objects are essentially functions from X into the sort of
large set of all small sets.

• SetX :

– Objects: S− : X → Set

– Morphisms ∀x ∈ X. fx : Sx → Tx

And the morphisms are natural transformations, but in this case, it means that for
all x ∈ X, you have a function fx : Sx → Tx, where S, T are objects here.

[01:11:48] We can actually view this as a generalization of our category of predicates on X,
and this is exacly the kind of generalization from sets to predicates that we have been
seeing all semester. We can take any set and think of it as the set of proofs that
some proposition is true, so we can view this as a kind of proof relevant version of a
predicate. And the morphisms here is exactly the generalization of this property of the
ordering between propositions. We can also generalize the equivalence between the
predicates and the monomorphisms to an equivalence between these indexed families
of sets over X and a function into X.

S− : X → Set

{(x, s)|x ∈ X, s ∈ Sx} .

So the way we do that is as follows. Given S− : X → Set, we want to construct
some set and a function into X. We will define the set of pairs (x, s) such that x ∈ X
and s ∈ Sx. In type theoretic notation, this is written as a Σ type

∑
x:X Sx. The

projection back to X is easy to define, which is just the first projection:∑
x:X Sx

X

π1

Note that for the notation of Σ types, if X and each S− are all finite sets, then the
cardinality will be ∣∣∣∣∣∑

x:X

Sx

∣∣∣∣∣ = ∑
x∈X

|Sx| .

Then given a function p : S → X, we can turn that into a family of sets by taking
the inverse images of the elements of X.

p : S → X

p−1(·) : X → Set, p−1(x) := {s ∈ S|ps = x} .

Also, just like the correspondence between Par(X, Y) and Set∗ can be used to define
a universal property for the Booleans, this is one way to describe the large collection
of sets. So if we have a way of classifying some subsets of these morphisms, we can

EECS 598: Category Theory Lec. 19 [2023-03-22]

Section 8 13

then define a universal object to have this similar kind of correspondence. So this
one specifically being the property where we’ve already have this large set of all small
sets, but this can be used in the same way to give an abstract characterization of
these universal objects analogous to objective propositions in the previous example.
If you’ve done dependent type theory before, this is essentially the semantics of the
Σ types, given by generalization of this to other categories.

[01:17:05]

EECS 598: Category Theory Lec. 19 [2023-03-22]

	Preface [00:01:05]-[00:04:23]
	Isomorphism of Categories [00:04:24]-[00:07:45]
	Examples: Par and Set* [00:07:46]-[00:25:36]
	Equivalence of Categories [00:25:37]-[00:30:36]
	Examples: Un1 C [00:30-37]-[00:36:50]
	ESO., Full and Faithful [00:36:51]-[00:49:02]
	Proof of Par Set* [00:49:03]-[00:54:12]
	Pred(X) Mono(X) [00:54:13]-[01:07:21]
	SetX Set/X: [01:07:22]-[01:17:05]

