
Lecture 1: Course Overview and Propositional Logic

Lecturer: Max S. New
Scribe: Max S. New

January 4, 2023

See the course homepage for the syllabus. Sign up for scribing and problem set
solution presentations this week.

1 What is this course About?

This is a course on category theory and its application to computer science, specifically
applications to formal logics and programming languages. We will get into category
theory proper after a few lectures but at a very high level, category theory is a branch
of mathematics that studies the algebra of structures and transformations. At a very
high level, category theory studies the contexts in which it makes sense to draw the
following diagram1:

A B

C

f

g◦f g

Here A,B,C are what we call objects and f, g and g◦f are what we call morphisms
between objects. These simple kind of diagrams are ubiquitous in mathematics:

1. In one context the objects A,B,C might represent sets and f, g are functions
with g ◦ f their composition.

2. In a programming language context, A,B,C are typically datatypes of a pro-
gramming language and f, g are expressions in the language and g ◦ f is a
syntactic substitution.

3. In a logical context, A,B,C can stand for propositions and f, g are proofs of
an implication, with g ◦ f a proof by transitivity.

4. In an algebraic context, A,B,C might represent groups and f, g homomor-
phisms.

1see the LaTeX source for advice on how to make a diagram like this

1



Problem 2 2

5. In topology, A,B,C might be topological spaces or manifolds and f, g continu-
ous functions.

Among the many examples of categories, the ones we study in logic and program-
ming languages turn out to have a special property: they are in a sense minimalistic
structures. In category-theoretic terminology, logics and programming languages are
initial or free structures. This means that we can use them as a syntax for repre-
senting mathematical structures and transformations. The benefits of this situation
go both ways: we can use syntactic methods to help us do our mathematics, but also
it means that we can use mathematical models to help us define programming lan-
guages and logics that precisely capture an intended semantics. In particular, we will
see throughout the course that the category-theoretic notion of a universal property
corresponds to certain well-behaved type constructors in programming languages and
connectives in logic.

Category theory is a kind of algebra and so is inherently quite abstract. But ab-
straction is nothing to fear to a computer scientist: all of our programming languages
are abstract systems of symbols that are interpreted in various ways. To empha-
size this connection, the topics of this course are structured in pairs: we will study
mathematical notions from category theory but paired with the logic or programming
language that is their syntactic form. To start we will study the more familiar syntax
first and then the semantic models, but eventually we will work as practioners do and
allow each method to inform the other. Historically some of these systems were de-
veloped syntactically and then a semantics was designed, some the semantics inspired
a new syntax and for some the syntax and semantics were developed independently
and the relationship established later.

Here is a tentative overview of the systems we will study this semester.

Syntax Semantics

Intuitionistic Propositional Logic Heyting Algebras
Simply Typed Lambda Calculus Bi-cartesian Closed Categories

Monadic Metalangauge Strong Monads
Call-by-push-value Strong Adjunctions

Linear Lambda Calculus Monoidal Categories
Dependent Type Theory Toposes

2 Intuitionistic Propositional Logic

Logic is the study of inference, i.e., how to derive new facts from those previously
established. We will study a fairly simple system of logic called intuitionistic propo-
sitional logic (IPL) using a presentation called natural deduction2.

The basic notions of propositional logic are propositions, judgments and proofs.
First, propositions are the subjects of inference: we can think of them as questions

2alternative presentations of logic include Hilbert systems and Sequent Calculus

EECS 598: Category Theory PS 1



Problem 2 3

whose truth we are reasoning about. We will write propositions as A,B,C. A judg-
ment is a statement that our logic is concerned with reasoning about. In IPL there
is a single judgment called the hypothetical judgment which is of the form

A1 true, . . . ⊢ A true

which we read as “if all of A1,. . . are true then A is true”. The symbol ⊢ is called
a “turnstile”. In other logics we might have different judgments such as A false or
A true tomorrow but for IPL we only have one, and so we will usually abbreviate this
as A1, . . . ⊢ A. Further to avoid too many “. . . ” we will abbreviate a finite sequence
of 0 or more propositions as Γ or ∆ and call it a “context”. So our judgment above
will be abbreviated as Γ ⊢ A.

We describe what proofs are valid in the system by giving rules of the form3.

Γ1 ⊢ A1 . . .

∆ ⊢ B

That is if we can establish proofs of all of the judgments above the line then we can
construct a proof of the judgment below. We can view this rule as a node of a proof
tree with the bottom judgment being the root.

