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1 Definition

A category C is an algebraic structure that consists of:

• C0, a set of objects

• For each a, b ∈ C0, a set C1(a, b) of arrows (also called morphisms) from a to b.
For f ∈ C1(a, b) when the category is clear from context, we write f : a → b.

• For each a ∈ C0 a distinguished identity morphism ida ∈ C1(a, a).

• For each a, b, c ∈ C0, a composition operation ◦ : (C1(b, c)× C1(a, b)) → C1(a, c)

• Composition respects the identity morphisms: for any f : a → b, we have

idb ◦ f = f

and
f ◦ ida = f

• Composition is associative: wherever the composition is defined, we have f ◦
(g ◦ h) = (f ◦ g) ◦ h.
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2 Examples

We will give several examples of categories to help with understanding the definition.

2.1 Category of Sets (Set)

1. The objects of Set0 are all small sets.

2. The morphisms are the functions, defined as Set1(A,B) = {f |f : A → B}.

3. The identity morphism is the identity function, defined as idA(x) = x.

4. Composition operation is function composition, defined as (f ◦g)(x) = f(g(x)).
We will now show the two properties hold. To show two functions are equal it is
sufficient to show they are equal when applied to any element of their domain:

• Composition respects identity morphism:
(idA ◦ f)(x) = idA(f(x)) = f(x)
(f ◦ idA)(x) = f(idA(x)) = f(x)

• Composition is associative:
(f ◦(g◦h))(x) = f((g◦h)(x)) = f(g(h(x))) = (f ◦g)(h(x)) = ((f ◦g)◦h)(x)

The next two subsections will show two examples of constructing subcategories
based on the category of sets, one way is having fewer ”objects”, and the other way
is having fewer morphisms.

2.2 Category of Finite Sets (FinSet)

1. Objects of FinSet0 are all finite sets1.

2. Morphisms are all functions between the sets, so the same as with Set: FinSet1(A,B) =
{f |f : A → B}.

3. All proceeding parts are the same as Set0 since the morphisms are all functions
between finite small sets, the proofs will be the same.

2.3 Category of Sets with only Injective Functions (Inj)

1. Objects of Inj0 are all small sets.

2. Morphisms are the injective functions: Inj1(A,B) = {f : A → B|∀x, y, f(x) =
f(y) ⇒ x = y}

3. Since the composition of injective functions is also an injective, the proceeding
parts are also the same as Set0

1note that all finite sets are small
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2.4 Category of Relations (Rel)

1. Objects of Rel0 are all small sets.

2. Morphisms: Rel1(A,B) = {R|R ⊆ A×B}

3. The identity morphism is defined as idA = {(a, a)|a ∈ A}

4. Let r ∈ Rel1(B,C), s ∈ Rel1(A,B), the composition is defined as:
(r ◦ s) = {(a, c) ∈ A× C|∃b ∈ B, s.t.(a, b) ∈ s ∧ (b, c) ∈ r}

5. • Composition respects identity morphism:
Let r ∈ Rel1(A,B), we have

r ◦ idA = {(a, b) ∈ A×B|∃a′ ∈ A.(a, a′) ∈ idA ∧ (a′, b) ∈ r}
= {(a, b) ∈ A×B|(a, b) ∈ r}
= r

• Composition is associative as well due to some basic properties of existen-
tial quantifiers and conjunction:

r ◦ (s ◦ t) = {(a, d) ∈ A×D|∃c ∈ C.(∃b ∈ B.(a, b) ∈ s ∧ (b, c) ∈ t) ∧ (c, d) ∈ r}
= {(a, d) ∈ A×D|∃b ∈ B.(a, b) ∈ s ∧ (∃c ∈ C.(b, c) ∈ t ∧ (c, d) ∈ r)}
= (r ◦ s) ◦ t

We have been discussing the objects on mathematical objects, now we will switch
to syntactic objects, which will come up when we try to formalize the soundness and
completeness theorem, as well as the initiality theorems.

