Lecture 25: Recursion

Lecturer: Max S. New
Scribe: Conner Rose

November 24, 2025

1 Recap

We've talked about inductive and co-inductive data types twice already:

e Lawvere’s fixed point theorem tells us the limitations of recursive types. For
a surjection A — B# in a cartesian closed category, if it is a retract (has a
section), then every endomorphism f : B — B has a fixed point. This is part of
how we proved that set-theoretic semantics of lambda calculus is not complete,
which we’ll continue to talk about. This tells us we need to move beyond set
theory in a certain sense.

e Initial algebra/terminal co-algebra semantics of types. We want to keep our
nice set-theoretic semantics. We can have recursive definitions but only “well-
founded” ones, for instance a tree.

2 General Recursion

We need to model two things: recursive programs/functions and recursive types.
Some examples:

e Recursive programs: while loops, arbitrary recursive function definitions
e Recursive types: trees, circular definitions (D = D — D)

We’ll focus on recursive programs today.

2.1 Trace Semantics

A “trace” on a Cartesian category C is effectively an operation that allows us to define
morphisms that are recursive. We’ll denote this operation by {. Formally, we have
(=) :C(A x X, X) — C(A,X). We have a few equations:

1. Naturality in A: If we have g: B —> A, f: A x X — X, then
(folgoX)=flog

1



Section 2 2

2. “Dinaturality” in X: If we have g: AXY — X, f: Ax X — Y, then we want
to get a fixed point where we get out a morphism A — X. We have

(go(m, /) =(go(m,fo(m g)f
3. “Diagonal” property: If we have f: (A x X) x X — X, then

(N = (f o (1, w2, ma))"

2.1.1 Recursive Computations

In call by push value, we can add recursive computation types. The A in this case is
the context I' and the X is ThunkB for some computation B. To define a recursive

closure, we have
['t: ThunkB + V : ThunkB

'+ fixt.V : ThunkB

To define a recursive computation of type B, then we have

['t: ThunkB+ M : B
I'+fixtM: B

We can further simplify by saying,

I't M : ThunkB — B
'FfixM: B

In this syntax, we have the following rules:
1. Substitution: (fixM)[y] = fix(M[v])

2. A kinda-S-rule: If we have ' M : ThunkB — B’ and I' = N : ThunkB’' — B,
then we can unfold a fixed point, i.e.,

fix(A\t = Thunk B.N{Mt}) = N{fix\t' . M{Nt}}
As a special case, we have fixM = M {fixM }.
3. A kind-n-rule: For M = ThunkB — ThunkB — B, we have
fixAt; = ThunkB.fixAty = ThunkB.Mt,ty = fixAt. Mtt

If instead we take the opposite of our Kleisli category, we have
KI(X,A+ X) - KI(X, A)
Consider X and A to be value types. We have

'k M:X — Ret(A+ X)
' = whileM : X — RetA

We have rules

EECS 598: CATEGORY THEORY Scribed Notes



Section 2 3

1. Naturality in I': (whileM)[y] = while(M|[y])
2. Naturality in A: If we have M : X — Ret(A+ X) and N : A — RetA’, then

(a <+ whileM; Na) = (while(Az.s <—; cases{o1a — s’ < Na;ret(o1a), o2x — ret(o22)})

3. Dinaturality: For M : Y — Ret(A+ X) and N : X — Ret(A+Y). We have

while(Az.s <= Nx;cases{o1a — ret(oqa), 00y — My})
= \x.s < Nuz;cases{oia — reta, ooy — while(
A\y.s « My; cases{o1a — ret(o1a), 000" — Nz'})}

This is basically a do-while loop.
Additionally, we can flatten nested loops. With M : X — Ret((A + X) + X), then

while(whileM) = while(Ax.s <— Mx; cases{
oo’ — ret(o91’),
o1(o9z’) — ret(oar’),
o1(o1a) — ret(oqa)

)

2.2 Semantics

We can model while loops using only sets and pointed sets. We have

M : X — Ret(A+ X)
whileM : X — RetA

Then, we have a partial function [M] : X — A+ X. It follows that [whileM] : X —
A. We then say that [whileM]z = a if there exists some n such that loop” (c9x) = 014,
where loop : A+ X — A+ X is defined as loop(cia) = 01a and loop(oqez) = [M]z.

Why we can’t model recursion in this model, as we don’t always have fixed points
for arbitrary functions, e.g., swapping elements of a two-element set.

2.2.1 Domain Theory

A directed-complete partial order (DCPO) is a poset that has all joins of directed
subsets. A subset D C P is directed if for all dy,dy € D, there exists some d3 € D
such that d; < dz and dy < d3. All of our value types will be modeled by DCPOs. Our
function types will be modeled by continuous functions between DCPOs. f: P — Q
is continuous if it preserves joins of directed subsets, i.e., if z < y then f(z) < f(y).

More broadly,
(V)= Vo

zeD zeD

EECS 598: CATEGORY THEORY Scribed Notes



