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1 Adjunctions

Definition 1. Let C and D be categories. An adjunction between C and D is:

• A pair of functors: F : C → D (left adjoint) and G : D → C (right adjoint)

• A natural isomorphism for all c ∈ C and d ∈ D:

homD(Fc, d) ∼= homC(c,Gd)

We write this as F ⊣ G.

C D

F

G

⊣

The diagram above represents an adjunction F ⊣ G, where:
• F is the left adjoint functor from C to D

• G is the right adjoint functor from D to C

• The symbol ⊣ indicates the adjunction relationship

We say F is left adjoint to G, or G is right adjoint to F .

This adjunction means there is a natural bijection: D(Fc, d) ∼= C(c,Gd) for all
objects c in C and d in D. I.e., a morphism out of the left adjoint in one category is
equivalent to a morphism going into the right adjoint in the other category.

Definition 2 (Profunctor). Let C,D be categories. A profunctor p : C ↛ D is a
functor p : Dop × C → Set

Profunctors can be considered generalizations of relations.

Remark 1. An adjunction between C and D is a natural isomorphism between two
profunctors D ↛ C.
Consider F ⊣ G. In D(Fc, d) ∼= C(c,Gd), note c is in the contravariant position on
both sides, and d the covariant. So, both sides stand for functors Cop × D → Set.
These are precisely profunctors D ↛ C.
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1.1 Examples

Definition 3 (Galois connection).

Suppose C and D are posets (or pre-orders). Let F,G be monotone functions s.t.

(C,≤) (D,≤)

F

G

for all c ∈ C and d ∈ D, Fc ≤D d if and only if c ≤C Gd.

This is called (for posets) a Galois connection.

Let’s consider examples of Galois connections.

1.1.1 Galois Connection: Z and R

Consider the usual orderings of (Z,≤) and (R,≤). Take the inclusion map i : Z → R.
This is clearly monotone and a suborder. Is this an adjunction?

(Z,≤) (R,≤)

L

i

R

What would the right adjoint be? Well, the condition here would be: ∀z ∈ Z
and r ∈ R, i z ≤ r iff. z ≤ R r ∈ Z. I.e., i z = z is less than or equal to some
integer that’s a function of r. Then, what is R? Naturally, the ceiling or floor comes
to mind. Note we have 1 ≤ 1/2 iff. 1 ≤ R 1/2, so R ̸= ⌈·⌉. However, R = ⌊·⌋ works;
i.e., z ≤ r ⇔ z ≤ ⌊r⌋.

What about the left adjoint L? We want L r ≤ z iff. r ≤ i z. Well, note that
⌈r⌉ ≤ z ⇔ r ≤ z. So, we can say L = ⌈·⌉.

This then defines an adjunction ⌈·⌉ ⊣ ⌊·⌋

1.1.2 Galois Connection: Propositions

Let’s consider propositions with a provability ordering (Prop,⊢) and, on the other
hand, families of propositions

(
PropX ,⊢

)
, where X is a set and provability here is

pointwise. We can consider PropX as as propositions with a variable x, i.e.

φ(x) ⊢ ψ(x) ∀x ∈ X (1)

These propositions could simply be booleans, or it could be in a formal system of
logic.
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Similar to example 1.1.1, there is a form of inclusion here, (Prop,⊢) ↪→ (PropX ,⊢),
which we can think of as “weakening” the proposition. I.e., for the proposition φ in
(1), we can weaken it with respect to the variable x to think of it as index family
propositions. Or, we take each proposition to the constant function that returns that.
We call this inclusion ∆.

(Prop,⊢) ↪ ∆−→ (PropX ,⊢) where ∆(φ)(x) = φ (2)

Note that this is a monotone function. If φ ⊢ ψ, then ∆(φ)(x) ⊢ ∆(ψ)(x).

Do we have a right and left adjoint here? A right adjoint means that, ∀x,
∆(φ)(x) ⊢ ∆(ψ)(x) iff. φ ⊢ R(ψ). So, what is this proposition R(ψ)? It is a universal
quantifier. It’s saying that we can prove ∀x . ψ(x) ⊣ φ iff. ∆(φ)(x) ⊢ ∆(ψ)(x), ∀x.
This is actually the rule of provability in first order logic; for adding free variable x,

φ ⊢x ψ(x)

φ ⊢ ∀x.ψ(x)
===========

I.e. the for-all introduction principal.
Then, the left adjoint would mean L(ψ) ⊢ φ iff. ∀x, ψ(x) ⊢ φ = ∆(φ)(x). This,

in turn, will be the existential quantifier. The idea is that we can prove something
follows from an existentially-quanitified statement if under any possible witness we
could prove the statement. Symbolically, ∃ x . ψ(X) ⊢ φ, meaning we need to prove
ψ(x) ⊢ φ for a free variable x (i.e., ψ(x) ⊢x φ). In a sequence calculus presentation
of first order logic, the existential quantifier is just the rule

ψ(x) ⊢x φ

∃x.ψ(x) ⊢ φ

So, we’re left with:

(Prop,⊢)
(
PropX ,⊢

)∃

∆

∀

There is still some ambiguity here. For formalizing the adjunction, there are two
setups. The first is to just take propositions as booleans and PropX as functions
X → Prop. Then, left/right adjoint will simply be existential/universal quantifiers
being used to compute a boolean (or a proposition). On the other hand, we can
take a fully-syntactic view and treat PropX as syntactic propositions. That is, not as
functions X → Prop, but rather as propositions with a free variable of type X.
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