2.5 Syntactic STT (STTerm)

1. STTerm0 = STT types.

2. STTerm1(A,B) = {M |x : A ⊢ M : B}

3. idA := x : A ⊢ x : A

4. Let M be specified as part 2, and N ∈ STTerm1(B,C), M ◦N := M [N/x]

5. • Composition respects identity morphism:

M ◦ id = M [x/x] = M
hw2
= x[M/x] = id ◦M

• Composition is associative:

(M ◦N) ◦ P = (M [N/x])[P/x]
hw2
= M [N [P/x]/x] = M ◦ (N ◦ P )
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2.6 Simple Type Theory Lambda (STTλ)

1. STTλ0 = STT types.

2. STTλ1(A,B) := {M |· ⊢ M : A ⇒ B}

3. idA = λx.x

4. Let M : B ⇒ C and N : A ⇒ B, M ◦N := λx.M(Nx) : A ⇒ C.

5. • Composition respects identity:

M ◦ id = λx.M((λy.y)x)

β
= λx.Mx

β
= λx(λy.y)(Mx)

= id ◦M

• Composition is associative:

M ◦ (N ◦ P ) = λx.M((N ◦ P )x)

= λx.M((λx.N(Py))x) (β)

= λx.M(N(Px)) (β)

= λx.(λz.M(Nz))(Px)

= λx.(M ◦N)(Px)

= (M ◦N) ◦ P

2.7 Simple Type Theory Context (STTCtx)

1. STTCtx0 = Γ ctx, which means the objects are not types but contexts.

2. STTCtx1(∆,Γ) :=
∏

x:A∈Γ∆ ⊢ · : A.

3. Identity and Composition as well as the related properties are left as exercises
in HW3.

2.8 Category of Posets (Poset)

1. Poset0 = small partial ordered sets.

2. Poset1(P,Q) := monotonefunctionsf : P → Q.

3. Identity is monotone and composition of monotone functions is monotone.
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2.9 Category of Graphs (Graph)

1. Graph0 = Small directed multigraphs (with loops).

2. Graph1(G,H) := (Fv : Gv → Hv)×(Fe : Ge → He) such that the edge functions
preserve the sources and targets of the edges.

2.10 Category of Heyting Algebras (HeytAlg)

1. HeytAlg0 = Heyting Algebras.

2. HeytAlg1(H1, H2) := f : H1 → H2 such that f is monotone and preserves all
the Heyting algebra structures. (e.g. f(x ∧ y) = f(x) ∧ f(y))

2.11 Category of Matrices (Matrices)

1. Matrices0 := N.

2. Matrices1(m,n) := m× n matrix.

3. idn = In

4. M ◦N = MN (Matrix multiplication, properties follows from the restriction on
multiplications).

2.12 Category of Vector Spaces (V ect)

1. V ect0 := Vector Spaces

2. V ect1(V,M) := linear transformations.

3. All proceeding parts follows from basic rules of Linear Algebra.

2.13 Category of Monoids (Monoid)

A monoid is a set X paired with an identity element e and a function m, details will
be shown below:

1. Monoid0 := X × (e : X)× (m : X2 → X), m and e satisfies

• (Identity) m(e, x) = x = m(x, e)

• (Associativity) m(x,m(y, z)) = m(m(x, y), z)

2. Monoid1(X, Y ) := f : |X| → |Y | such that

• fex = ey

• f(mx(x1, x2)) = my(fx1, fx2)
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3 General Families of Categories

In last class we saw that we can upgrade any preorder to category, and category is
just the preorder where we care why X ≤ Y . Therefore in general, we can define
when a category is equivalent to a preorder, and that is called a thin category.

Definition 1. A thin category, C, is the category where ∀a, b ∈ C, |C1(a, b)| ≤ 1.

