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1 Definition and examples of functors

Previously, we have seen how we make categories from mathematical objects and
the structure preserving morphisms between them. A natural question is what the
analogous notion for structure preserving maps between categories would be, like we
do for lots of mathematical objects. The correct notion ends up being the following.

Definition 1 (Functor). Suppose C and D are categories. A functor F : C → D is
an object containing the following information:

1. An assignment of objects F0 : C0 → D0 which maps every object in C0 to an
object in D0,

2. For all a, b ∈ C0, an assignment of morphisms F a,b
1 : C1(a, b) → D1(F0(a), F0(b)),

3. such that F1 preserves the identity morphism, i.e. for all objects a ∈ C0

F a,a
1 (Ida) = IdF0(a),

4. and such that F1 preserves composition, i.e. for all objects a, b, c ∈ C0 and
morphisms f ∈ C1(b, c), g ∈ C1(a, b), we have

F a,c
1 (f ◦ g) = F b,c

1 (f) ◦ F a,b
1 (g).

To understand where this definition comes from, recall we can think of categories
as a sort of generalization of preorders where we have some notion of equality for
our order relations. Then (2) in the above definition becomes a generalization of
the condition of being monotone. To explain, if C and D were both thin categories,
i.e. just preorders by last lecture, suppose we have a, b ∈ C0 such that a ≤ b.
Our morphisms F a,b

1 : C1(a, b) → D1(F0(a), F0(b)) implies there is some morphism
F a,b
1 (a ≤ b) ∈ D1(F0(a), F0(b)), which implies F0(a) ≤ F0(b). So, our functor F is

monotone when reinterpreted as a function between the underlying preorders. As we
are working in general categories, not just thin categories, however, we also have a
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notion of equality for our morphisms. Therefore, we also add conditions (3) and (4)
to preserve the structure of our equality relations for morphisms.

Another way to think about functor F : C → D is that it gives “something shaped
like C” inside D. To make this make sense, in category theory we often draw diagrams
such as the following:

b

a c.

f
g

h

We interpret the arrows as morphisms in a category, and the objects they point
between as the source and target of the morphism. So the above tells us we have
morphisms f : a → b, g : b → c, and h : a → c. Further, we say the diagram is
commutative when every path through the diagram with the same endpoints, taking
the composition of morphisms as we go, yields equal morphisms. So if the above is
a commutative diagram, we know g ◦ f = h, as we can go from a to c either directly
through h, or indirectly through b via f and g.

Returning to the definition of a functor, we see parts (1) and (2) tell us we can
take a diagram and draw a similar one in the category D by sending all objects to
their corresponding one under F0 and similarly for morphisms under F1 to get the
diagram

F0(b)

F0(a) F0(c).

F1(f)
F1(g)

F1(h)

Parts (3) and (4) tell us if the diagram in C is commutative, then the diagram in D
is also commutative. So in this case, we can know that F1(g) ◦ F1(f) = F1(h).

This is why we can think of functors as given “something shaped like C” in D, as
the diagram shape is preserved. However, we do note the diagram can get “squished” –
for example, if we have a functor from some category C into a category 1 that has only
one object {∗} and only the identity morphism, we must have F0(a) = F0(b) = F0(c),
and similar for the morphisms.

Now, we give a bunch of examples of functors. Our first class of functors are
often called “forgetful functors”. Recall how that our definition of a poset consists of
an underlying set and a relation following some rules, and our morphisms of posets,
i.e. monotone maps, were set theoretic functions following some additional rules.
Therefore, we can make a functor U from the category of posets to the category of
sets which “forgets” these additional rules as follows.

U : Poset → Set

U0(X) = |X|, the underlying set of X

U1(f) = f.

We see that this assignment preserves the identity and composition as composition is
the same in both categories – function composition as set-theoretic functions.
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We can also do this for monoids, mapping monoids to their underlying set and
monoid morphisms to their underlying set theoretic functions, and so we also have a
forgetful functor Monoid → Set. A slightly more interesting example is that of graphs,
as we now have two choices for how we can map to set. Given a graph we can either
map it to the set of its vertices, or the set of its edges. For a morphism of graphs,
we then either take the function on the vertices, or the function on the edges as the
set-theoretic function to map our graph morphism to.

We also have an example of a functor in our set-theoretic semantics for simple
type theory. Recall that STTCTX is the category whose objects are contexts in STT,
and morphisms are substitution functions as in homework 2 problem 2. We know
that

Jδ ◦ γK = JδK ◦ JγK

which is exactly saying that this denotation functor preserves composition. For the
identity, we can easily show that

JIdΓK = IdJΓK : JΓK → JΓK

is in fact the identity.
A more semantic example, FinList, is defined as follows.

