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1 Review of Yoneda’s lemma

Last time, we defined the following predicators on a category C1:

1̃(c) := 1

(a×̃b)(c) := C(c, a)× C(c, b)
(a⇒̃b)(c) := C(c× a, b)

And we claimed that the data of a terminal object, product and exponential
corresponded precisely to those predicators being representable.

Definition 1. A representation of a predicator P on C is a pair of an object a ∈ C0
and an isomorphism between Y a and P in SetC

op

.
We say a predicator P on C is representable if there exists some representation

of it.

Then for each of the predicators above, representability would mean we have
natural isomorphisms2

Y (1, c) = C(1, c) ∼= 1

Y (a× b, c) = C(c, a× b) ∼= C(c, a)× C(c, b)
Y (a ⇒ b, c) = C(c, a ⇒ b) ∼= C(c× a× b)

We claim that a natural isomorphism Y (a× b) ∼= a×̃b is equivalent to a product
structure on a× b. Fix an isomorphism:

Y (a× b) a×̃b

i

j

.

1the last one assumes the category has products
2i.e., an isomorphism in the functor category SetC

op

1
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At first glance this doesn’t look that much like a product structure, after all where
did we construct any natural transformations in the definition of a product? Notice
that i here has exactly the right domain for the Yoneda lemma to apply! By Yoneda
lemma,

i ∈ SetC
op

(Y (a× b), a×̃b)

is uniquely determined by an element in

i(ida×b) ∈ (a×̃b)(a× b) = C(a× b, a)× C(a× b, b)

This should look familiar: these are the projections π1 ∈ C(a×b, a), π2 ∈ C(a×b, b) in

the definition of products before:

v

a× b

a b

f1 f2

π1 π2

The proof of the Yoneda

lemma showed that we could reconstruct i as follows:

iv(f) = (π1 ◦ f, π2 ◦ f)

Then the inverse transformation j : (a×̃b)(v) → C(v, a× b) gives us the existence
part of the universal property, given f1, f2 we get jv(f1, f2) ∈ C(v, a × b). Then the
equation i ◦ j = id means for any (f1, f2) ∈ (a×̃b)(v)

i(j(f1, f2)) = (π1 ◦ (j(f1, f2)), π2 ◦ (j(f1, f2)))
= (f1, f2)

Which corresponds to the fact that the diagram above commutes.
Then the other direction j ◦ i = id corresponds to the uniqueness condition in the

product. Specifically that for any f ∈ C(v, a× b) we have

j(i(f)) = j(π1 ◦ f, π2 ◦ f)
= f

This shows that if we have an isomorphism (i, j) : Y (a × b) ∼= (a×̃b) then we
can get out a product structure on a × b, courtesy of the Yoneda lemma. We can
also go the other way around. Given projections π1, π2 we can construct i as i(f) =
(f ◦ π1, f ◦ π2) and for each v we can construct jv using the existence part of the
definition of a product, then the commuting and uniqueness properties tell us that
for each v, iv ◦ jv = id and jv ◦ iv = id. However, we have to show that the family
of all such jv is a natural transformation. The following lemma, left as an exercise,
shows that this follows:

Lemma 1. Let α be a natural transformation from F to G, which are functors C → D.
Then α is an isomorphism iff for every a ∈ C0, αc : D(Fa,Ga) is an isomorphism.
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So we see that the pair of morphisms (π1, π2) ∈ (a×̃b)(a × b) play a special role,
in that they determine the whole natural isomorphism. We call these the universal
element of the predicator a×̃b.

Definition 2. Given a representation i : Y (a) → P of a predicator P , the universal
element of P is i(ida) ∈ P (a).

While the terminal object case is trivial, the exponential is interesting:

i(ida⇒b) ∈ (a⇒̃b)(a ⇒ b) = C((a ⇒ b)× a, b)

This is the application morphism we called app before.

2 Free Heyting Algebra Property of IPL(Σ)

Recall3 that IPL(Σ) presented the free Heyting algebra H from Σ in the following
sense. First, we constructed a Heyting algebra L(Σ) from the syntax of IPL: the
elements were equivalence classes . First, there is a universal interpretation η : Σ⇝
L(Σ). Universality means for any other interpretation i : Σ ⇝ H, there exists a
unique ι : L(Σ) → H making the following diagram commute:

L(Σ) H

Σ

∃!ι

η i

We can formalize this in terms of predicators as follows. First, η should be our
universal element η ∈ P (L(Σ)) for some contravariant predicator P on the category
of Heyting algebras and homomorphisms. So P (H) should have as elements interpre-
tations of Σ, so let’s call it Interp(Σ). So we have Interp(Σ)(H) = Σ⇝ H. This is a
contravariant predicator where the composition of an interpretation i : Σ⇝ H and a
homomorphism f : H → K is the composition f ◦ i of the underlying functions. Then
the universal property of IPL(Σ) is that the universal interpretation determines a
natural isomorphism Y opL(Σ) ∼= Interp(Σ), so we get for each H, a bijection of sets

HeytingAlg(L(Σ), H) ∼= Σ⇝ H

3 Introducing C-T structure

Now we want to define a similar universal property for the syntax of simple type
theory that it is a free category with some structure in that it has a universal inter-
pretation of the signature. However there are two reasons that things will be more
complicated than before.

3note that this is a different formulation from the presentation we gave in class
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First, recall that for Heyting algebra, Heyting implication, meets and joins in a
poset are unique up to “=”. But, we saw that exponentials, products and coproducts
are unique, but we still have a weaker form of uniqueness - “unique up to unique
isomorphism”. This means that we will need to similarly weaken the uniqueness in
the universal property for STT: the homomorphism we construct cannot be truly
unique, only unique up to unique isomorphism.

