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1 Review of the C-T structure

Last time, we defined the C-T structure as a semantics or a judgemental structure1

for STT. Recall that a C-T structure S consists of the following data:

1. ST a set for types

2. SC a cartesian category for contexts and substitutions

3. ∀A ∈ ST .TmS(A) a predicator on SC

4. ∀A ∈ ST .TmS(A) is representable

For the last part, we have different ways to discuss representability. For a context
soleA ∈ SC , we could either say Y (soleA) ∼= TmS(A), or use the Yoneda lemma and
say given varA ∈ TmS(A)(soleA), forall M ∈ TmS(A)(soleA), there exists a unique
substitution M/var : SC(Γ, soleA) such that varA ∗M/var = M . The two ways are
equivalent by Yoneda Lemma; we’ll mainly use the second one, but we’ll use the first
one when convenient.

We’ve seen the Lindenbaum Algebra as an example of C-T structure. We’ll give
another example of it, which is the “typical” models.

1.1 The “typical” models

While the separation of types and contexts is natural when modeling syntax, it is
less natural in mathematical models such as the category of sets. When we con-
structed the set-theoretic semantics, we interpreted both types and contexts as sets
and substitutions and terms as functions.

In such “typical” models, we construct a C-T structure directly from the cartesian
category alone where types and contexts are both interpreted as objects of a category.
Let C be a cartesian category, we can define a C-T strurcture self C:

1A judgemental structure meaning it models the basic “judgments”: types, terms, contexts and
substitutions, but not yet an interpretation for particular connectives.
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1. (self C)C = C

2. (self C)T = C0

3. Tmself C(a) = Y (a)
Given a type and b context, Tm(a)(b) = C(b, a).

4. sole a = a

Note that there is no separate notion between the substitution and the terms.
Then the representability of Tmself C(a) is trivial. The universal morphism in this
case is

var ∈ Tmself C(a)(a) = C(a, a)

which is just the identity morphism.
We’ve defined the semantics of IPL in a preorder P , which is equivalent to defining

L (IPL) → P which satisfies:

1. is a monotone function

2. preserves meets, Heyting implication, and joins

And now we are going to do the same for C-T structures, first without any con-
nectives.

Definition 1. Let S, T be C-T structures, a C-T structure homomorphism F : S → T
consists of

1. FT : ST → TT function of types

2. FC : SC → TC functor on cartesian categories that preserves the finite products2:

• If 1 ∈ SC is the terminal object in Sc then F (1) ∈ TC terminal.

• If Γ1 × Γ2 ∈ Sc with projections πi : Γ1 × Γ2 → Γi are the chosen product
in Sc then F (Γ1 × Γ2) with projections F (πi) : F (Γ1 × Γ2) → F (Γi) is a
cartesian product in Sc.

3. ∀M ∈ TmS(A)(Γ) 7→ F (M) ∈ TmT (F (A))(F (Γ)) such that

FTm(M ∗ γ) = FTm(M) ∗ FC(γ)

.

4. Given var ∈ TmS(A)(soleA) as above, then FTm(var) ∈ TmT (FTA)(Fc(soleA))
satisfies the same property in T , i.e., for any M ∈ TmT (FTA)(Γ) there exists
a unique M/F (var) such that FTm(var) ∗M/F (var) = M .

2in class we discussed a more general definition but the following is simpler and equivalent
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We can see that every notion in the syntax gets mapped to the corresponding
notion in the semantics.

The third rule introduces a denotation of term M , essentially expressing the fact
that JM [γ]K = JMK ◦ JγK. We can also describe this operation as a natural transfor-
mation, where the condition can be described as naturality:

FA
Tm ∈ Setop(TmS(A),TmT (F (A)) ◦ FC)

The fourth rule of preserving the variable corresponded to the fact that in our set-
theoretic model, x : A ⊢ x : A was mapped to the identity function in Set.

Finally, we state without proof (as an exercise) that C-T structure homomor-
phisms form a category.

2 The Soundness Theorem of STT in C-T Struc-

ture

For starters, we can try to formulate the soundness theorem of STT(·) in C-T structure
that only has empty set of types and only one context, which is the empty context.

For any C-T structure S, ∃!L → S such that given the base types Σ0, we have an
interpretation ι from Σ0 to S:

L S

Σ0

ι

ιη

that is unique up to unique isomorphism.

2.1 Products of Types in a C-T structure

Then we want to define different soundness theorem for STT with whatever con-
nectives picked in different C-T structures that contains some suitable notion of the
object in STT. We also want to make sure that when we are defining the notions, we
can connect them to C such that self C will have the appropriate structure.

