
Lecture 17: Inductive Types

Lecturer: Max S. New
Scribe: Kevin Wang

March 15, 2023

1 Inductive data type examples

1.1 Natural numbers N
Recall that at the end of last lecture we introduced the concept of inductive types
in STT and category theory using natural numbers. We created what we called a
natural number object (NNO) in a category C with terminal object 1, defined as the
following structure:

1. An object N ∈ C

2. Two functions zero and succ (short for successor) such that 1
zero−−→ N

succ←−− N

3. defined such that ∀A ∈ C.1 z−→ A
s←− A, ∃!N rec(z,s)−−−−−→ A the following diagram

commutes:

1 N N

1 A A

id1 rec(z, s) rec(z, s)

zero succ

z s

succ can be thought of as a way to define recursive functions on N that are
guaranteed to terminate. We will expand on this today to extend to other inductive
types.

1.2 Lists

Let A ∈ C where C is a cartesian category (i.e. has products and unit 1). We define
an A-list object to consist of:

1



Problem 1 2

1. An object L ∈ C

2. Two functions nil and cons (short for constructor) such that 1
nil−−→ L

cons←−−
A × L, where nil gives an ”empty” list and cons can be thought of as giving
or constructing an element of type A and adding it to the list;

3. defined such that ∀B ∈ C.1 n−→ B
c←− A× B, ∃!L fold−−→ B the following diagram

commutes:

1 L A× L

1 B A×B

id1 fold idA × fold

nil cons

n c

where the rightmost morphism idA × fold = (π1, fold ◦ π2) : A × L → A × B.
This is simply preserving A by identity, then applying fold to L to get B.

Let’s talk more about fold and what exactly it means1. We can more formally
define fold as a morphism which, given an element of type B and a function A×B →
B, converts to a list of type A and then returns an element of type B. Mathematically,

fold : B → (A×B → B)→ ListA→ B

Note that based on diagram commutivity, fold ◦ nil = n and fold(cons(a, l)) =
c(a, fold(l)). This provides a formal definition of fold. Note as well that by the
unique existence qualifier, if we have f : ListA → B such that f(nil) = n and
∀a, l.f(a, l) = c(a, f(l)), then f = fold.

1.3 Binary trees

Let Dl, Dn ∈ C be arbitrary objects. A binary tree with Dl data at leaves and Dn

data at nodes is defined as

1. An object T ∈ C

2. Two functions leaf and node such that DL
leaf−−→ T

node←−− Dn × T × T

3. defined such that ∀B ∈ C.DL
l−→ B

n←− Dn × B × B, ∃!T fold−−→ B the following
diagram commutes:

1Note that in most functional programming languages this is called foldr, as we
are ”folding” from right hand side to left hand side. See Haskell documentation here:
https://zvon.org/other/haskell/Outputprelude/foldr f.html There is also a similar foldl that works
left-to-right.

EECS 598: Category Theory



Problem 2 3

DL T Dn × T × L

DL B Dn ×B ×B

idDL
fold idDn × fold× fold

leaf node

l n

Here, fold must be applied twice in the rightmost morphism on both the second
and third elements of the product. The ideas here are otherwise similar to the ones
in List.

2 Connections to category theory

We would like to abstract over the commonality here to get a general notion of “in-
ductive data object” as a universal property in a category. It will be most convenient
to do this when C in addition to products has all coproducts. The reason is that the
top of each diagram above can be expressed through a single morphism from a sum
of two types to the non-unit type. For N this is some f : 1 +N → N ; for lists this is
some g : 1 + (A× L)→ L; for binary trees this is some h : DL + (Dn × T × T )→ T .

Crucially, every type on the left-hand side is some expression of the type on
the right-hand side. Rewriting the previous definitions we can say each left-hand side
expression is some F (B) for type B on the right-hand side, where forN F (B) = 1+B,
for lists F (B) = 1+A+B and for binary trees F (B) = DL +(Dn×B×B). We can
show that all of these expressions are functorial in B; in other words, each of these
uses an endofunctor 2 F : C → C which essentially shows the recursive structure of
the inductive datatype B ∈ C.

Fnat(X) = 1 +X

Flist(X) = 1 + A×X
Ftree(X) = Dl +Dn ×X ×X

In fact, notice that all of these are essentially polynomials in X. Any such poly-
nomial expression can be proven to be functorial since coproducts, products and
constant functors are functorial.

2.1 F-algebras

Given an endofunctor F , an F -algebra is a morphism α : FB → B for some object
B ∈ C. F, as described above, is a functor describing the recursive structure of an

2An endofunctor is simply a functor from a category into itself.

EECS 598: Category Theory



Problem 2 4

inductive datatype in the F-algebra.
We then want to construct a category of F -algebras, such that the universal prop-

erty of the inductive datatypes above is given by being an initial object in the category
F − Alg of F -algebras, often called an initial algebra.

