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Abstract

We attempt to add more effects to our programming language.

1 An Aside

1.1 The Disjunction Property

We recall the disjunction property in IPL. That is,

if · ⊢ A ∨B is provable, then either · ⊢ A is provable, or · ⊢ B is provable

We then wish to prove a similar property holds for our representation of logical
disjunctions in our category G. This can also be proven by our gluing proof, by a
similar reason to the ones used to prove our boolean semantics. In particular we have
the stronger result that if a term of sum type C +D can be proved from an empty
context, then M = i1M

′ or M = i2M
′ (but not both). Here M ′ corresponds to your

proof of A or B as terms in IPL.

1.2 The Story So Far

Insofar we’ve covered a simple form of logic in IPL, and an example of a pure func-
tional programming language in STT. Of course, polymorphism, data abstraction,
etc. are found in pure functional programming languages but out of scope for this
course.

2 “Real(?)” Programming Languages

We now consider what makes a programming language “real”. Some features sug-
gested are:

1. Memory, and the ability to modify it

2. “Side Effects”, such as being able to print and write to files
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3. Turing completeness, the ability to simulate any Turing machine, or equivalently
to compute every Turing-computable function

4. “Going wrong”, the ability to crash

5. Concurrent execution

Concurrency is unfortunately “too real” for this semester of class, but we will discuss
the others.

3 Extending our Language

Now that we have some candidates, we’d like to extend our existing language.

3.1 Semi-Colon, Sequentiality

One might say the semi-colon ;, is the critical difference between a “real” programming
language and math. We consider the following:

M ;N

Which is equivalent to saying “do M, then, do N”. We now wish to add the concept
of a semi-colon, that is, sequentiality, to our pure functional programming language.

3.2 Printing, Logging

We would like to consider a program that might be able to “print” in some fashion,
perhaps by writing 0’s and 1’s (as binary). This we accomplish by adding two new
forms to our language, called beep and boop. They act by sending a “beep” or
“boop” (0 or 1) to our printer, where timing is ignored, and we assume all 0’s and
1’s sent to the printer are printed at once. That is:

Γ ⊢ M : A

Γ ⊢ beep;M : A

Γ ⊢ M : A

Γ ⊢ boop;M : A

We recall by our set-theoretic semantics, and our proof by gluing, that something
of boolean type (1 + 1), a program, was either equal to i1() (true), or i2() (false).
However should this be true, our “beeps” and “boops” would be useless, as they
would always equal either i1() or i2(), and thus under our interpretation signal the
printer not to print anything.
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4 An Attempt at Canonicity

We’d like to have a similar canonicity theorem to STT, where, using the equational
theory, we are able to classify all the terms of type 1 + 1.

A natural formulation would be that all such terms are equal to a finite string of
beeps and boops followed by a “bit” equal to either 1, or 2, the elements of type 1 +
1.

Our specification is then: ∀(· ⊢ M : 1 + 1) ∃!s ∈ {beep, boop}∗ ∃!bit ∈ {1, 2}
such that M = S; bit. That is, all terms are equivalent to a finite string of beeps and
boops followed by a bit, either valued 1 or 2 (i0(), i1()), but that all such distinct
strings of beeps and boops followed by a bit are not equal.

That is, M = i1(), or M = i2(), or M = beep; i1(), or, ..., but cannot be equal to
two of these at once.

4.1 Sum Types

Unfortunately that under some natural assumptions, the currently described system
will not be able to meet this specification.

We consider a case statement. It is natural to require that when performing a
case analysis on something that beeps or boops, the term overall should beep or boop
and then case on the remaining term. That is, we want the Strictness of Case+:

case beep; i1()

{
i1x1 =⇒ M1

i2x2 =⇒ M2

= beep; casei1()

{
i1x1 =⇒ M1

i2x2 =⇒ M2

=β+ beep;M1

But this is already enough to make beeping trivial:

Lemma 1. If case is strict, then beep; i1() = i1()

Proof. Note

x : 1 + 1 ⊢ case x

{
i1x1 =⇒ i1()

i2x2 =⇒ i1()
=η+ i1() (1)

By the principle of subsutitivity, if an equation is proved true with a free variable of
give type in it, that variable may be instantiated with another of the same type and
the equation will still hold (primitive or admissable depending on formulation).