Definition 2. Let S be a C-T structure and A,B ∈ ST ,
A product of A,B consists of

1. P ∈ ST

2. Tm(P ) ∼= (Tm(A))×̃(Tm(B)) where

(Tm(A)×̃Tm(B))(Γ) := (Tm(A)(Γ))× (Tm(B)(Γ))
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Reading this natural isomorphism intuitively it can be read as

proving Γ ⊢ P is equivalent to proving Γ ⊢ A and Γ ⊢ B

.
Now, given this isomorphism of predicators, we can simplify this definition with

the Yoneda Lemma. We first notice that Tm(P ) here is representable, meaning
Tm(P ) ∼= Y (soleP ). By Yoneda Lemma, such an isomorphism is determined by a
universal element

(Tm(A)×̃Tm(B))(soleP ) := Tm(A)(soleP )× Tm(B)(soleP )

where Tm(A)(soleP ) and Tm(B)(soleP ) are given exactly by π1 and π2:

x : A×B ⊢ π1 x : A x : A×B ⊢ π2 x : B

The universal property states that given any Γ, we can write down a natural
transformation

(Tm(A)×̃Tm(B))(Γ) −→ Tm(P )(Γ)

, which is exactly the introduction rule:

Γ ⊢ M1 : A Γ ⊢ M2 : B

Γ ⊢ (M1,M2) : P

The naturality here is that we are natural in the action of substitution under Γ which
requires us to define substitution exactly as

(M1,M2) ∗ γ = (M1 ∗ γ,M2 ∗ γ)

, which is builtin to the fact that Tm(A)×̃Tm(B) ∼= Y (soleP ) is an isomorphism.
It’s worthwhile noting that the two directions of the isomorphism correspond to

the β and η rules for the STT.
For one direction:

Tm(A)×̃Tm(B)
×I−→ Tm(P )

−/x−−→ Y (soleP )
(π1◦−,π2◦−)−−−−−−−→ Tm(A)×̃Tm(B)

(Γ ⊢ M1 : A,Γ ⊢ M2 : B)

7→ Γ ⊢ (M1,M2) : P

7→ (M1,M2)/x : Γ → x : P

7→ (π1 x, π2 x) ∗ (M1,M2)/x

= (π1 (M1,M2), π2 (M1,M2)) (subst.)

= (M1,M2) (β-rule)

where the last step defines the β-rule.
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For the other:

Tm(P )
−/x−−→ Y (soleP )

(π1◦−,π2◦−)−−−−−−−→ Tm(A)×̃Tm(B)
×I−→ Tm(P )

Γ ⊢ M : P

7→ M/x : Γ → x : P

7→ (Γ ⊢ π1M : A,Γ ⊢ π2M : B)

7→ Γ ⊢ (π1M,π2M) : P

= Γ ⊢ M : P (η-rule)

where the last step defines the η-rule.
Finally, let’s state that given F : S → T a C-T structure homomorphism, F

preserves product types: ∀A,B, P.π1,2 ∈ Tm(A)(soleP ) × Tm(B)(soleP ) such that
∀∃!, the image F (π1,2) ∈ Tm(F (A))(F (soleP )) × Tm(F (B))(F (soleP )) such that
∀∃!.

2.2 Exponential in C-T structure

Definition 3. Let S be a C-T structure and A,B ∈ ST ,
A function type structure A ⇒ B consists of

1. E ∈ ST

2. Tm(E) ∼= (TmA)⇒̃(TmB)

The syntax is given because from

Γ, x : A ⊢ M : B

Γ ⊢ λ(x : A).M : A ⇒ B

we can extract the definition:

(Tm(A)⇒̃Tm(B))(Γ) := Tm(B)(Γ× soleA)

and define the rules for ∗:
M ∈ Tm(B)(Γ× soleA) γ : ∆ → Γ

M ∗ (γ ◦ π1, π2) ∈ Tm(B)(∆× soleA)

The key observation here is that the substitution into Γ is the same thing as the
substitution ∆ → Γ and a term Tm(A)(∆) × soleA. And the (γ ◦ π1, π2) part is
actually (γ, x/x) where π1 corresponds to the weakening rule that is used when we
go from (λx.M)[γ] to λx.M [γ, x/x].

Similar to the product types, the isomorphism soleE ∼= Tm(E) will give us the
elimination rule: (Tm(A)⇒̃Tm(B))(soleE) is just Tm(B)(soleE× soleA). It corre-
sponds to

f : A ⇒ B, x : A ⊢ f x : B

which is the rule for application with no substitution built into it.
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