FinList : Set → Set

FinList0(X) = X∗ := {set of finite sequences with elements in X}
FinList1(f) = map f over the sequence,

i.e. FinList1(f)(x1, x2, . . . , xn) = (f(x1), f(x2), . . . , f(xn)).

Proving that this is a functor is straightforward. For arbitrary X ∈ Set0, we see for
an arbitrary sequence (x1, x2, . . . , xn) ∈ X∗, we have

FinList(IdX)(x1, x2, . . . , xn) = (IdX(x1), IdX(x2), . . . , IdX(xn))

= (x1, x2, . . . , xn),

and so FinList(IdX) = FinList(IdX∗) = FinList(IdFinList(X)). Now, for arbitrary
X, Y, Z ∈ Set0 and functions f : X → Y , g : Y → Z, we have for arbitrary se-
quence (x1, . . . , xn) ∈ X∗ that

FinList(g ◦ f)(x1, . . . , xn) = ((g ◦ f)(x1), . . . , (g ◦ f)(xn))

= (g(f(x1)), . . . , g(f(xn))

= FinList(g)(f(x1), . . . , f(xn))

= FinList(g)(FinList(f)(x1, . . . , xn)).

To give a practical viewpoint, if we imagine f and g to be functions in a programming
language operation on a list, we note that the left hand side can be executed by
iterating over the list once and applying g ◦ f to each element, while the right hand
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side can be executed by iterating over the list twice, first applying f then applying
g. However, if we know the above, we can see that the programming language can
make the optimization of using the left hand side as its executional semantics, saving
an iteration over the list. We can define similar notions of map for lots of traditional
datatypes, such as trees. This is also an example of an endofunctor, which is a
function whose source and target categories are the same.

Another example of an endofunctor is the powerset functor, defined as follows.

P : Set → Set

P(X) = subsets of X

P(f : X → Y ) = image under f function,

i.e. P(f)(S ⊆ X) = {y ∈ Y | ∃s ∈ S s.t. f(s) = y}.

Again, we have to prove that this is a functor. The verification is again straightfor-
ward. We see for arbitrary X ∈ Set0 and S ⊆ X, we have

P(IdX)(S) = {x ∈ X | ∃s ∈ S s.t. IdX(s) = x}
= {x ∈ X | ∃s ∈ S s.t. s = x}
= S.

For arbitrary X, Y, Z ∈ Set0, f : X → Y , g : Y → Z, and S ⊆ X, we have

P(g ◦ f)(S) = {z ∈ Z | ∃s ∈ S s.t. g ◦ f(s) = z} (1)

and

P(g)(P(f)(S)) = {z ∈ Z | ∃t ∈ P(f)(S) s.t. g(t) = z}
= {z ∈ Z | ∃t ∈ {y ∈ Y | ∃s ∈ S s.t. f(s) = y} s.t. g(t) = z} (2)

= {z ∈ Z.∃s ∈ S.g(f(s)) = z}
= P(g ◦ f)(S)

As we see these sets on the right hand side are equal, as if z ∈ Z is in the set of
equation 1, i.e. has s ∈ S such that g ◦ f(s) = z we can take t = f(s) and s = s
to see z is in the set of equation 2, and if z ∈ Z is in the set of equation 2, we have
t = f(s) and z = g(t), and so z = (g ◦ f)(s). It follows that these two sets are equal,
and thus the functor P respects composition.

Now, we give a slightly more complicated example based on differentiable func-
tions. To do this, we first must cook up some categories to make this work. Define
the category Diff∗ by

Diff∗0 := R
Diff∗

r,s
1 := {f : R → R | f is differentiable and f(r) = s}

with composition defined as function composition, so we get associativity for free.
This works because the identity function is differentiable and the composition of
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differentiable function is differentiable. For our second category, we will take the
monoid (R, ∗, 1), meaning the monoid of R under multiplication, which passes to
categories as a single object category whose morphisms are the numbers in R – denote
this object by a. Our functor Deriv is then defined by

Deriv : Diff∗ → (R, ∗, 1)
Deriv0(r) = a

Deriv1(f : r → s) := f ′(r).

To prove this is a functor, we see for arbitrary r ∈ R that the identity function is Id,
and so

Deriv1(Id) = Id′(r) = 1 = Ida.

For composition, we see for arbitrary r, s, t ∈ Diff∗0 and f : r → s, g : s → t, that

Deriv1(g ◦ f) = (g ◦ f)′(r)
= g′(f(r))f ′(r) chain rule

= g′(s)f ′(r) f(r) = s by definition of Diff∗1

= Deriv1(g)Deriv1(f).