The most basic rules of IPL are true for any proposition: the assumption rule and
the substitution principle. The assumption rule simply states that if we know A to
be true then A is true. For a first attempt we might write this as

A ⊢ A

That is we have a complete proof that if A is true then A is true. However, this rule
as written is actually restrictive: it says we can conclude A is true only if the only
thing we know is that A is true. Instead we will use the following rule:

Γ, A,∆ ⊢ A
Assumption

This version says we can use the fact that A is true regardless of however many other
facts there are to the right or left. We will consider contexts as ordered lists. Note
here that Γ, A,∆ are what are called schematic variables : the rule can be applied for
any choice of concrete contexts Γ,∆ and proposition A.

The substitution principle gives us a form of transitive reasoning: if we can prove
A and from A we can prove B then we can prove B. As a rule we write this as

Γ ⊢ A Γ, A ⊢ B

Γ ⊢ B
subst

The propositions in IPL are built up from propositional variables and logical con-
nectives. The propositional variables are chosen based on what the logic used for.
Here are some examples:

3see the LaTeX source for how these rules are typeset.

EECS 598: Category Theory PS 1



Problem 2 4

1. “Socrates is a man”

2. “category theory is fun”

3. “variable x has value 5”

4. “x is greater than 5”

5. “x is greater than 6”

From the perspective of logic, these are just uninterpreted symbols and so we
write them as X, Y, Z. They do not have a predetermined meaning and by default
don’t have any rules specific to them. We can add rules codifying domain-specific
knowledge as axioms to the system. We write axioms as A1, . . . ⇒ A. Some examples:

1. · ⇒ “cateogry theory is fun”

2. “x is greater than 6” ⇒ “x is greater than 5”

3. “Socrates is a man” ⇒ “Socrates is mortal”

By picking propositional variables and axioms from our chosen domain we can use
propositional logic to make correct inferences about our domain of interest. For each
axiom of the system we add a corresponding rule:

Γ ⊢ A1 . . .

Γ ⊢ A
Ax(A1 . . . ⇒ A)

We will usually work with an implicit, fixed set of propositional variables and axioms.
If we want to be explicit, we group them together as a signature Σ = (Σ0,Σ1) where Σ0

is a list of names of propositional symbols and Σ1 is a list of axioms using propositions
generated by those symbols.

Besides the propositional variables, all other propositions are built up using the
logical connectives ⊤,∧,⊥,∨,⊃. We’ll introduce each of these with their correspond-
ing rules. Each connective comes with 0 or more introduction rules which tell us how
to proof the proposition and 0 or more elimination rules that tell us how we can use
the proposition to prove other things.

First, we have ⊤, pronounced “truth” which is the trivially true proposition. Its
introduction form says that we can prove it under any assumptions, trivially.

Γ ⊢ ⊤
⊤I

Since we take nothing to prove ⊤, there is no elimination form as no information can
be gained from its proof.

Next, we have A∧B, pronounced “A and B” also known as (binary) conjunction.
Its introduction form says that to prove A ∧ B we must prove A and B are true
separately:

Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧B
∧I

EECS 598: Category Theory PS 1



Problem 2 5

What should the elimination form be? Well to prove it we proved both A and B so
if we know it is true we should be able to extract that A and B are true. That is, we
will have two elimination forms, which give us each side:

Γ ⊢ A ∧B

Γ ⊢ A
∧E1

Γ ⊢ A ∧B

Γ ⊢ B
∧E2

Note that ⊤ is a kind of nullary (0-ary) form of the conjunction.
Next, the dual to conjunction are the nullary and binary disjunction. The nullary

disjunction ⊥, pronounced “false” is a trivially false proposition. Since the judgment
of IPL is in terms of truth rather than falsity we can’t state this as directly as truth.
Rather we define it by the fact that if falsity holds then we have derived a contradiction
and therefore anything is provable. This is the principle of explosion or in Latin, ex
falso quodlibet :

Γ ⊢ ⊥
Γ ⊢ A

⊥E

Dually to trivial truth, there is no introduction form for false.
Then the dual to binary conjunction is binary disjunction A ∨B, pronounced “A

or B”. This has two introduction forms, which allow us to prove A ∨ B from A or
from B:

Γ ⊢ A

Γ ⊢ A ∨B
∨I1

Γ ⊢ B

Γ ⊢ A ∨B
∨I2

The elimination rule says that if A∨B is true and we can prove some third proposition
C both from assuming A to be true and from assuming B to be true, then we can
conclude that C is true:

Γ ⊢ A ∨B Γ, A ⊢ C Γ, B ⊢ C

Γ ⊢ C
∨E

The final connective is implication, which gives us a way of talking about hypo-
thetical/conditional reasoning within the language of propositions. Written A ⊃ B
and pronounced “A implies B”, the introduction form says that to prove A implies
B it is sufficient to prove B under the additional assumption that A is true:

Γ, A ⊢ B

Γ ⊢ A ⊃ B
⊃I

Then the elimination form says that if we have established A ⊃ B and A is true, then
B is true, which is sometimes called in Latin modus ponens :

Notice the similarity between the implication elimination rule and the substitution
principle: one is a statement about the “external” notion of hypothetical reasoning
⊢ and the other is about the “internal” notion of implication.

