
Lecture 5: Signatures for STT, Set-theoretic
Semantics

Lecturer: Max S. New
Scribe: Chris Jiang

Jan. 25, 2023

1 More Simple Type Theory

In STT, we have the following admissible rule, similar to the principal of substitution
from IPL:

Γ ⊢ M : A Γ, x : A ⊢ N : B
subst

Γ ⊢ N [M/x] : B

Since STT is an equational theory, we also want the corresponding congruence rule
for substitution, which says that substitution preserves equality:

Γ ⊢ M = M ′ : A Γ, x : A ⊢ N = N ′ : B
subst cong

Γ ⊢ N [M/x] = N ′[M ′/x] : B

If we put more effort into developing this theory, we could ensure that this con-
gruence rule is admissible, but for the purposes of this class, we will treat this rule as
a primitive rule.

This rule is useful in combination with the η rules for the 0 and + types. For
example, consider the 0η rule:

x : 0 ∈ Γ Γ ⊢ M : C
0η

Γ ⊢ M = case x{} : C

This rule intuitively says that if there is a variable of type 0 in our context, then
intuitively, our context is inconsistent, so any term M is just an empty case split, and
so all terms are equal. However, it turns out that we don’t actually need a variable
of type 0 in our context to conclude this. Rather, it is sufficient to show that it is
possible to derive a term of type 0 from our context. To be precise, we have the
following rule:

Γ ⊢ N : 0 Γ ⊢ M : C

Γ ⊢ M = case N{} : C

To prove the above rule, we can use substitution congruence:

1

Problem 2 2

Γ ⊢ N : 0 Γ ⊢ N : 0
refl

Γ ⊢ N = N : 0

Var
x : 0 ∈ Γ, x : 0 Γ ⊢ M : C

0η
Γ, x : 0 ⊢ M = case x{} : C

subst cong
Γ ⊢ M = case N{} : C

On the final line of the above proof, we are using the facts M = M [N/x] and
case N{} = case x{}[N/x], where x is a variable not contained in M .

2 Signatures for STT

Recall that for IPL, we had two layers: propositions and proofs such as Γ ⊢ A. We
then extended our propositions using a set of propositional variables which we called
Σ0. We also added a set Σ1 of axioms of the form Γ ⇒ A to our proof system. Note
that such axioms are generated by our propositional symbols. Combined, we call
Σ = (Σ0,Σ1) a signature for IPL.

We will do something similar for STT. At the first layer, IPL had propositions,
extended by propositional variables. Similarly, at the first layer, STT has types, which
we will extend by adding base types. At the second later, IPL had proofs, extended
by axioms. Similarly, at the second later, STT has terms (such as Γ ⊢ M : A), which
we will extend by adding function symbols. Finally, STT has a third layer consisting
of equality judgements (such as Γ ⊢ M = N : A), which we will extend by adding
equational axioms.

2.1 Base Types

Currently, we can only create types in STT using the basic connectives we have
defined (0, 1,+,×,⇒). However, typical programming languages also have built-in
types such as Integers, Natural Numbers, Strings, Arrays, Lists, Reals, Floats, etc.
Therefore, we will parameterize STT with a set Σ0 of base types. For example, we
could let Σ0 = {N,R}

We also add following rule so that these base types are indeed considered types
in our system:

X ∈ Σ0

Xtype

2.2 Function Symbols

Currently, our base types are just labels, and we can’t do anything interesting with
them. For example, we might let N be a base type representing the natural numbers,
but nothing in our system indicates that N behaves like the natural numbers. To give
our base types more structure, we add function symbols to our system. We define Σ1

to be a set of function symbols of the form:

f : A0, A1, A2, ... → A′

EECS 598: Category Theory PS 1

Problem 2 3

where A0, A1, ... and A′ are types. We call the pair of the list A0, A1, A2, ... and the
output type A′ the arity of f .

