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Abstract

We conclude discussion of the the gluing CT Structure by seeing how to rep-
resent the coproduct + function type structures in G. Then, we begin discussion
of how to encode infinite datatypes in STT.

1 G Constructions, Continued

1.1 Coproduct Structure in G
We first show the construction for the sum type in G, being careful to construct it
so that syntactic projection (extracting the ty fields) preserves the sum types. For Â

and B̂ in Gty, we define the 3 necessary components of Â+̂B̂. Recall our definition of
disjoint union of sets X ⊎ Y = {(1, x) | x ∈ X} ∪ {(2, y) | y ∈ Y }.

Â+̂B̂ :=


(Â+̂B̂)s = Âs ⊎ B̂s

(Â+̂B̂)ty = Âty + B̂ty

(Â+̂B̂)p(n, x) =

{
i1(Âp(x)) n = 1

i2(B̂p(x)) n = 2

Effectively, we propagate our sum constructs from Set and the underlying types, and
have a function that does case matching to produce a term for a given element in the
disjoint union set.

To verify it is a sum type, we check that it has a coproduct structure in UnΓ̂ for any

Γ̂ ∈ Gc. For this, we define: î1 ∈ TmG(Â+̂B̂)(Γ̂×̂ŝoleÂ) and î2 ∈ TmG(Â+̂B̂)(Γ̂×̂ŝoleB̂):

î1 =


(î1)f : Γ̂s × Âs → Âs ⊎ B̂s

(î1)f (γ̂, â) := (1, â)

(î1)t = Γ̂c, x : Âty ⊢ i1(x) : Âty + B̂ty
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î2 is defined analogously. We firstly need to verify that this term we’ve defined is
valid, meaning it satisfies the commuting diagram regarding the actions of semantic
evaluation and closing substitution.

Γ̂s × Âs Âs ⊎ B̂s

(γ̂, â) (1, â)

(Γ̂p(γ̂), Âp(â)/x) i1

(
Âp(â)

)

Cl
(
Γ̂c, x : Âty

)
Cl
(
Âty + B̂ty

)

(î1)f=(1,−)

(γ̂,â) 7→(Γ̂p(γ̂),Âp(â)/x)

i1(x)[·]

(Â+̂B̂)p

Now equipped with injections, we verify the coproduct structure. Assume we
have another candidate coproduct Ĉ and terms M̂ ∈ TmG(Ĉ)(Γ̂×̂ŝoleÂ) and N̂ ∈
TmG(Ĉ)(Γ̂×̂ŝoleB̂). We need then a unique term case M̂ N̂ ∈ TmG(Ĉ)(Γ̂×̂ŝole(Â+̂B̂)).

This is intuitively exactly the term you would expect: case-matching on the sum
type and producing M or N accordingly. This is implemented both as a function of
sets and as a syntactic function, and we verify that the diagram for performing the
syntactic action after finding the associated term vs performing the semantic function
and then finding the associated term produce the same result.

Γ̂s × (Âs ⊎ B̂s) Ĉs

Cl
(
Γ̂c, x : Âty + B̂ty

)
Cl(Ĉty)

(γ̂,(1,â)) 7→M̂f (γ̂,â)

(γ̂,(1,̂b)) 7→N̂f (γ̂,̂b)

(γ̂,(1,â))7→(Γ̂p(γ̂),(Â+̂B̂)p/x)

casex=

i1(x)→M̂t

i2(x)→N̂t

[·]

(Ĉ)p

We do this by case work on the element of the disjoint union. We show the case
for elements of the form (1, â).
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(γ̂, (1, â)) M̂f (γ̂, â)

M̂t[γ̂, Âf (â)/x]

(Γ̂p(γ̂), i1(Âp(â))/x)

(
case i1(Âp(â))

{
i1(x) → M̂t

i2(x) → N̂t

)

Of note is the subtlety that the 2 paths don’t give terms that are syntactically equal,
but equal modulo the equational reasoning principles. This is acceptable as we are
actually tracking equivalence classes of terms, and thus this diagram still commutes.

The fact that this construction makes the diagram commute is an argument that
can be made at both the underlying set and type levels, thus guaranteeing the full dia-
gram commutes. Similarly, uniqueness follows from the fact that we have component-
wise uniqueness following from the underlying glued structures.

1.2 Function Type Structure in G
We now present the similar structure for the function type, while omitting the details
of verifying the construction is valid and satisfies the exponential structure. We can
construct a first attempt:

Â⇒̂B̂ :=


(Â⇒̂B̂)s = Set(Âs, B̂s)

(Â⇒̂B̂)ty = Âty ⇒ B̂ty

(Â⇒̂B̂)p(f) =?

That is, we simply let the glued set be the set of functions from the associated sets
for Â and B̂. However, we run into problem when trying to define a function that
consumes an arbritrary function and produces a closed term. Namely, not every
function in Set(Âs, B̂s) is computable, i.e. has an associated term in STT.

