
Lecture 25: Recursion

Lecturer: Max S. New
Scribe: Conner Rose

November 24, 2025

1 Recap

We’ve talked about inductive and co-inductive data types twice already:

• Lawvere’s fixed point theorem tells us the limitations of recursive types. For
a surjection A → BA in a cartesian closed category, if it is a retract (has a
section), then every endomorphism f : B → B has a fixed point. This is part of
how we proved that set-theoretic semantics of lambda calculus is not complete,
which we’ll continue to talk about. This tells us we need to move beyond set
theory in a certain sense.

• Initial algebra/terminal co-algebra semantics of types. We want to keep our
nice set-theoretic semantics. We can have recursive definitions but only “well-
founded” ones, for instance a tree.

2 General Recursion

We need to model two things: recursive programs/functions and recursive types.
Some examples:

• Recursive programs: while loops, arbitrary recursive function definitions

• Recursive types: trees, circular definitions (D = D → D)

We’ll focus on recursive programs today.

2.1 Trace Semantics

A “trace” on a Cartesian category C is effectively an operation that allows us to define
morphisms that are recursive. We’ll denote this operation by †. Formally, we have
(−)† : C(A×X,X)→ C(A,X). We have a few equations:

1. Naturality in A: If we have g : B → A, f : A×X → X, then

(f ◦ (g ◦X))† = f † ◦ g

1



Section 2 2

2. “Dinaturality” in X: If we have g : A× Y → X, f : A×X → Y , then we want
to get a fixed point where we get out a morphism A→ X. We have

(g ◦ (π1, f))
† = (g ◦ (π1, f ◦ (π1, g)))

†

3. “Diagonal” property: If we have f : (A×X)×X → X, then

(f †)† = (f ◦ (π1, π2, π2))
†

2.1.1 Recursive Computations

In call by push value, we can add recursive computation types. The A in this case is
the context Γ and the X is ThunkB for some computation B. To define a recursive
closure, we have

Γ, t : ThunkB ⊢ V : ThunkB

Γ ⊢ fixt.V : ThunkB

To define a recursive computation of type B, then we have

Γ, t : ThunkB ⊢M : B

Γ ⊢ fixt.M : B

We can further simplify by saying,

Γ ⊢M : ThunkB → B

Γ ⊢ fixM : B

In this syntax, we have the following rules:

1. Substitution: (fixM)[γ] = fix(M [γ])

2. A kinda-β-rule: If we have Γ ⊢M : ThunkB → B′ and Γ ⊢ N : ThunkB′ → B,
then we can unfold a fixed point, i.e.,

fix(λt = ThunkB.N{Mt}) = N{fixλt′.M{Nt}}

As a special case, we have fixM = M{fixM}.

3. A kind-η-rule: For M = ThunkB → ThunkB → B, we have

fixλt1 = ThunkB.fixλt2 = ThunkB.Mt1t2 = fixλt.Mtt

If instead we take the opposite of our Kleisli category, we have

Kl(X,A+X)→ Kl(X,A)

Consider X and A to be value types. We have

Γ ⊢M : X → Ret(A+X)

Γ ⊢ whileM : X → RetA

We have rules

EECS 598: Category Theory Scribed Notes



Section 2 3

1. Naturality in Γ: (whileM)[γ] = while(M [γ])

2. Naturality in A: If we have M : X → Ret(A+X) and N : A→ RetA′, then(
a← whileM ;Na

)
=
(
while(λx.s←; cases{σ1a→ s′ ← Na; ret(σ1a), σ2x→ ret(σ2x)}

)
3. Dinaturality: For M : Y → Ret(A+X) and N : X → Ret(A+ Y ). We have

while(λx.s← Nx; cases{σ1a→ ret(σ1a), σ2y →My})
= λx.s← Nx; cases{σ1a→ reta, σ2y → while(

λy.s←My; cases{σ1a→ ret(σ1a), σ2x
′ → Nx′})}

This is basically a do-while loop.

Additionally, we can flatten nested loops. With M : X → Ret((A+X) +X), then

while(whileM) = while(λx.s←Mx; cases{
σ2x

′ → ret(σ2x
′),

σ1(σ2x
′)→ ret(σ2x

′),

σ1(σ1a)→ ret(σ1a)

})

2.2 Semantics

We can model while loops using only sets and pointed sets. We have

M : X → Ret(A+X)

whileM : X → RetA

Then, we have a partial function [[M ]] : X ⇀ A+X. It follows that [[whileM ]] : X ⇀
A. We then say that [[whileM ]]x = a if there exists some n such that loopn(σ2x) = σ1a,
where loop : A+X ⇀ A+X is defined as loop(σ1a) = σ1a and loop(σ2x) = [[M ]]x.

Why we can’t model recursion in this model, as we don’t always have fixed points
for arbitrary functions, e.g., swapping elements of a two-element set.

2.2.1 Domain Theory

A directed-complete partial order (DCPO) is a poset that has all joins of directed
subsets. A subset D ⊆ P is directed if for all d1, d2 ∈ D, there exists some d3 ∈ D
such that d1 ≤ d3 and d2 ≤ d3. All of our value types will be modeled by DCPOs. Our
function types will be modeled by continuous functions between DCPOs. f : P → Q
is continuous if it preserves joins of directed subsets, i.e., if x ≤ y then f(x) ≤ f(y).
More broadly,

f

(∨
x∈D

x

)
=
∨
x∈D

(f(x))

EECS 598: Category Theory Scribed Notes