Here are some examples of function symbols:

zero : · → N

one : · → N

add : N,N → N

i : N → R

sin : R → R

To embed these function symbols into STT, we add a new rule for function symbol
application so that our terms can include function symbols:

f : A0, ... → A′ M0 : A0 ...

f(M0, ...) : A
′

So then we can write terms that involve these things such as

x : N ⊢ add(x, x) : N

or
· ⊢ λx : N.add(x, one()) : N ⇒ N

A function symbol with no inputs such as zero or one above is sometimes called a
constant, and the parentheses are often elided when using these as terms but we will
stick to the very pedantic notation one().

2.3 Equational Axioms

Now that we have function symbols such as zero, one, and add, our base type N
now looks more like the natural numbers we are familiar with. However, we are still
missing equational logic. For example, zero and one both have the exact same arity,
and our system doesn’t include any logic to tell us that one of these symbols acts like
the number 0 and the other acts like the number 1. For example, our intuition says
that we would like some equalities to hold. For example:

Γ, x : N ⊢ add(zero(), x) = x : N

Γ, x : N, y : N, z : N ⊢ add(add(x, y), z) = add(x, add(y, z)) : N

Γ, x : N, y : N ⊢ add(x, y) = add(y, x) : N

Note that these previous three axioms are the commutative monoid axioms, and
we can use a system with these axioms to prove results about commutative monoids.

Formally, we define a set of axioms Σ2 to be a set of 4-tuples (Γ, A,M,N), where
Γ is a context, A is a type, and M and N are terms such that Γ ⊢ M : A, Γ ⊢ N : A.
To add these axioms to our system, we add the following rule:

EECS 598: Category Theory PS 1

Problem 3 4

(Γ, A,M,N) ∈ Σ2

Γ ⊢ M = N : A

We then define Σ = (Σ0,Σ1,Σ2) to be a signature, and we let STT(Σ) be STT
parameterized by Σ. Note that each of these layers builds on top of one another:
Σ2 is built from terms, which include function symbols, and Σ1 is build from types,
which include base types.

3 Consistency

3.1 Consistency as a Logic

Now that we have built the theory of STT, we would like to know about its consistency.
For simplicity, we will just consider STT(∅) with the empty signature. In IPL, we
said that the system is consistent if we cannot prove · ⊢ ⊥. Similarly, we can define a
notion of consistency where STT is consistent as a logic if we cannot prove · ⊢ M : 0.
To prove this, we note that the terms of STT look like proofs in IPL, and the rules of
STT are generalizations of rules in IPL, so we will use the fact that IPL is consistent
to prove consistency of STT. We define a map from STT to IPL as follows:

J·K : STTtype → IPLprop

J0K = ⊥
J1K = ⊤

JA+BK = JAK ∨ JBK
JA×BK = JAK ∧ JBK

JA ⇒ BK = JAK ⊃ JBK
J{x : A, y : B, ...}K = {JAK, JBK, ...}

JΓ ⊢ M : AK = JΓK ⊢ JAK

Then it can be proven that if Γ ⊢ M : A in STT, then JΓK ⊢ JAK in IPL. Then
since · ⊢ M : 0 maps to · ⊢ ⊥, we conclude that since · ⊢ ⊥ cannot be proven in IPL,
we have that · ⊢ M : 0 cannot be proven in STT.

3.2 Set-theoretic semantics

Note that this previous notion of consistency ignores the equational theory of STT.
Therefore, we want another notion of consistency: we say that STT is consistent
provided that it is not the case that Γ ⊢ M = N : A for all Γ ⊢ M : A and
Γ ⊢ N : A. As discussed in a previous lecture, it is enough to show that we cannot
prove · ⊢ i1() = i2() : 1 + 1 in STT.