So we consider beep; i1() : 1 + 1 and substitute, yielding

case+(beep; i1)

{
i1x1 =⇒ i1()

i2x2 =⇒ i1()
= i1() (2)
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Then, by strictness,

beep; (case+(i1)

{
i1x1 =⇒ i1()

i2x2 =⇒ i1()
) = i1() (3)

However, by β-reduction,

(case+(i1)

{
i1x1 =⇒ i1()

i2x2 =⇒ i1()
) = i1() (4)

So we conclude that beep; i1 = i1.

So if the case statement is strict, given all the connectives (in particular the sum
and unit), then our specification above fails as a term cannot be both equivalent to
beep; i1() and i1() at the same time.

4.2 Function Types

We note we rely on η for sums, the principle of subsutitivty for equality, and the
strictness of case+ to arrive at our result above. So while we might suggest there is
something wrong with the sum type, it happens that a similar issue arises when we
consider the function type.

Let us consider a general semicolon, where for terms M ;N , we do M , then N ,
and can also use the result of M in N . That is, for immutable variable x,

Γ ⊢ M : A Γ, x : A ⊢ N : B

Γ ⊢ var x = M ;N : B

However then, for (var x = beep;N);M , we expect this to beep first, then do N,
and then do M, providing a similar commutivity to our previous examples with case.
That is,

(var x = (beep;N);M) = (beep; (var x = M ;N))

We call this the Strictness of Var.
Additionally if M is just another variable, it is natural to say that var is equivalent

to a substitution:
(var x = y;N) = N [y/x]

Consider now, f : A → B ⊢ var g = (beep; f); i1() : 1 + 1. Certainly this should
be beep first, so by above, we have the following

f : A → B ⊢var g = (beep; f); i1() : 1 + 1

beep; (var g = f ; i1())

beep; i1()[f/g]

beep; i1()
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Note beep;f : A → B. By η-expansion, then,

f : A → B ⊢var g = (beep; f); i1() : 1 + 1

var g = (λx.(beep; f)x); i1()

However we’d expect this unused lambda to not do anything, save being assigned.
That is,

(var y = (λx.M);N) = (N [λx.M/y])

So as g is not used in i1()

(var g = (beep; f); i1()) = (var g = (λx.(beep; f)x); i1()) = i1()

Because of this we run into a similar problem as with sum types. In particular
var g = (beep; f); i1() is equivalent to beep; i1() by applying the strictness of var.
But it is also equivalent to i1() by η-rules followed by the above rule for lambdas. So
beep; i1() = i1().

The culprits this time around are η-rules for functions, strictness of var, and
substitution properties involving assignment to an immutable operator.

4.3 Crashing

We now wish to crash. To do this we define a term exit in absence of semicolon,
which crashes our program,

· ⊢ exit : 0

We do lose a connection to logic, as we may prove 0 from an empty context, and
thus conclude anything. Consistency of the IPL logic is not strictly maintained, but
we would like to still maintain consistency of the equational theory.

We recall we wished to prove that,

· ⊢ i1() = i2() : 1 + 1

did not hold. If it did, it would break canonicity, and mean our programs are no longer
useful as a specification for producing bits (as the bits would be indistinguishable).

However, by the η-rules for 0,

· ⊢ exit : 0

· ⊢ i1() = i2() : 1 + 1
0η′

Representing an implicitly weakening of the second line, noting the original 0η rule
indicates,

exit : 0 ⊢ i1() = i2() : 1 + 1
0η

So exit, together with the 0η-rule, the entire language becomes trivial as we cannot
distinguish between i1() and i2().

The culprit this time is just the η-rule for 0.
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4.4 Our Culprits

So we note η-rules have been culprits for each break of consistency. So, to describe
a programming language by an equation theory, as with STT, but including effects,
we cannot continue to use an extension to STT. We must lose some of:

• η rules

• general substitutivity rules

• strictness rules

In eager/call-by-value languages, we lose η for functions and products, and also gen-
eral substitutivity. In lazy/call-by-name languages, we lose η for sums and empty,
and also some strictness properties. A third way, which most closely matchers com-
piler intermediate languages, keeps η, substitutivity and strictness, but at the cost of
changing the underlying judgments from STT to incorporate new kinds of terms.

We will now attempt to “discover” this new type theory by working backwards
from our specification and its semantics.

5 Working Backwards

Let us conider our canonicity principle for our extension with beeps and boops.
For exit, similarly, we have a canonicity result, indicating, ∀(· ⊢ M : 1 + 1), then

M = i1(), or M = i2() or M = exit, but not more than one. That is, we may exit or
produce a value but not both.

