Lecture 10: Universal Properties II, Exponentials and Predicators

Lecturer: Max S. New
Scribe: Runze Xue

February 13, 2023

1 Exponential

1.1 Definition

Let \mathscr{C} has binary products. An exponential of $a, b \in \mathscr{C}_{0}$ is

1. An object $e \in \mathscr{C}_{0}$ and
2. A morphism app : $e \times a \rightarrow b$ such that for any $f: v \times a \rightarrow b, \exists!\lambda f: v \rightarrow e$ so that the following diagram commutes.

One may make an analogy to the Heyting implication e between a and b where $e \wedge a \leq b$ and for any $x \wedge a \leq b, x \leq e$.

1.2 Uniqueness of Exponential

Consider two exponential objects ($e, \operatorname{app}, \lambda$) and $\left(e^{\prime}, \operatorname{app}^{\prime}, \lambda^{\prime}\right)$ of a and b. Then e and e^{\prime} are isomorphic with the morphisms being $\lambda \mathrm{app}^{\prime}: e^{\prime} \rightarrow e$ and $\lambda^{\prime} \mathrm{app}: e \rightarrow e^{\prime}$. By symmetry it suffices to show that $\lambda \mathrm{app}^{\prime} \circ \lambda^{\prime} \mathrm{app}=\mathrm{id}_{e}: e \rightarrow e$.

To prove this it is sufficient to show that picking either of $g=\lambda \mathrm{app}^{\prime} \circ \lambda^{\prime} \mathrm{app}$ or $g=\mathrm{id}_{e}$ makes the following diagram commute:

First, to show that id_{e} makes the diagram commute, it is sufficient to show that $\left(\mathrm{id}_{e} \circ \pi_{1}, \pi_{2}\right)=\mathrm{id}_{e \times a}$. To prove this, it is sufficient by the universal property of the product to show that

$$
\pi_{1} \circ\left(\mathrm{id}_{e} \circ \pi_{1}, \pi_{2}\right)=\pi_{1} \circ \mathrm{id}_{e}
$$

and

$$
\pi_{2} \circ\left(\mathrm{id}_{e} \circ \pi_{1}, \pi_{2}\right)=\pi_{2} \circ \mathrm{id}_{e}
$$

Which follows by definition of the pairing $(-,=)$ operation.
Next, we need to show that

$$
\operatorname{app} \circ\left(\lambda \mathrm{app}^{\prime} \circ \lambda^{\prime} \mathrm{app} \circ \pi_{1}, \pi_{2}\right)=\mathrm{app}
$$

$$
\operatorname{app} \circ\left(\lambda \mathrm{app}^{\prime} \circ \lambda^{\prime} \mathrm{app} \circ \pi_{1}, \pi_{2}\right)=\operatorname{app} \circ\left(\lambda \mathrm{app}^{\prime} \circ \pi_{1}, \pi_{2}\right) \circ\left(\lambda^{\prime} \mathrm{app} \circ \pi_{1}, \pi_{2}\right) \quad(\text { see below })
$$

$$
=\mathrm{app}^{\prime} \circ\left(\lambda^{\prime} \mathrm{app} \circ \pi_{1}, \pi_{2}\right) \quad\left(\text { property of } \lambda \mathrm{app}^{\prime}\right)
$$

$$
=\text { app } \quad\left(\text { property of } \lambda^{\prime} \mathrm{app}\right)
$$

$$
=\operatorname{app} \circ \mathrm{id}_{e}
$$

Besides the unjustified first step, this argument is neatly described by the following diagram:

It remains to to show that

$$
\left(\lambda \mathrm{app}^{\prime} \circ \lambda^{\prime} \mathrm{app} \circ \pi_{1}, \pi_{2}\right)=\left(\lambda \mathrm{app}^{\prime} \circ \pi_{1}, \pi_{2}\right) \circ\left(\lambda^{\prime} \mathrm{app} \circ \pi_{1}, \pi_{2}\right): e \times a \rightarrow e \times a
$$

By the universal property of a product it suffices to show they are equal when applying π_{1} and π_{2}. First,

$$
\begin{aligned}
\pi_{1} \circ\left(\lambda \mathrm{app}^{\prime} \circ \lambda^{\prime} \mathrm{app} \circ \pi_{1}, \pi_{2}\right) & =\lambda \mathrm{app}^{\prime} \circ \lambda^{\prime} \mathrm{app} \circ \pi_{1} \\
& =\lambda \mathrm{app}^{\prime} \circ \pi_{1} \circ\left(\lambda^{\prime} \mathrm{app} \circ \pi_{1}, \pi_{2}\right) \\
& =\pi_{1} \circ\left(\lambda \mathrm{app}^{\prime} \circ \pi_{1}, \pi_{2}\right) \circ\left(\lambda^{\prime} \mathrm{app} \circ \pi_{1}, \pi_{2}\right)
\end{aligned}
$$

the last two steps are described in the diagram:

