
Category Theory Scribe Notes

Lecturer: Max S. New
Scribe: Benjamin Kelly

March 8, 2023

1 A Recapped Question

Is the equational theory of STT consistent?

That is, is it possible that · ⊢ i1() = i2() : 1 + 1? Here, 1+1 represents
a “boolean” type with i1() corresponding to “true” and i2() corresponding to
“false.” We want to show that it isn’t possible a program can’t be equal to
both “true” and “false” simultaneously. We’ve previously shown that this is
not possible by using a set theoretic model. We can now view that proof as an
instance of our soundness theorem.

We constructed

I) A Bi-cartesian closed category of sets

II) A C-T structure (self Set)

III) L the “syntactic structure” with

L J·K−→ self Set

where J·K is a homomorphism that preserves all structures (products, ex-
ponentials, etc...) Then i1() ∈ TmL(1 + 1)(·) and i2() ∈ TmL(1 + 1)(·).
So we get that

Ji1()K ∈ Tmself(Set)({(1, ∗), (2, ∗)})({∗}) = Set({∗}, {(1, ∗), (2, ∗)})

Ji2()K ∈ Set({∗}, {(1, ∗), (2, ∗)})

Ji1()K(∗) = (1, ∗)

Ji2()K(∗) = (2, ∗)

Since Ji1()K(∗) ̸= Ji2()K(∗), and by definition J·K respects the equational
theory, we know that the equivalence classes [i1()] ̸= [i2()] and therefore
i1() = i2() is not provable in the equational theory.

1



2 Mathematical Interpreters for the Language

We can think of the homomorphism J·K defined above as a “mathemtical in-
trepreter” of STT, which we will call f , where f is of type

f : {· ⊢ M : 1 + 1} → {(1, ∗), (2, ∗)}

where f(M) = JMK(∗). How should such an interpreter behave? We desire
(and have already shown) that M = M ′ ⇒ f(M) = f(M ′). However, we don’t
know if f made any arbitrary choices when evaluating M and M ′. So, ideally
we would desire a kind of converse:

f(M) = (1, ∗) ⇒ · ⊢ M = i1() : 1 + 1

f(M) = (2, ∗) ⇒ · ⊢ M = i2() : 1 + 1

That is, if the interpretation of a term is (1, ∗), it is equivalent to “true” and
the same with “false.” That is, we desire that

f(M) = (1, ∗) ⇔ · ⊢ M = i1() : 1 + 1

f(M) = (2, ∗) ⇔ · ⊢ M = i2() : 1 + 1

Such a result is called canonicity for STT because it says every closed boolean
term is equal to a “canonical” one: true or false.

Think about what things would be like if this property weren’t true: we
would have that there is a term M that is not provably equivalent to true or
false. So we wouldn’t be able to predict how an interpreter would behave for
this term. In a sense, this would be undefined behavior or at the very least
implementation-dependent. So canonicity is a kind of ensures that defining an
interpreter for STT is “fully specified” by the equational theory.

3 The Method of Logical Relations

To prove the desired result, we will use the method of “logical relations,” which
is also known by many other names: reducibility candidates, Tait’s method of
computability, and Artin gluing. Main idea is to construct a semantics where
we co-construct evaluator and simultaneously draw relation between result of
semantics. We will define a C-T structure G where the types have a set compo-
nent and an STT semantic component. The idea is to construct G and functors
of CT structures as fitting into the following diagram:

L G self Set

∼=

L

J·K

id

πsyn

πset

2



That is,

• The structure G will have projection functors πL to L and πselfSet to
selfSet.

• G will model all types in STT, and the projection πsyn will preserve this
type structure.

• Therefore by the soundness theorem, we will have a homomorphism J·K :
L → G that preserves type structure.

• By the completeness theorem, since the composition of πsyn and J·K pre-
serves type structure, it is naturally isomorphic to the identity functor
from L to L.

4 Defining G, the “Glued” CT Structure

The basic idea of G is that everything in it will consist of something in the set
theoretic structure, something in the syntactic structure and a relation between
the two. For instance,

4.1 Types of G
A type Â ∈ GT consists of

I) A set ÂS

II) An STT type Âty

III) A function ÂP : ÂS → Lty(Âty)·. Also can call the codomain of this

function the terms of type Âty in the closed context Cl(Âty).

