
Lecture 9: Natural Transformations and Universal
Properties

Lecturer: Max S. New
Scribe: Steven Schaefer

February 8, 2023

1 Introduction to the Functor Category

Inside of Simple Type Theory (STT) connectives give us a way to build up new types
from already existing types. Up to this point, we have interpeted the STT connectives
+ and ×. Here, inside of C we hope to give an interpretation of function types built
from ⇒.

Given posets P,Q we can construct the set of monotone functions from P to Q,

|QP | = {f : P → Q | f monotone}

Additonally we can order these by using the order of Q,

f ≤ g := ∀x ∈ P.fx ≤Q gx

When moving from posets to categories, we can introduce very similar notions.
For categories C and D, we may introduce a new category DC that generalizes the
construction QP .

The objects of DC are functors from C to D. For functors F and G, we construct
a morphism F → G by providing a morphism αa : F0a → G0a for every object in
a ∈ C. When moving from posets to categories, we need to additionally account for
equational conditions on our constructions. In this case we add a condition we call
naturality : that for any f : C1(a, b).Gf ◦ αa = αb ◦ Ff .

DC
0 :={F : C → D | F functor}

DC
1 :=

∏
a∈C0

(αa : D1(F0a,G0a))

such that ∀f : C1(a, b).Gf ◦ αa = αb ◦ Ff

1

Lecture 9 2

1.1 An aside on generalization

Note: this does indeed generalize the poset construction. Viewing the poset as a
category, fx ≤ gx is exactly the data of a morphism fx → gx. When we lifted the
order of Q to an ordering on QP , f ≤ g required fx ≤Q gx for all x in the poset P —
that is, we required there to be a morphism fx → gx for all x ∈ P . This is exactly
what the definiton of DC

1 requires!
Changing to categorical terminology and swapping C out for P , D out for Q, and

≤Q out for D1 in the definition of f ≤ g yields precisely the definition of the hom-set
DC

1 minus the side conditions.

2 Natural Transformations

When introducing DC we had the side condition on morphisms,

∀f : C1(a, b).Gf ◦ αa = αb ◦ Ff
This condition is called naturality and it plays a fundamental role in category

theory. Maps α that obey this condition are called natural transformations. We may
think of natural transformations as transforming a functor F : C → D into a functor
G : C → D while respecting the morphism structure of C. It is useful to think of them
as a morphism of functors — in a sense that is made rigorous inside of the functor
category DC.

For functors F,G : C → D, and a natural transformation α : DC(F,G), the
naturality condition says that for each f : C(a, b), the following diagram commutes:

a b

Fa Fb

Ga Gb

f

Ff

αa αb

Gf

To show that DC is actually a category, we need to define appropriate identity
and composition of natural transformations. We see that each functor has an identity
natural transformation that acts on it, idF : F → F . At the object a ∈ C0, idaF :
Fa→ Fa:

idaF = idFa

We need to show that this is natural. Naturality in this case says for each f : C(a, b)
we get a commuting square:

Fa Fb

Fa Fb

idFa idFb

Ff

Ff

EECS 598: Category Theory

Lecture 9 3

which commutes because idFa is the identity morphism.
Likewise, we propose a composition: given natural transformations α : F → G

and β : G→ H, we can form the composition β ◦ α : F → H:

(β ◦ α)a := βa ◦ αa

Naturality becomes showing the following square commutes:

Fa Fb

Ga Gb

Ha Hb

αa αb

Ff

βa βb

Hf

Why does this commutes? If we insert the Gf in the middle we get two commuting
diagrams:

Fa Fb

Ga Gb

Ha Hb

αa αb

Ff

βa βb

Hf

Gf

Then this is a commuting diagram as well because each of the sub-squares com-
mutes. We could write this argument out completely algebraically:

(β ◦ α)b ◦ Ff = βb ◦ αb ◦ Ff
= βb ◦Gf ◦ αa
= Hf ◦ βa ◦ αa
= Hf ◦ (β ◦ α)a

But you may prefer the diagrammatic style.
Then these definitions satisfy unit and associativity laws because they are given

pointwise.

2.1 Application Functor

We now define a functor app : DC × C → D.

app0(F, a) := F0a

app1(α : F → G, f : a→ b) := Gf ◦ αa

EECS 598: Category Theory

Lecture 9 4

Above, because α is a morphism in DC, it must be a natural transformation.
Further, because α is natural we made and arbitrary choice when defining app1. By
the naturality of α,

Gf ◦ αa = αb ◦ Ff

Each of these presentations are justified in believing that they should be the
definition of app1. But alas, we can only choose one, so we might as well take the
left-hand side.

Intuitively, we want app to behave like a generalized form of function application.
Recall that ⇒ E takes a function and an element of that function’s domain and
returns an element of the codomain. Here, app is performing the very same task.
Given a pair of data from DC — which encodes how to act on data from C — and
data from C — which gives us the arguments to be acted upon — app will return a
result in D.