Let α : FB → B and β : FC → C. A homomorphism between F-algebras α to β
consists of ψ : B → C such that the following diagram commutes:

FB FC

B C
ψ

α β

Fψ

Let’s consider what this diagram looks like in the context of lists. In the following
diagram, note that F (B) = 1 + (A×B) for a type B.

1 + (A× LA) 1 + (A×B)

LA B
foldβ

cons β

id1 + (idA × foldβ)

The β function should be interpreted as follows: if the input type is of type 1,
then β ◦ 1 + (A × (foldβ)) will simply be the base case of fold for type B. For an
input type of type A× LA, β ◦ 1 + (A× (foldβ)) will recursively call fold.

Note that the path from 1 + (A× LA)→ 1 + (A× B)→ B can be broken down
into the following diagram, which more clearly illustrates how we can arrive at B
from type 1 or from type (A×B):

1 + (A× LA)

1 + (A×B)

1 B A×B
β ◦ i1(...) β ◦ i2(...)

i1

β

id1 + (idA × foldβ)

i2

Similar to before, unique existence allows us to say f = fold for any f that makes

EECS 598: Category Theory



Problem 2 5

the diagram commute.

1 + (A× LA) 1 + (A×B)

LA B
f

cons β

id1 + (idA × f)

We will next show how to implement cases in terms of fold, starting with an
arbitrary functor F and the corresponding F-algebra. This will be a proof of Lambek’s
Lemma, which says that the cons morphism we have been using to create objects of
a given type is an isomorphism.

2.2 Lambek’s Lemma

Fix F : C → C for some category C. Let FT
cons−−→ T be the initial F-algebra. Our

goal is to show we can “go backwards” in recursive cases to reach base cases. As such,
our goal is to show that cons is an isomorphism. The inverse allows us to “unwrap”
one layer of the recursive structure. This shows that adding in such a function is a
definitional extension to a language with fold, and so we can add it without changing
any extensional properties of the programming language.

So we want to construct a morphism uncons: T → FT that is a left and right
inverse of cons. To do this we can use the universal property: to construct such a
map we can use fold on an algebra structure for FT :

FT FFT

T FT
foldF (cons)

cons F (cons)

F (foldF (cons))

To show that uncons and cons compose to the identity, we can extend the square
from above (which we know commutes) to another diagram which we know commutes:

FT FFT FT

T FT Tuncons

cons F (cons)

F (uncons)

cons

F (cons)

cons

F (cons ◦ uncons)

EECS 598: Category Theory



Problem 3 6

Note that we get this square by using already established morphisms (F (cons) :
FFT → FT and cons : FT → T ). Because functors preserve compositionality and
F (cons ◦ uncons) : FT → FT , cons ◦ uncons is the identity.

We can zoom in on the left subsquare to show identity in the other direction,
uncons ◦ cons:

FT FFT

T FT

F (cons)cons

uncons

F (cons ◦ uncons) = F (idT )

F (uncons)

We have already showed that cons ◦ uncons composes to the identity, so we can
draw the additional arrow F (idT ) : FT → FT . Note that functors preserve identity,
so F (idT ) = idT , meaning that uncons ◦ cons = idT by diagram commutivity.

2.3 List example of uncons

When considering lists, we can define the uncons morphism as uncons : ListA→ 1+
(A×ListA). By simply unraveling what this should be according to the general defini-
tion in the previous subsection, this translates to fold(i0())(λ(x, α)→ L(x, cons(t))),
where λ(x, α)→ L(x, cons(t)) : A× (1 + (A× ListA))→ 1 + (A× ListA). The first
part of this definition, the (i0()), says to construct an empty list if the input is of
type 1. If the input is of type A×ListA, then we instead apply the λ function which
takes in an existing list and tail element, then constructs the tail and appends it to
the list.

By unraveling the definition using other inductive datatypes, we can come up with
similar interpretations of uncons using those datatypes.

3 Coinductive datatypes

Just as inductive datatypes such as numbers, lists and trees can be defined as initial
algebras, coinductive datatypes can be defined as initial algebras on the opposite
category. Unraveling the dualities, the direct definition is that of a final coalgebras,
i.e., a terminal (aka final) object in a category of coalgebras, which are morphisms
B → FB, whose morphisms are analogous to algebra homomorphisms.

Examples of coinductive datatypes in Set are similar to inductive datatypes but
allowing for infinitely large structures:

• Extended natural numbers N∞ are the final coalgebra for F (X) = X + 1 (i.e.,
the naturals as well as an infinite number ω that satisfies succ(ω) = ω).

• Possibly infinite lists are final for F (X) = 1 + A×X

EECS 598: Category Theory



Problem 3 7

• Infinite streams3 are final for F (X) = A×X

• Possibly infinite binary trees for F (X) = Dl +Dn ×X ×X.

3the initial algebra in this case is trivial: ∅

EECS 598: Category Theory