We think of the set ÂS as an interpretation of a type, but we also include a
function ÂP which “reads back” a corresponding closed syntactic term of type
Âty.

4.2 Contexts of G
A context Γ̂ ∈ GC consists of

I) A set Γ̂S

II) An STT context Γ̂C

III) A function Γ̂P : Γ̂S → {γ : · → Γ̂C}. The codomain is the set of substitu-
tions into the closed context, called Cl(Γ̂C).

3



4.3 Terms of G
A term M̂ ∈ TmG Â Γ̂ consists of

I) A function M̂f : Γ̂S → ÂS

II) An STT term M̂t such that Γ̂C ⊢ M̂t : Âty

III) And the following diagram commutes

Γ̂S ÂS

Cl(Γ̂C) Cl(Âty)

Γ̂P

M̂f

ÂP

ˆMty[·]

That is for any semantic context γ̂ ∈ Γ̂S , we get the same result if we first run
the semantic function M̂f (γ̂) and then read it back as a closed term ÂP (M̂f (γ̂))
as if we first turn it into a closing substitution and then substitute it into the
term M̂t: M̂t[Γ̂P (γ̂)].

4.4 Substitutions of G
A substitution γ̂ of G ∆̂ Γ̂ consists of

I) A function γ̂f : ∆̂S → Γ̂S .

II) An STT substitution γ̂S : ∆̂C → Γ̂C .

III) Such that the following diagram commutes:

∆̂S Γ̂S

Cl(∆̂C) Cl(Γ̂C)

∆̂P

γ̂f

Γ̂P

γ̂S◦−

4.5 Proving Properties of G
Lastly, we need to prove some properties and make definitions about G. Namely:

I) Gc is cartesian.

II) Define sole for G.

III) Define all connective types (products, co-products, etc...)

4



Luckily, however, these definitions follow naturally from the universal prop-
erties of G and so their precise definitions and proofs are not fully written here.

We can also clearly define πSet by projecting out the set theoretic (I) compo-
nent of each structure, and similarly πL by projecting out the STT component
(II). This second projection πL preserves all of the type structure as well (πSet

on the other hand, does not preserve function types).

4.6 Proving Canonicity

With just a few details of the construction of G, we can prove the canonicity
theorem.

First, J·K : L → G is a homomorphisms of CT structures that preserves all
type structure of STT. Further, πL ◦ J·K preserves the type structure exactly,
and so the isomorphism from the completeness theorem is the identity and we
get that for any type A, πL(JAK) = A and for any term M , πL(JMK) = M . In
this sense, we get that each term M is mapped to a function Mf whose behavior
tells us about M .

• The empty context · gets mapped to the unique glued context ({∗}, {·}, f).

• The type 1 + 1 gets mapped to ({(1, ∗), (2, ∗)}, 1 + 1, g) where

g(1, ∗) = [i1()]

g(2, ∗) = [i2()]

• J[i1()]K = (x 7→ (1, ∗), [i1()])

• J[i2()]K = (x 7→ (2, ∗), [i2()])

Since [i1()] and [i2()] have different function components, this means they
cannot be equal, and so i1() = i2() is not provable in the equational theory, so
we get another proof of consistency.

Next, for any · ⊢ M : 1 + 1, we get πSetJ[M ]K(∗) ∈ {(1, ∗), (2, ∗)} and

[g(πSetJ[M ]K(∗))] = [M [·]] = [M ]

that is, that the equivalence class of M is the same as the equivalence class of
g(πSetJ[M ]K(∗)). Since the only possible outputs of f are [i1()] and [i2()] this
proves that either M = i1() or M = i2() is provable in the equational theory.
Further, by canonicity this is an exclusive or. So we get

g(πSetJ[M ]K(∗)) = (1, ∗) ⇐⇒ M = i1() is provable

g(πSetJ[M ]K(∗)) = (2, ∗) ⇐⇒ M = i2() is provable

And so we have reduced the correctness of a mathematical evaluator and the
canonicity result to showing the properties of G mentioned above.

5