EECS 598: Category Theory PS 1



Problem 2 6

Now that we have defined the rules of IPL we can write proofs within it. Here’s
a proof of · ⊢ P ⊃ (Q ⊃ P ):

P,Q ⊢ P
Assumption

P ⊢ Q ⊃ P
⊃I

· ⊢ P ⊃ (Q ⊃ P )
⊃I

Here’s (most of) a proof that if A ⊃ (B ∧ C) is true then (A ⊃ B) ∧ (A ⊃ C) is
true:

A ⊃ (B ∧ C), A ⊢ A ⊃ (B ∧ C) A ⊃ (B ∧ C), A ⊢ A

A ⊃ (B ∧ C), A ⊢ B ∧ C
⊃E

A ⊃ (B ∧ C), A ⊢ B
∧E1

A ⊃ (B ∧ C) ⊢ A ⊃ B
⊃I

...

A ⊃ (B ∧ C) ⊢ A ⊃ C

A ⊃ (B ∧ C) ⊢ (A ⊃ B) ∧ (A ⊃ C)
∧I

where the (
...) stands in for a similar proof derivation to the left side. This is quite an

explicit notation but it emphasizes in a visual way the tree structure of our formal
proofs.

2.1 Admissible and Derivable Rules

The rules we have considered so far are called the primitive rules of IPL. But when
we are doing proofs, it can be useful to consider additional rules that don’t change
which judgments are provable. Such a rule is called an admissible rule of the system.
Among the admissible rules are the derivable rules, those that can be shown to be
admissible by a uniform finite sequence of primitive rules.

For instance, we can show that the proposition A1 ∧ (A2 ∧ A3) satisfies the rules
of a “trinary” conjunction, i.e., for each of i = 1, 2, 3 we can show the rule

Γ ⊢ A1 ∧ (A2 ∧ A3)

Γ ⊢ Ai

is admissible by simply composing two elimination forms. These derivable rules are
stable under extension: no matter what additional rules are added, a derivable rule
will remain admissible.

On the other hand, some admissible rules are not derivable, and so might not
remain admissible in the presence of other rules. These rules are only admissible
because many of the rules work in concert to ensure admissibility. The most well
known of these are the structural rules :

EECS 598: Category Theory PS 1



Problem 2 7

1. The exchange rule states that the order of propositions doesn’t matter:

Γ, A,B,∆ ⊢ C

Γ, B,A,∆ ⊢ C
Exchange

2. The weakening rules states that adding assumptions only makes proving a
proposition easier :

Γ ⊢ C

Γ, A ⊢ C
Weakening

That is if we can prove something without an assumption we can also prove it
with an additional assumption.

3. The contraction rule states that adding an assumption you already have doesn’t
affect provability:

Γ, A,A ⊢ B

Γ, A ⊢ B
Contraction

These are not derivable rules. Instead, we can prove these are admissible by
showing that by inspecting a proof of the premise (above the line) we can constrcut
a proof of the conclusion (below).

Lemma 1. In IPL the exchange rule is admissible.

Proof. Given a proof of Γ, A,B,∆ ⊢ C we seek to construct a proof of Γ, B,A,∆ ⊢ C.
We proceed by induction on the structure of the proof. We show two cases, the
remainder are left as an exercise.

• If Γ, A,B,∆ ⊢ C is proven by an assumption, then C is either in Γ,∆ or equal
to A or B. In any case, Γ, B,A,∆ ⊢ C is also provable by assumption.

• If Γ, A,B,∆ ⊢ C is proven by the substitution principle, then we have sub-
proofs Γ, A,B,∆ ⊢ C ′ and Γ, A,B,∆, C ′ ⊢ C. Then we can inductively apply
the exchange proof to the two sub-proofs and apply the substitution principle
to the resulting proofs.

Additionally, in IPL, the substitution principle can also be an admissible taken as
an admissible rule:

Theorem 1. In IPL without the substitution principle as a primitive rule, the sub-
stitution principle is admissible.