While this example is a bit silly, there is an important takeaway, namely that the
definition of category and functor are extremely general and so can many unexpected
things can fit into the definitions. Also note that this generalizes to multi-variable
derivatives, see Riehl’s textbook for more details.

Finally, we give some general examples where we classify functors between certain
types of categories. First, recall how we originally motivated our definition of functor
from monotone maps between preorders. We now show that in a sense we did this
generalization properly by showing that functors between thin categories correspond
to monotone maps. We have already seen, in our motivation for the definition of a
functor, that functors between thin categories are monotone functions on the under-
lying preorder. Now, we want to show any monotone function can be used to define a
functor. Given two preorders/thin categories C and D, we see if we have a monotone
function f : C → D, we can define the functor

F : C → D
F0(a) = f(a)

F1(a ≤ b) = F0(a) ≤ F0(b).

We see that f being monotone guarantees that the above is well-defined, as f(a) ≤
f(b) implies F0(a) ≤ F0(b) is indeed a morphism. We conclude that functors between
thin categories are exactly monotone functions.

We can do a similar thing for monoids. Given two monoids C and D, we see our
functor F has no option for where it maps the object of C to – as D has one object.
Our functor also must map F (Id) = Id and for any f, g ∈ C1, F (f ◦ g) = F (f) ◦F (g).
Recalling that C1 is exactly the elements of the underlying monoid, we see that this
criterion exactly corresponds to the notion of a monoid homomorphism.
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2 Duality

A natural question following our observation that functors between thin categories
correspond to monotone functions between preorders is if there is a categorical char-
acterization of antitone functions between preorders. There is, and just as in an
antitone function the ordering is reversed, in a contravariant functor we will reverse
the order of the morphisms.

Definition 2 (Contravariant functor). Suppose C → D. A contravariant functor
F : C → D is an object containing the following information:

1. An assignment of objects F0 : C0 → D0 which maps every object in C0 to an
object in D0,

2. For all a, b ∈ C0, an assignment of morphisms F a,b
1 : C1(a, b) → D1(F0(b), F0(a)),

3. such that F1 preserves the identity morphism, i.e. for all objects a ∈ C0

F a,a
1 (Ida) = IdF0(a),

4. and such that F1 preserves composition, i.e. for all objects a, b, c ∈ C0 and
morphisms f ∈ C1(b, c) and g ∈ C1(a, b), we have

F a,c
1 (f ◦ g) = F a,b

1 (g) ◦ F b,c
1 (f)

Drawing out a diagram, if we have

b

c a
f◦g

gf

this would get mapped to

F0(b)

F0(c) F0(a)
F1(f◦g)

F1(g)F1(f)

under a contravariant functor, which allows us to see this reversal of direction of the
morphisms.

To distinguish these from the other notion of functor, the other functors are called
covariant functors. However, we typically do not consider contravariant functors as a
separate notion from covariant ones. The reason for this is that using a construction
called the opposite category, we can turn every contravariant functor into a covariant
one by changing the source category.
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Definition 3 (Opposite category). Suppose C is a category. We define the opposite category
of C, denoted by Cop or Co, to be the category

Cop
0 = C0

Cop
1 (a, b) = C1(b, a)

and composition f ◦op g in the opposite category by g ◦ f .

The reason this is in fact a category is the same reason as why we could obtain a
reverse order given any preorder. As a miscellaneous remark note that Copop = C, as
reversing the direction twice is the same as doing nothing.

Using this opposite category we make the following observation.

Theorem 1. A contravariant functor C → D is just a covariant functor Cop → D.

Proof. Suppose F is a contravariant functor C → D. We see criterion 2 of definition
2 tells us F gives assignments

F a,b
1 : C1(a, b) → D1(F0(b), F0(a)).

But C1(a, b) = Cop
1 (b, a), so this functor immediately gives a covariant assignment of

morphisms.
To check composition, we see for a, b, c ∈ C0 and morphisms f ∈ C1(b, c) and

g ∈ C1(a, b) that

F a,c
1 (f ◦ g) = F a,b

1 (g) ◦ F b,c
1 (f)

Again, using that C1(b, c) = Cop
1 (c, b) and C1(a, b) = Cop

1 (b, a), we see the above is the
same as saying

F c,a
1 (g ◦op f) = F a,b

1 (g) ◦ F b,c
1 (f)

which tells us F1 repsects composition as a covariant functor from Cop.

This concept is called duality. Any definition made for a category can also be
applied to the opposite category, which gives a dual definition. Additionally, as long
as the definition is categorical in nature, any proofs made about the defintion carry
over to the dual definition as well – the opposite category is itself a category after all.