To prove this, we will employ technique similar to the proof of consistency of IPL.
To prove consistency of IPL, we mapped IPL to the Boolean model. Similarly, to

EECS 598: Category Theory PS 1

Problem 3 5

prove consistency of STT, we will map STT to set theory using a denotation that
maps contexts and types to sets, terms to functions between sets, and equality to
set-theoretic equality:

A type

JAK set

{x : Ax, ...} ctx

J{x : Ax, ...}K =
∏
x:∈Γ

JAxK

Γ ⊢ M : A

JMK : JΓK → JAK

Γ ⊢ M = N : A

JMK = JNK

Note that the equality JMK = JNK is equivalent to JMKγ = JNKγ for all γ ∈ JΓK as
this is the usual set-theoretic equality of functions.

Using this denotation, we will prove that J1 + 1K = a, b for some a ̸= b, and
Ji1()K = a, and Ji2()K = b. So we have by contraposition that it is not the case that
· ⊢ i1() = i2() : 1 + 1 because a ̸= b.

Note that to extend this denotation to a signature Σ, we must include an inter-
pretation σ mapping Σ to sets, where base types X are mapped to sets and function

symbols f : A0, ... → A′ are mapped to functions σ(f) :
∏
i

JAiK → JA′K. For example:

σ(N) = {0, 1, 2, ...}
σ(zero) = () 7→ 0

σ(add) = (x, y) 7→ x+ y

We must then verify that our equational axioms are preserved under σ. However,
for simplicity we will use an empty signature for our proof of consistency. We map
our types as follows:

J0K = ∅
J1K = {∗} for some arbitrary element ∗

JA×BK = JAK × JBK
JA+BK = JAK ⊎ JBK

JA ⇒ BK = {f : JAK → JBK}

Note that the mapping J0K = ∅ gives rise to another proof that we cannot prove
· ⊢ M : 0 in STT, since J· ⊢ M : 0K = JMK :

∏
x:∈∅ · → ∅ = JMK : {∗} → ∅, and so

· ⊢ M : 0 maps to a function from a 1 point set to the empty set, which cannot exist.
Furthermore, note that in this denotation we make many arbitrary choices: we map

EECS 598: Category Theory PS 1

Problem 3 6

1 to {∗} where ∗ is arbitrary. We map A+B to the disjoint union JAK ⊎ JBK, which
is arbitrarily defined in set theory to be the set {(0, x)|x ∈ JAK} ∪ {(1, y)|y ∈ JBK}.
And we map A × B to the Cartesian product JAK × JBK, which is a set of pairs
(a, b), where the ordered pair (a, b) is arbitrarily defined in set theory to be the set
{a, {a, b}}. In fact, there are many ways in which we can interpret STT into set
theory, which is unlike how there was only one way to interpret IPL into the Boolean
algebra. Therefore, we do not have the same uniqueness result for interpreting STT
into set theory as we do for interpreting IPL into Heyting algebras1.

If we had interpreted the sum A+B as the union JAK∪ JBK, then we wouldn’t be
able to prove our desired theorem that Ji1()K ̸= Ji2()K, as J1 + 1K = {∗} ∪ {∗} = {∗}
and so both denotations would be ∗.

Now, we must prove that all of our rules hold. First, we examine 1I:

1I
Γ ⊢ () : 1

We have:
JΓ ⊢ () : 1K = J()K : JΓK → J1K = J()K : JΓK → {∗}

So we have that the only choice for denotation of () is the unique map from JΓK to
{∗} that sends everything to the point ∗. Then with this denotation, we prove that
1η holds:

Γ ⊢ M : 1
1η

Γ ⊢ M = () : 1

We have:
JΓ ⊢ M : 1K = JMK : JΓK → J1K = JMK : JΓK → {∗}

So similar to before, we have that JMK must be the map sending everything to ∗. So
for all γ ∈ JΓK, we have that JMKγ = ∗ = J()Kγ, and so JMK = J()K. Then since the
denotation of Γ ⊢ M = () : 1 is JMK = J()K, we have that this denotation preserves
1η.