It is a good, recommended exercise in unrolling definitions and diagram chasing
to prove app as defined is functorial. Instead of doing that here, let’s show that if
app is to be a functor, then α needs to be a natural transformation, which should
give some motivation for why the naturality condition is the right one:

Gf ◦ αa = app1(α, f) (defintion of app)

= app1(α ◦ idF , idb ◦ f) (identity)

= app1((α, idb) ◦ (idb, f)) (composition in product category)

= app1(α, idb) ◦ app1(idb, f) (functoriality)

= G idb ◦ αb ◦ Ff ◦ idFa (defintion of app)

= αb ◦ Ff (identity/functoriality)

3 Universal Properties

Many of the connectives in a Heyting algebra — and thus in models of intuitionistic
propostional logic — were constructed as the greatest or least element of some set.
For instance, a∧ b is constructed as the element c such that if x is a lower bound for
{a, b} then x ≤ c.

Moreover, in any preorder the a ∧ b is unique up to order equivalence. In this
instance, the join a ∧ b is the unique element satisfying some property, and we have
isolated it entirely in order theoretic terms. As we so often do in this class, we
now want to generalize from order theory to any category. That is, we want to be
able to uniquely determine objects of a category that obey properties related to our
connectives. Uniquely determining objects in this categorical manner is precisely
what it means to show that an object obeys a universal property.

EECS 598: Category Theory

Lecture 9 5

3.1 Terminal Objects

In a category C, an object T ∈ C0 is terminal if for any object V ∈ C0 there is a
unique morphism from V to T .

Note here that we are both making a claim on both the existence of such a
morphism and its uniqueness. We write existence as ∃, and unique existence as
∃!.

Recall that in a poset, we have an arrow x → y if and only if x ≤ y. Within a
poset, a terminal element must be >. Every element has a morphism to > because
x ≤ > for all x, so there is at least one morphism into> from any object. Additionally,
posets are thin categories so there is at most one morphism between any two objects.
Thus, the size of the hom-set C(x,>) is exactly 1 for all elements x.

From a slight weakening to our reasoning on posets, a terminal object in any
preorder must be order equivalent to >.

In Set, the category of sets, {∗} is terminal. In particular, the only function into
{∗} is the constant function that outputs ∗ for any input. Moreover, any singleton
set is terminal. For instance, {5} and {LATEX} each satisfy the criteria to be terminal
objects in Set, and the unique maps into each of these are again just the constant
maps.

Even though there may be several objects that behave like terminal objects, there
is morally only one. What do we mean by this? Terminal objects are unique up to
unique isomorphism. That is, up to the categories notion of equivalence — isomor-
phism — any two terminal objects are the same in exactly one way.

We can show that terminal objects are unique up to unique isomorphism via the
following diagram:

T T ′
f

idT
g

idT ′

Because T is terminal there is a unique morphism g : T ′ → T . Likewise, because
T ′ is terminal there is a unique morphism f : T → T ′. We may compose these to get
f ◦ g : T → T . However, because T is terminal there is only one morphism T → T .
In particular, there is idT : T → T . We have shown that there are two inhabitants of
C(T, T) but |C(T, T)| = 1, thus these two inhabitants must coincide. That is,

f ◦ g = idT

Through a symmetric argument, g ◦ f = idT ′ . This is precisely the statement that
f and g form an isomorphism between T and T ′. Finally, we have the even stronger
statement that f and g form the only isomorphism between T and T ′ because they
form the only morphisms between the terminal objects in this case.

We refer to this uniqueness up to unique isomorphism as being the universal
property of terminal objects. A very common proof strategy to show an isomorphism
of two objects is to show that they obey the same universal property, or to show two
morphisms are equal because they both satisfy a unique existence condition as above.

We often write 1 to denote terminal objects. The unit type, singleton set, and
one-element monoid are terminal in the appropriate categories.

EECS 598: Category Theory

Lecture 9 6

3.1.1 Initial Objects

As always in category theory, we get a dual notion for free by consider the opposite
category Cop. By considering the dual notion of a terminal object, we arrive at the
definition for an initial object.

I is an initial object if for any object V ∈ C0 there is a unique morphism I → V .
This is just a terminal object in Cop. Thus, we can invoke the universal property
of terminal objects instantiated with I to prove that I is determined up to unique
isomorphism.

We often write 0 to represent initial objects. The empty set, one-element monoid,
bottom element of a poset are all initial objects in their respective categories.

The one-element monoid thus has the interesting property of being both initial
and terminal in the category of monoids: it is terminal because every homomorphism
must send everything to the one element of the codomain, and it is initial, because
there is a unique homomorphism to every monoid because homomorphisms preserve
identity.

If an object is both initial and terminal it is referred to as a zero object. A question
arose in class asking about the fact that functors do not necessarily preserve both
initial objects and terminal objects. For instance, the monoid with one element in
Mon. However, consider the forgetful functor U : Mon → Set. While 0 is a zero
object in Mon, U0 is not the zero object in Set. To see this, we can just calculate:

U0 = {e}

U 0 is a singleton set, and thus terminal in Set. Notably U0 6= ∅, so it is not initial.
Why might this forgetful functor only preserve terminal objects?