Second, with IPL, things were simple enough that we could conflate the contexts
Γ with the conjunction of all of the propositions

∧
Γ without much trouble. However,

the semantics of STT is strictly more complicated, so we will be more careful and use
a notion of model where types and contexts are not conflated. In practice, the most
common models will not require this distinction, but it is useful to maintain to make
the soundess/completeness/freeness theorems easier to prove.

One benefit of this approach is that we will get highly modular soundness/completeness
theorems for each choice of connective. We summarize them as follows:

Syntax sound and complete notion of model typical models
ST T (·) C-T structure cartesian categories
UT T (·) Category category
ST T (1, x) C-T structures with fin. products cartesian categories
ST T (⇒) C-T structures with exponentials cartesian closed categories 4

ST T (⇒, x, 1) C-T structure with fin. products & exps cartesian closed categories
ST T (0,+) C-T structure with fin. coproducts distributive bicartesian categories 5

ST T (0,+,⇒,×, 1) C-T structure with all of the above bicartesian closed category

Note that as with posets models of IPL, where joins were required to distribute
over meets, as well here in the typical models the coproducts will need to be dis-
tributive over the products. However in the version with all of the connectives we
don’t need to additionally require that the coproducts are distributive because of the
following lemmas:

Lemma 2. If Y a and Y b are isomorphic in SetC
op

then so are a and b in C.

Proof. Let i ∈ SetC
op

(Y a, Y b) be an isomorphism with inverse i−1 ∈ SetC
op

(Y b, Y a).
Then i(ida) ∈ C(a, b) and i−1(idb) ∈ C(b, a) are an isomorphism.

Lemma 3. If a category C has finite products, finite coproducts and exponentials,
then coproducts distributed over products in that:

• A× 0 ∼= 0

• A× (B + C) ∼= (A×B) + (A× C)

1cartesian category with all exponentials.
2Distributive means that A× 0 ∼= 0 and A× (B + C) ∼= A×B +A× C.
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Proof. By the prior lemma, it is sufficient to show the images under Y op are isomor-
phic. But we can calculate using representability. For 0:

Y op(D)(A× 0) ∼= C(A× 0, D)
∼= C(0, A ⇒ D)
∼= 1
∼= C(0, D)
∼= Y op(D)(0)

For +:

Y op(A× (B + C))(D) ∼= C(A× (B + C), D)
∼= C(B + C,A ⇒ D)
∼= C(B,A ⇒ D)× C(C,A ⇒ D)
∼= C(A×B,D)× C(A× C,D)
∼= C(A×B + A× C,D)
∼= Y op(A×B + A× C)(D).

3.1 C-T structures

Next, we give the basic notion of a model of the judgments of STT, which we call
a C-T structure, meaning a structure of a “category” with a notion of “type”. We
want this to abstract over the basic components of STT: types, terms, contexts and
substitutions and the algebraic laws that they satisfy.

Definition 3. A C-T structure S consists of

1. A set ST we call the “types” and so write as A,B,C, . . .

2. A cartesian category SC. We think of the objects as contexts and write them
Γ,∆, . . . and think of morphisms as substitutions and write them as γ, δ, . . ..

3. For each type A in ST , we have a predicator TmS(A) on SC.

4. For each A ∈ ST , TmS(A) is representable: there exists sole(A) such that
Y (sole(A)) ∼= TmS(A).

Fix a choice of signature and connectives. We define a C-T structure L as follows.

types LT : types of STT.

contexts and substitutions The objects of Lc are the contexts of STT and the
morphisms are the substitutions, i.e., a morphism γ ∈ L(∆,Γ) is a substitution
γ : ∆ → Γ.

We need to show that this category is cartesian:
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• Terminal object: the terminal object is the empty context ·. This is
because there is a unique substitution ∆ → · for any ∆.

• Cartesian products: given contexts Γ1 and Γ2 whose variable names are
disjoint, their cartesian product is given by the concatenation Γ1,Γ2, with
the projections being substitutions

πΓ1,Γ2

1 : Γ1,Γ2 → Γ1

πΓ1,Γ2

2 : Γ1,Γ2 → Γ2

defined syntactically as
πi(x) = x

These correspond to the syntactic weakening of a term. Then to show the
unique existence property, we have

γ1 : ∆ → Γ1 γ2 : ∆ → Γ2

(γ1, γ2) : ∆ → Γ1,Γ2

where the substitution (γ1, γ2) is defined in the following way:

(γ1, γ2)(x : A ∈ Γ1,Γ2) =

{
γ1(x) x : A ∈ Γ1

γ2(x) x : A ∈ Γ2.

Then we can verify that πΓ1,Γ2

i ◦ (γ1, γ2) = γi and it is the unique such
substitution.

Terms For any A ∈ LT , we can define TmL(A)(Γ) to be the set of terms {M |Γ ⊢
M : A}. The operation M ∗γ is defined to be substitution M [γ], which we have
shown previously to satisfy the predicator equations.

Then we need to show that for every A ∈ LT , TmL(A) is representable. That
is we need some context Sole(A) with Y (Sole(A)) ∼= Tm(L)(A), i.e., that there
is a natural family of isomorphisms

Γ → Sole(A) ∼= TmL(A)(Γ)

By the Yoneda lemma, this isomorphism is determined by a universal element:

varA ∈ TmL(A)(sole(A))

We define Sole(A) to be a single variable context x : A ∈ Ctx for some arbitrary
choice of variable name x, and define the universal element to be the variable:

varA = x : A ⊢ x : A

Then universality means we need to show for all M ∈ TmL(A)(Γ) there exists
a unique substitution

M/x : Γ → x : A

such that x[M/x] = M . As suggested by the notation we define (M/x)(x) = M .
Then clearly x[M/x] = M and it is the unique substitution from Γ to x : A
with this property.
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