Next,

$$
\begin{aligned}
\pi_{2} \circ\left(\lambda \mathrm{app}^{\prime} \circ \lambda^{\prime} \mathrm{app} \circ \pi_{1}, \pi_{2}\right) & =\pi_{2} \\
& =\pi_{2} \circ\left(\lambda^{\prime} \mathrm{app} \circ \pi_{1}, \pi_{2}\right) \\
& =\pi_{2} \circ\left(\lambda \mathrm{app}^{\prime} \circ \pi_{1}, \pi_{2}\right) \circ\left(\lambda^{\prime} \mathrm{app} \circ \pi_{1}, \pi_{2}\right)
\end{aligned}
$$

where the last two steps are described in the diagram:

Therefore, the exponential object is unique up to isomorphism. Additionally it is unique up to unique isomorphism $i: e \rightarrow e^{\prime}$ satisfying app $\circ\left(i \circ \pi_{1}, \pi_{2}\right)=\mathrm{app}^{\prime}$, since this is the unique morphism satisfying the property at all.

1.3 Examples

- In Set, the exponential of set A and B is the set of functions $B^{A}=\{f: A \rightarrow b\}$.
- In Gph, the exponential H^{G} of graphs G and H can be constructed as

$$
\begin{aligned}
\left(H^{G}\right)_{v} & =H_{v}^{G_{v}} \\
\left(H^{G}\right)_{e}(f, g) & =\prod_{v \in G_{v}} H_{e}(f(v), g(v))
\end{aligned}
$$

- In Mon, there is no general exponential.

1.4 Free Monoid

For any $A \in$ Set, we have List $A \in$ Mon defined as the lists of elements in A with concatenation operation. This monoid is called the free monoid over A because it satisfies the following property:

1. A morphism single $: A \rightarrow|\operatorname{List} A|$ that maps $a \in A$ to a singleton list (a) and
2. For any $f: A \rightarrow|M|, \exists!\bar{f}: \operatorname{Mon}($ List $A, M)$,such that $f=$ single $\circ|\bar{f}|$.

By a similar argument if we had a different monoid L^{\prime} with function $s: A \rightarrow L^{\prime}$ such that for any $f: A \rightarrow|M| \cdot \exists!\bar{f}^{\prime}: \operatorname{Mon}\left(L^{\prime}, M\right)$ satisfying $f=s \circ\left|\bar{f}^{\prime}\right|$, then we would be able to show that List A is unique up to unique $s /$ single-preserving isomorphism $\overline{\text { single }}{ }^{\prime}$

2 Predicators

2.1 Meet and Down Set

For $S \subseteq|P|$, the meet m of S is the greatest lower bound of S, that is,

1. m is a lower bound for S in that $\forall x \in S, m \leq x$
2. m is greater than any other lower bound: $\forall y,(\forall x \in S, y \leq x) \Rightarrow y \leq m$

Define the down set of S as

$$
\downarrow S:=\{p \in|P|: \forall x \in S, p \leq x\}
$$

Then we can equivalently define that m is the meet of S when it is the greatest element of $\downarrow S$:

1. First, m is an element of $\downarrow S: m \in \downarrow S$
2. Next, it is the greatest element: $x \in \downarrow S \Rightarrow x \leq m$
$\downarrow S$ has the property of being downward-closed: $\forall x \in \downarrow S, y \leq x \Rightarrow y \in \downarrow S$.
Then we are able to describe all of our connectives in IPL by saying that they are greatest elements of some downward closed set:

- A top element T is the greatest element of the entire set $|P|$ (trivially downward closed).
- A binary meet $x \wedge y$ is the greatest element of the downward closed set of lower bounds of x and y : $\{z \mid z \leq x \wedge z \leq y\}$
- A Heyting implication $x \Rightarrow y$ is the greatest element of the downward closed set $\{z \mid z \wedge x \leq y\}$

Or, dually, that they are least elements of an upward closed set:

- A bottom element \perp is the least element of all of $|P|$.
- A join $x \vee y$ is the least element of $\{z \mid x \leq z \wedge y \leq z\}$

2.2 Predicator

Now we will develop a generalization of downward-closed sets that will allow us to unify all of the different universal properties we've seen so far in the same way that downward-closed sets generalized all connectives in IPL.