Proof. Exercise. Hint: you may need a stronger inductive hypothesis.

EECS 598: Category Theory PS 1



Problem 2 8

2.2 Invertible Rules

What is the logic behind the definitions of the connectives? Why did we give them
the particular rules that we did? We explained them in terms of introduction and
elimination rules, but another way to think about them is that each connective is
defined by an invertible rule. That is, for each connective, there is an associated
admissible rule where the provability of the conclusion implies the provability of all
of the premises.

For instance, the introduction rule for conjunction

Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧B
================ ∧I

is invertible: if we know Γ ⊢ A∧B is provable then we can show both of the premises
Γ ⊢ A and Γ ⊢ B are provable. We write an invertible rule with a double line only
to indicate that it is reversible. In fact this is exactly what the two elimination rules
do. We could say that the introduction rule is precisely an “inverse” to the pair of
elimination rules. Similarly, the introduction rule for truth is (trivially) invertible:
You can always prove Γ ⊢ ⊤ just as it is trivial to provide a proof for all of its 0

The dual disjunction connectives instead have invertible rules for eliminating the
connective:

Γ, A ⊢ C Γ, B ⊢ C

Γ, A ∨B ⊢ C
=====================

That is, if we have an assumption of a disjunction, we can prove the judgment if and
only if we can prove it by cases. We can show the inverse is admisible by using the
substitution principle and the disjunction introduction rules. The false proposition is
a dual to the true proposition, with falsehood on the left:

Γ,⊥ ⊢ C
========

For the implication rule, the introduction rule is invertible:

Γ, A ⊢ B

Γ ⊢ A ⊃ B
==========

This principle has applications in automated proof search algorithms: if a rule
is derivable, then it is always safe to use it. So when proving a propositional logic
judgment, it is a sound strategy to apply as many ∧,⊤,⊃ introduction rules and ⊥,∨
elimination rules to assumptions as you can: since these rules are invertible, if the
original judgment is provable you will never get stuck with an unprovable subproof.
On the other hand if you are proving a disjunction A ∨ B, then choosing to use a
particular introduction rule is not invertible, for instance when proving P ∨ (P ⊃ ⊥)
at most one of the two will be provable.

EECS 598: Category Theory PS 1



Problem 2 9

2.3 Intuitionistic vs Classical Logic

If you have prior experience with formal logic, the connectives and rules we have
used are probably different from what you’ve seen before. That is because we are
using intutionistic propositional logic, which is less common than classical logic. One
notable difference is that in classical logic, implication is not typically a primitive
connective, but rather negation is ¬A and implication is defined as A ⊃classical B =
(¬A) ∨B. In intuitionistic logic, we take implication as primitive and instead define
intuitionistic negation as ¬A = A ⊃ ⊥, i.e., A implies false. Classically, this is
equivalent to negation, but in the intuitionistic system, negation does not behave
the same as the classical negation. In particular, the following principle, the law of
excluded middle is not admissible in IPL:

Γ ⊢ A ∨ (¬A)

an equivalent principle is the double negation elimination principle that ensures that
¬¬A is equi-derivable from A4:

Γ ⊢ (¬(¬A)) ⊃ A

The philosophical reason for this is that intuitionistic logic is constructive: a
proof of a proposition should construct explicit evidence of its truth. In particular,
when proving a disjunction, we must actually identify which one is true. From this
perspective the law of excluded middle could be called the “principle of omniscience”:
it tells us no matter what proposition A we have, we can show that it is true or false.

If the law of excluded middle is added as a principle to IPL, then the system is
equivalent to the usual presentations of classical propositional logic.

2.4 Takeaway Questions

When designing a new logical system, say for formal verification of computer pro-
grams, it is of critical importance that we establish that the system is consistent, i.e.,
that we cannot prove falsehood under no assumptions. That is, that the judgment

· ⊢ ⊥

is not provable. If this were true, then we would be able to prove any judgment

· ⊢ ⊥
Γ ⊢ ⊥

Wkn

Γ ⊢ A
⊥E

and so knowing that a judgment is provable in such a logic would provide no infor-
mation.

For next time, think about how you might attempt to prove

4Exercise: the opposite Γ ⊢ A ⊃ (¬(¬A)) is provable in IPL

EECS 598: Category Theory PS 1



Problem 2 10

1. That IPL is consistent, i.e., that · ⊢ ⊥ is not provable.

2. That the law of excluded middle is not generally valid. I.e., for a propositional
variable X that the judgment · ⊢ X ∨ ¬X is not provable.

EECS 598: Category Theory PS 1