Disclaimer: the answer to this question skips ahead a few lectures, and was not
mentioned in class; however, I thought it might be valuable to include it for anyone
interested.

Answer: The forgetful functor U : Mon → Set is the right adjoint to the free
monoid functor F : Set → Mon. That is, for a set S and a monoid M , there is a
bijection of hom-sets,

Set1(S, UM) ∼= Mon1(FS,M)

All this says is that a monoid homomorphism out of a free monoid generated by
S is exactly the same data as choosing where to send the generators — i.e. choose
the image for all elements of S and the monoid axioms completely determine the rest
of the homomorphism.

It is a deep theorem that is currently over my head that states that right adjoint
functors (in this case U) preserve limits (and a terminal object is an instance of a
limit). Dually, we also get the statement that left adjoint functors (in this case F)
preseve colimits (in this case initial objects).

We can see this theorem in action by verifying that F sends the initial object of
Set to the initial object of Mon. Recalling that ∅ is initial in Set, we calculate the
free monoid generated by the empty set.

EECS 598: Category Theory

Lecture 9 7

F∅ = {e}

We have no generators to build our monoid with, so the only element of F∅ can be
the identity element of the monoid, leaving us with the trivial monoid. This is the
initial object just as expected!

3.2 Products

A product structure of A,B ∈ C comprises the following information:

• An object P

• Morphisms π1 : P → A, π2 : P → B such that for all objects V ∈ C0 with
f : V → A, g : V → B there exists a unique morphism h : V → P such that
π1 ◦ h = f and π2 ◦ h = g.

That is, we have the following diagram:

V

P

A B

∃!h
f g

π1

π2

In Set we can check that A × B with the usual projection functions obeys the
universal property laid out above. Here we are taking A×B to have the same encoding
into ZF as laid out in a previous lecture. Namely, (a, b) ∈ A×B is given as the set,

{{a}, {a, b}}

where the A coordinate is the element of the singleton set and the B coordinate
is the element of the two element set that is not also in the singleton set.

Just like with the terminal object example from earlier, we don’t have just one
object that satisfies the criteria laid out above to be considered product. There are
many objects that work. We could have swapped coordinates as B×A with modified
projection functions satisfies the univeral property of products; or perhaps we could
have taken another encoding into ZF that still obeys this property. At the end of the
day, we don’t really care about which particular encoding or product we take. These
different choices of encodings are just implementation details, whereas the universal
property lays out an interface that all products must obey. Moreover, as we are about
to show, all of these products are uniquely isomorphic to each other so it really does
not matter which one we consider as the product of A and B.

Suppose we have two candidate products P and Q, with projections π1 : P →
A, π2 : P → B and π′

1 : Q → A, π′
2 : Q → B such that P and Q the product

conditions. That is, for all V ∈ C0 with f : V → A and g : V → B we have a unique

EECS 598: Category Theory

Lecture 9 8

morphism hP : V → P such that π1 ◦ hP = f and π2 ◦ hP = g. Likewise, for Q we
get a unique morphism hQ : V → Q such that π′

2 ◦ hQ = f and π′
1 ◦ hQ = g.

Consider the below diagram. Because Q has projections π′
1, π

′
2, the fact that P is

a product gives us a unique morphism φ : P → Q that the morphisms from Q to A
and B factor through φ. In particular, π1 ◦ φ = π′

1 and π2 ◦ φ = π′
2.

P Q

A B

∃!φ

π1
π2π′

1
π′
2

∃!ψ

Through a symmetric argument, becuase Q is a product we have a unique mor-
phism ψ : Q → P such that morphisms from P into A and B factor through ψ. In
particular, π′

1 ◦ ψ = π1 and π′
2 ◦ ψ = π2.

Consider now the composition ψ ◦ φ : P → P . This is a morphism P → P such
that morphisms P → A, P → B must factor through this map, as

πi ◦ ψ ◦ φ = π′
iφ = πi

Additionally, idP : P → P is another morphism P → P such that morphisms
f : P → A, g : P → B must factor through idP . To see this, note that f = f ◦ idP
and g = g ◦ idP . The universal property of products states that there must be
exactly one morphism that preserves the projections πi in this manner. Thus the two
morphisms that we have demonstrated to do this are in fact the same!

idP = ψ ◦ φ
Through a very similar argument, idQ = φ ◦ ψ. This gives that P and Q are

isomorphic, and we see that this isomorphism is unique.

3.2.1 General Products

Above we demonstrated the universal property of binary products. However, we can
generalize this idea to be indexed over any subset of objects. Instead of just A× B,
which corresponds to the subset {A,B} ⊂ C0, we take any S ⊂ C0 and build their
product

∏
S.

For all x ∈ S, we require projections πx :
∏
S → x and that for all V ∈ C0 such

that there are morphisms fx : V → x, there is a unique morphism (fx)x∈S such that
πx(fx)x∈S = fx. That is, we want this diagram to commute for all x ∈ S,

V

∏
S x

∃!(fx)x∈S
fx

πx

We note that terminal objects are nullary products — products over the empty
set.

EECS 598: Category Theory