To give another example of duality, recall that a monomorphism in a category C
is a morphism f : a → b such that for all morphisms x1, x2 : x → a, if f ◦ x1 = f ◦ x2

then x1 = x2. We can dualize this to get the following.

Definition 4 (Epimorphism). An epimorphism in C is a morphism which is a monomor-
phism in Cop.

However, in terms of understanding this definition is not very helpful, so it often
helps to think about unraveling this definition similarly to how we did for contravari-
ant functors. f : a → b is a monomorphism in Cop provided that for all morphisms
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x1, x2 ∈ Cop
1 (x, a), if f ◦op x1 = f ◦op x2, then x1 = x2. Undoing all the ops, the defi-

nition becomes that f : a → b is a epimorphism in C provided that for all morphisms
x1, x2 ∈ C1(a, x), if x1 ◦ f = x2 ◦ f , then x1 = x2, which is much easier to reason with
in practice.

Note that in Set, epimorphisms are surjective, in a similar vein to how monomor-
phisms were injective.

Now, we give a couple examples of how proofs carry over to dual objects. Consider
the following.

Theorem 2 (Monomorphisms compose). Suppose C is a category, and morphisms
f : a → b and g : b → c in C are monomorphisms. Then g ◦ f is a monomorphism.

Proof. Fix arbitrary x1, x2 : x → a such that (g ◦ f) ◦ x1 = (g ◦ f) ◦ x2. We wish to
show that x1 = x2.

(g ◦ f) ◦ x1 = (g ◦ f) ◦ x2

g ◦ (f ◦ x1) = g ◦ (f ◦ x2) associativity

f ◦ x1 = f ◦ x2 g is a monomorphism

x1 = x2 f is a monomorphism.

As an immediate corollary, we get the following.

Corollary 1 (Epimorphisms compose). Suppose C is a category, and morphisms
f : a → b and g : b → c in C are epimorphisms. Then g ◦ f is an epimorphism.

Proof. By definition 4, we know f and g are monomorphisms in Cop. By theorem 2 it
follows that f ◦op g is an monomorphism in Cop. But f ◦op g = g ◦ f , so we conclude
g ◦ f is an epimorphism in Cop.

As an exercise, one can consider the following theorem which is similar to the
order embedding problem on homework 2, and prove the analogous dual statement.

Theorem 3. Suppose C is a category, and morphisms f : a → b and g : b → c such
that g ◦ f is a monomorphism. Then f is a monomorphism.

Corollary 2. Suppose C is a category, and morphisms f : a → b and g : b → c such
that g ◦ f is an epimorphism. Then g is an epimorphism.

3 Constructions on categories

Having defined a notion of morphism for categories, we might hope to make a category
of categories. We cannot make a small category of all categories, but we can for a
fixed notion of small set, define a large category of all small categories:

Cat0 := {small categories}
Cat1(C,D) := {functors F : C → D}.
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We of course need an identity morphism and composition, which are defined as follows

(IdC)0(a) = a

(IdC)1(f) = f

(F ◦G)0(a) = F0(G0(a))

(F ◦G)1(f) = F1(G1(f)).

Verifying that these do in fact satisfy the category axioms is straightforward.
Working in this category, we can make a couple observations.

1. Let 1 denote the category consisting of 1 object ∗ with 1 (identity) morphism
Id∗. Then for all categories C, there is a unique functor C → 1, namely the
functor which maps all objects to ∗ and all morphisms to Id∗. Going the other
way, we see a functor 1 → C is just an object – the functor gets to choose the
object ∗ gets mapped too, but as functors preserve identity morphism Id∗ must
get mapped to the corresponding identity morphism.

2. We can define a product of categories by

(C × D)0 = C0 ×D0

(C × D)1((a, b), (a
′, b′)) = C1(a, a′)×D1(b, b

′)

with composition defined coordinate-wise. It is straightforward to check that
this is indeed a category.

This construction immediately gives two functors π1 : C × D → C and π2 :
C × D → D that map out components, i.e.

π1(a, b) = a π2(a, b) = b

π1(f, g) = f π2(f, g) = g.

This construction allows us to nicely define functors which takes two arguments,
called bifunctors, as a functor from the cartesian product of the two categories.

3. Let 0 denote the empty category, consisting of no objects and thus no mor-
phisms. We then get a unique functor 0 → C for any category C, as there is
nothing to define for our functor.

4. We can define a coproduct of categories by

(C +D)0 = C0
⊎

D0

(C +D)1(i1a, i1a
′) = C1(a, a′)

(C +D)1(i2b, i2b
′) = D1(b, b

′)

(C +D)1(i2b, i1a
′) = ∅

(C +D)1(i1a, i2b
′) = ∅

and no morphisms for other cases.
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