Next, we will prove that the rules for + types hold. First, we examine +I to
determine what our denotation for a term of type A+B should be:

Γ ⊢ M : A1
+I1

Γ ⊢ i1M : A1 + A2

Γ ⊢ M : A2
+I2

Γ ⊢ i2M : A1 + A2

We see that
JΓ ⊢ i1M : A1 + A2K = Ji1MK : JΓK → JA1K ⊎ JA2K

So Ji1MK must map into JA1K ⊎ JA2K. To construct such a map, we will make use of
our hypothesis Γ ⊢ M : A1. We see that

JΓ ⊢ M : A1K = JMK : JΓK → JA1K

So JMK maps into JA1K. Therefore, we can compose this map with the inclusion
JA1K ↪→ JA1K ⊎ JA2K to obtain the map Ji1MK = (γ 7→ (0, JMKγ)) for our denotation
for Ji1MK. Similarly, we let Ji2MK = (γ 7→ (1, JMKγ)) be our denotation for Ji2MK.

1But we will see there is a weakened version of this uniqueness principle.

EECS 598: Category Theory PS 1

Problem 3 7

Using these denotations, we will examine +E to construct a denotation for case
splits:

Γ ⊢ M : A1 + A2 Γ, x1 : A1 ⊢ N1 : C Γ, x2 : A2 ⊢ N2 : C
+E

Γ ⊢ case M{i1x1 → N1|i2x2 → N2} : C

We have:

JΓ ⊢ caseM{i1x1 → N1|i2x2 → N2} : CK = JcaseM{i1x1 → N1|i2x2 → N2}K : JΓK → JCK

So we want to use our hypotheses to construct a map from JΓK to JCK. Taking the
denotations of our hypotheses:

JΓ ⊢ M : A1 + A2K = JMK : JΓK → JA1K ⊎ JA2K
JΓ, x1 : A1 ⊢ N1 : CK = JN1K : JΓK × JA1K → JCK
JΓ, x2 : A2 ⊢ N2 : CK = JN2K : JΓK × JA2K → JCK

Looking at the domains and codomains of these three functions, we intuitively
see that evaluating JN1K and JN2K at some γ ∈ Γ (using currying) gives us functions
JA1K → JCK and JA2K → JCK, which combine to a map JA1K ⊎ JA2K → JCK. We can
then compose such map with JMK to get a map from JΓK to JCK. Concretely, we
define Jcase M{i1x1 → N1|i2x2 → N2}K as the following map:

γ 7→

{
JN1K(γ, π2(JMKγ)) if π1(JMKγ) = 0

JN2K(γ, π2(JMKγ)) if π1(JMKγ) = 1

where π1 and π2 are the coordinate projection maps.
Now that we have defined the denotations corresponding to the introduction and

elimination rules for terms of + types, we must show that they are compatible with
the β and η rules. First, we examine +β1:

+β1
Γ ⊢ case i1M{i1x1 → N1|i2x2 → N2} = N1[M/x1]

So we have to prove:

JΓ ⊢ case i1M{i1x1 → N1|i2x2 → N2}K = JN1[M/x1]K

We first evaluate JΓ ⊢ case i1M{i1x1 → N1|i2x2 → N2}K at some arbitrary γ ∈ Γ:

JΓ ⊢ case i1M{i1x1 → N1|i2x2 → N2}Kγ

=

{
JN1K(γ, π2(Ji1MKγ)) if π1(Ji1MKγ) = 0

JN2K(γ, π2(Ji1MKγ)) if π1(Ji1MKγ) = 1

=JN1K(γ, π2(Ji1MKγ)) (∵ π1(Ji1MKγ) = π1(0, JMKγ) = 0)

=JN1K(γ, JMKγ)) (∵ π2(Ji1MKγ) = π2(0, JMKγ) = JMKγ)

EECS 598: Category Theory PS 1

Problem 3 8

So to prove that

JΓ ⊢ case i1M{i1x1 → N1|i2x2 → N2}Kγ = JN1[M/x1]Kγ

we must prove that
JN1K(γ, JMKγ)) = JN1[M/x1]Kγ

So this will have to be an additional fact that we prove about our semantics function.
We will continue this proof with the next lecture.

EECS 598: Category Theory PS 1