Similar canonicity statements exist for other formulations, such as mutable state.
For one mutable cell, with read and write terms,

· ⊢ read : 1 + 1

M : 1 + 1

· ⊢ write M : 1

Then, ∀(· ⊢ M : 1 + 1),

M = case+read

{
i1x1 =⇒ write(b1); b

′
1

i2x2 =⇒ write(b2)b;2

That is, there exist four unique booleans, where the program reads the initial state
and writes a final state based on the initial state and returning a boolean result.

Given these canonicity statements we wish to work backwards to determine a
semantic way to describe these computational phenomena, and thus derive our lan-
guage.
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5.1 Monoid Actions

We return to our language of beeping and booping. We recall for any term of type A,
we have an operation where we can add a beep or boop. The associated canonicity
result is that every program is a string of beeps and boops, followed by a boolean.
That is, we wish to take a string of these beeps and boops, output those strings, then
produce the program.

In the beep boop language, the set of terms of type 1 + 1 has a monoid action of
{beep, boop}∗. That is,

s ∈ {Beep, Boop}∗,Γ ⊢ M : 1 + 1

Γ ⊢ S ·M : 1 + 1

This action is defined by recursion, where ++ denotes string concatenation:

S ·M =


M if S = ””

S ′ · beep;M if S = S’++beep

S ′ · boop;M if S = S’++boop

This is a monoid action as for strings S, S ′ and term M , (S++S ′)·M = S ·(S ′ ·M)
by casing on S ′, and the identity ”” is the identity by definition.

We recall our set-theoretic semantics underlying our gluing argument for our
canonicity result for STT. What we can do to prove our more general canonicity
results are to make more general semantics, replacing sets and functions.

In our case we have the set of {beep, boop}∗-actions, and the set of closed terms
carrying such an action (· ⊢ M : 1 + 1). Ultimately we wish to conclude that there is
a purely semantic set of closed terms with a monoid action that is isomorphic to the
set of monoid actions.

Definition 1. For any set X, and monoid M, define the Free M-action from X as
FM-ActionX.

1. (FM-ActionX) = |M | ×X, the underlying set of M, times X

2. ⊗ : |M | × |FM-ActionX| → FM-ActionX, defined by m⊗ (n, x) := (m · n, x)

For M = {beep, boop}∗, X = {1, 2}, then FM−ActionX = {beep, boop} ∗ ×{1, 2}.
Our canonicity result would follow if we could show FM−ActionX ∼= {· ⊢ M : 1 + 1},
that the monoid action is isomorphic to the monoid action of closed terms of type 1
+ 1.

We wish to establish a bijection of sets, and isomorphism of actions.

5.2 Is This a Functor?

We note FM−Actions : Sets → MAct where MAct is the category of M-actions. However
we would like to know if this is a functor, and moreover if it has the universal property.
Consider the following:
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Lemma 2. FM−Actions : Sets → MAct is a functor.

Proof. Given a function f : X → Y , we wish to define a function FM−Actionsf :
FM−ActionsX → FM−ActionsY .

Let FM−Actionsf(m,x) = (m, fx). We note this preserves identity as then fx = x,
and composition as

(FM−Actionsf ◦ g)(m,x) =

(m, f(g(x))) =

(FM−Actionsf)(m, g(x)) =

(FM−Actionsf) ◦ (FM−Actionsg)(m,x)

We do have to check this is in fact an equivariant function. Consider

FM−Actionsf(m · (n, x)) = (m · n, fx) = m · (n, fx) = m · FM−Actionsf(n, x)

So it is in fact equivariant. So FM−Actions is a functor.

We claim this M-action has a universal property, which is why we call it a “free”
M-action.

1. U : MAct → Set, such that U(X,⊗) = X and Uf = f (forgetful functor to
underlying set of monoid action)

2. ∃η : X → UFM−ActionsX, such that η(x) = (e, x) where e is the neutral element
of the monoid

3. ∀G : X → UA, ∃!ḡ : FM−ActionsX → A, a homomorphism (equivariant func-
tion), such that the following diagram commutes:

X

UFM−ActionsX UA
Uḡ

η g

So, for each X, we have a universal property for FM−ActionsX, where FM−ActionsX
is the free monoid action. This is in fact a common property of universal property,
where we can specify a functor F by specifying that for each object it has a universal
property we can define similarly in terms of U . F,U satisfying these properties are
called adjoint functors.
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