Thus, we want to restrict the associated set to functions that have an associated
term that is semantically equivalent. Note, however, that this is precisely the defining
characteristic of TmG(B̂)(ŝoleÂ), i.e. functions that have a commuting diagram saying
the associated function can be converted to the syntax and then substituted as an
equivalent representation. Writing this slickly, we can say that

(Â⇒̂B̂)s = Un·(Â, B̂)

That is, the terms under the context ·, x : Âty with type B̂ty, coupled with the
associated set-theoretic function that the term defines.

Remark: This computability restriction is why this construction is sometimes
referred to as Tait’s Method of Computability.
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With this additional restriction placed, we can define (Â⇒̂B̂)p:

TmG(B̂)(ŝoleÂ) Cl(Âty ⇒ B̂ty)

TmL(B̂ty)(x : Âty)

πL
λ

The intuition is that we simply project syntactically, recovering the underlying term
under the context x : Âty ⊢ M : B̂ty. From this term, we can construct a closed term

of the function type, namely · ⊢ λx.M : (Âty ⇒ B̂ty). Application and its universal
property are left as an exercise.

2 Expanding STT to Infinite Datatypes

One limitation in STT as presented so far is its ability to reason about infinite
datatypes, e.g. N, lists & trees. In other words, considering J·K : L → Set, it is
not hard to check that as presented thus far, if every base type is interpreted as a
finite set, then every set that this denotation specifies is finite. This is because every
connective is interpreted as an operation (cartesian product, disjoint union, set of
functions) that preserves finiteness.

We would like to extend STT with the ability to reason about infinite types. We
present the construction for N.

2.1 Naive Implementation of N
A first attempt can be seen as a generalization of how we constructed other finite
sets. We made the boolean type by adding the unit type 2 times (1 + 1), and so, we
can define N as

1 + 1 + . . .︸ ︷︷ ︸
N

This gives us N many injection maps in : 1 → N. We can get pretty far with this
approach, defining an introduction rule for each natural number

Γ ⊢ M : 1

Γ ⊢ in(M) : N
NIn

where we can think of in(M) as n. However, this leads to a syntactic issue when spec-
ifying the elimination rule, namely, when we need to recover the underlying number,
we need to pattern match against infinitely many cases:

Γ ⊢ Mn : N Γ, x : 1 ⊢ M0 : A Γ, x : 1 ⊢ M1 : A . . .

Γ ⊢

caseNMn


i0(x) → M0

i1(x) → M1

. . .

 : A

NE
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Thus, we aren’t able to finitely express in this syntax how the following construction
should be used. For this to usefully describe a programming language, we need
a finitely expressible method of representing the universal property of the natural
numbers.

2.2 The Natural Numbers Object & Primitive Recursion

We first lay out the property in Set, and then generalize to the categorical setting.
The defining feature of N is the existence of zero (can be thought of as an element
in N, or equivalently as a morphism from the terminal object into N), as well as an
endofunction succ such that for any other object A with this construction, we can
define a unique map rec(z, s) that makes the following diagram commute.

1 N N

A A

succzero

z

s

rec(z,s) rec(z,s)

That is, we need that

• recN(z, s)(zero) = z

• recN(z, s)(succ(n)) = s(recN(z, s)(n)

The fact that this is a unique morphism allows us to recover the inductive proof tech-
nique and primitive recursion. That is, f(zero) = z and for all n ∈ N, f(succ(n)) =
s(f(n)), then f = recN(z, s)(n).

We generalize this construction to a category C with a terminal object, and con-
struct a Natural Numbers Object. N is a natural numbers object such that

• There exist morphisms zero ∈ C1(1, N) and succ ∈ C1(N,N) such that:

• Forall A ∈ C, z ∈ C(1, A), s ∈ C(A,A), there exists a unique rec(z, s) ∈ C(N,A)
such that:

• rec(z, s) ◦ zero = z and rec(z, s) ◦ succ = s ◦ rec(z, s)

This gives rise to a nice representation syntactically in STT as well. We now have 2
introduction rules:

Γ ⊢ zero : N
NIzero

Γ ⊢ M : N
Γ ⊢ succ(M) : N

NIsucc

and an elimination rule that lets us unroll one iteration of the recursively defined
number:

Γ ⊢ M : N Γ ⊢ Mb : A Γ, x : A ⊢ Ms : A

Γ ⊢

(
recN(M)

{
base → Mb

step(x) → Ms

)
: A

NE
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The β rules define how this unrolling takes place, as well as provides a base case:

Γ ⊢

(
recN(zero)

{
base → Mb

step(x) → Ms

)
= Mb : A

Nβzero

Γ ⊢

(
recN(succ(M))

{
base → Mb

step(x) → Ms

)
= Ms

[(
recN(M)

{
base → Mb

step(x) → Ms

)
/x

]
: A

Nβsucc

Finally, the η rule captures the “proof by induction” technique.

Γ ⊢ M ′[zero/m] = Mb Γ ⊢ M ′[succ(m)/m] = Ms[M
′/x]

Γ ⊢ M ′ =

(
recN(m)

{
base → Mb

step(x) → Ms

) Nη
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