We call this notion a predicator ${ }^{1}$ on the category. We call them predicators as they generalize predicates in a similar way that functors generalize functions.

A predicator P on a category \mathscr{C} consists of

[^0]1. $\forall a \in \mathscr{C}$, a set $P(a)$
2. An operation $*^{a b}: P(b) \times \mathscr{C}(a, b) \rightarrow P(a)$ which satisfies

$$
\begin{aligned}
\varphi * \mathrm{id}_{b} & =\varphi \\
\varphi *(f \circ g) & =(\varphi * f) * g
\end{aligned}
$$

We think of $*$ here as a kind of "composition" operation between elements of the sets $P(b)$ and real morphisms $f \in \mathscr{C}(a, b)$. Then the algebraic identities that we ask to be satisfied are the two of the three category axioms that make sense for the $*$ operation.

To get a feel for predicators, we consider our two extreme special cases: one-object categories, i.e., monoids, and thin categories, i.e., preorders.

If \mathscr{C} has one object \cdot, or equivalently, $\mathscr{C}(\cdot, \cdot)$ is a monoid with neutral element e and multiplication \otimes, a predicator would be just a single operation $*: P(\cdot) \times \mathscr{C}(\cdot, \cdot) \rightarrow$ $\mathscr{C}(\cdot, \cdot)$ satisfying

$$
\begin{aligned}
\varphi * e & =\varphi \\
\varphi *(f \otimes g) & =(\varphi * f) * g
\end{aligned}
$$

In this case, the predicator P is precisely an action of monoid $\mathscr{C}(\cdot, \cdot)$ on the set $P(\cdot)$. If the monoid is a group, this is called a group action. Analogously, a predicator could be called a category action.

Next consider if \mathscr{C} is a thin category, i.e., a preorder and we have a presheaf P where each set $P(a)$ has at most one element $(\forall a \in \mathscr{C},|P(a)| \leq 1)$. Then P is really a kind of predicate on objects of the set, we can think of the predicate as true if $P(a)$ is inhabited and false if it is not. Then the $*$ operation means that if $P(a)$ is inhabited and $b \leq a$ then $P(b)$ is inhabited. Then we see that such a predicator P determines to a downward-closed subset of the objects of \mathscr{C}.

A predicator P on \mathscr{C} is just the same data as $\mathcal{P}: \mathscr{C}^{\mathrm{op}} \rightarrow$ Set. The action on objects gives our $P(a)$ and the functorial action is equivalent to the $*$ operation but in a different order:

$$
\begin{aligned}
\mathcal{P}_{0}(a) & =P(a) \\
\mathcal{P}_{1}(f: a \rightarrow b)(\varphi \in P(b)) & =\varphi * f \in P(a)
\end{aligned}
$$

Then the functoriality laws correspond precisely to our rules for predicators:

$$
\begin{array}{r}
\mathcal{P}_{1}\left(\operatorname{id}_{a}\right)(\phi)=\operatorname{id}_{\mathcal{P}_{0}(a)}(\phi)=\phi=\phi * \mathrm{id}_{a} \\
\mathcal{P}_{1}(f \circ g)(\phi)=\left(\mathcal{P}_{1}(g) \circ \mathcal{P}_{1}(f)\right)(\phi)=\mathcal{P}_{1}(g)\left(\mathcal{P}_{1}(f)(\phi)\right)=\mathcal{P}_{1}(g)(\phi * f)=\phi * f * g
\end{array}
$$

2.3 STT Terms as a Predicator

In PS2, we have described the category Ctx of context in STT where the objects are contexts and the morphisms are general substitution. Notice that for any fixed type A :

1. For any context Γ, the terms on it $\operatorname{Term}_{A}(\Gamma)=\{M \mid \Gamma \vdash M: A\}$ form a set,
2. We have an operation of substitution into a term that takes a term $M \in$ $\operatorname{Term}_{A}(\Gamma)$ and a substitution $\gamma: \Delta \rightarrow \Gamma$ and gives us

$$
M[\gamma] \in \operatorname{Term}_{A}(\Delta)
$$

3. Furthermore, we shows that this satisfies two equations:

$$
\begin{aligned}
M\left[\mathrm{id}_{\Gamma}\right] & =M \\
M[\gamma \circ \delta] & =M[\gamma][\delta]
\end{aligned}
$$

Therefore, the terms of any fixed type along with action of substitutions form a predicator on the category of contexts and substitutions.

[^0]: ${ }^{1}$ these are more commonly called presheaves but then you'd ask what a sheaf is, which won't be relevant until maybe the last week of the course.