Note that thin categories are the categories that are equivalent to preorders, and
in those categories we mostly care about the objects, and neglect the arrows. In the
opposite extreme, we have categories where we barely care about the object:
Consider a category C, where

• C0 = ∗.

• id∗ ∈ C1(∗, ∗).

• For f, g ∈ C1(∗, ∗), we have f ◦ g ∈ C∞(∗, ∗)

• Notice that in C the only object is * and the only morphism is id∗, thus all the
related properties are trivial.

Note that the category above is exactly the data of a monoid: the morphisms of
the one-object category are the elements and the identity and composition are the
identity element and multiplication of a monoid. The category axioms specialize to
precisely the monoid axioms in this case.

From the two extreme cases above, we will notice that preorders and monoids can
both be seen as special types of categories.

4 Basic Notions Inside Categories

We will be looking at the structures that we are familiar from math (usually sets
of functions), and see if we can generalize those operations to categories and if they
always behave the same way (The answer is usually no). We will first take a look at
isomorphism:
In set theory, we know that two sets A and B are isomorphic if there is a bijective
function f : A → B. Note that bijective function is defined in two ways

• f : A → B is both injective and surjective

• f has an inverse f−1 : B → A such that ∀x ∈ A, y ∈ B, f−1(f(x)) = x and
f(f−1(y)) = y

We will try to generalize the notion of bijective function categories:

• Fix arbitrary category C.

• Let f : A → B
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• We will look at both definitions and try to generalize.

1. For the second definition, we cannot use parenthesis on the arrows of an
arbitrary categories, but we can utilize the notion of composition and iden-
tity: ∃f−1 : B → A such that f−1 ◦ f = idA and f ◦ f−1 = idB.

2. For the first definition, we need to formally define injectivity and surjec-
tivity in an arbitrary category. Consider injectivity, the definition on set
theory is ∀x, y ∈ A, f(x) = f(y) ⇒ x = y. However, in an arbitrary cat-
egory we do not even know that if the object of C is a structure that can
contain elements (for example, types or *). Therefore, we need to general-
ize the notion of ”having an element” for an object in a category. Notice
we can view a set A having an element x as having a morphism from the
one element set 1 to A: 1

x→ A. For the general category, we can phrase
the morphism as ∀C,C → A. Therefore we can rephrase the notion of
injectivity as

∀C, ∀x, y ∈ C1(C,A), f ◦ x = f ◦ y ⇒ x = y (1)

We call this motion a monomorphism (or monic)

What about surjectivity? Here we have to be careful because there are multiple
equivalent ways of defining a surjective function that are not equivalent when
we generalize. Here are two of them:

– A morphism f : A → B is an epimorphism if ∀k1, k2 ∈ Ca(B,C) if k1 ◦ f =
k2 ◦ f then k1 = k2.

– A morphism f : A → B is a retraction or a split epimorphism if for
every generalized element b : X → B, there exists a generalized element
a : X → A such that f ◦ a = b.

Note that by picking b to be idB : B → B, this gives us a morphism
s : B → A satisfying f ◦ s = idB, so this is precisely saying that f has a
“pre-inverse” (though not necessarily a post-inverse).

The latter definition in terms of generalized elements is clearly a generalization
of the familiar definition of a surjective function. The former is less familiar,
but it is easy to see that every split epimorphism is an epimorphism (exercise).
In the category of sets in ZFC, every epimorphism is a split epi. In fact, the
statement that every epimorphism in the category of sets is a retraction is
precisely the axiom of choice.

Then can we reproduce the classical theorem that every injective and surjective
function has an inverse?

– If we replace injective by monomorphism and surjective by split epimor-
phism then it is true (exercise).
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– But if we replace surjective by only epimorphism, then it fails in the cat-
egory of monoids: the monoid homomorphism that is the inclusion of the
additive monoid of natural numbers into the additive monoid of integers
is mono and epi (exercise), but clearly not an isomorphism.
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