
January 7, 2026

EECS 483: Compiler Construction
Lecture 0: Course Overview, Baby's First Compiler

1

Introductions

2

GSI: Yuchen JiangInstructor: Max S. New

Programming Language Implementation

3

When you write a program in your favorite programming language, how does it get executed?

Interpreted

Another program, an "interpreter"
reads in your program and
implements its behavior

Compiled

Another program, a "compiler" and
outputs another program, which we
already know how to run. Most
commonly, the binary format that
your CPU executes.

Just-in-time compilation (Javascript v8): an interpreter that
selectively compiles part of the program to speed up execution

Bytecode interpreters (Java): compile to a language for which
you have a fast interpreter implemented.

Fundamentally, a compiler is a kind of translator

Usually the source programs are easy to write, and the target programs are easy to use.

4

Why Study Compilers?

5

• Compilers are software infrastructure programmers interact with every day.
Understanding them gives you a deeper understanding of how your programs
are executed.

• Give you the tools to design and implement your own programming
languages.

• Learn techniques like lexing/parsing, constraint solving, tree data types that
can be applied to other programming tasks.

• Build up a medium-sized code base with complex but precise specifications.

Learning Objectives

6

• What does it mean for a compiler to be correct?

• How are high-level programming features implemented in machine code?

• How are modern compilers architected?

• How should programs be represented as data?

• How can linear structures be parsed into tree-like data?

• How to analyze programs to produce more efficient code?

• How to design, implement, grow and test a codebase over time?

What do compilers look like on the inside?

7
CIS 341: Compilers

Source Code
(Character stream)
if (b == 0) { a = 1; }

Backend
Assembly Code
l1:
 cmpq %eax, $0  
 jeq l2
 jmp l3
l2:
 …

Abstract Syntax Tree:

Parsing

If

Eq

b 0 a 1

NoneAssn

Lexical Analysis
Token stream:

if (b == 0) { a = 0 ; }

Analysis &
Transformation

Intermediate code:
l1:
 %cnd = icmp eq i64 %b, 0
 br i1 %cnd, label %l2,
label %l3  
l2:
 store i64* %a, 1
 br label %l3
l3:

7

Course Topics Outline

• Part 1: Interpreters, Semantics, Basic Translation to Machine Code

• Part 2: SSA Intermediate Representation

• Part 3: Memory Management

• Part 4: Program Analysis and Optimization

• Part 5: Compiler Frontends (Lexing and Parsing)

Programming Assignments
Over the course of 5 homework assignments, we
will build up to an optimizing compiler from the
"Snake" language to SSA form to x86_64 assembly
code.

We will build up features of the Snake language
over time. Start today with almost nothing and build
up to a reasonable dynamically typed, functionalish
programming language, a simplified version of
Python, JavaScript or Scheme.

9

Languages
We will be working with many programming languages in
this course. You are not required to have had direct
experience with any of them:

1. Rust for the compiler and runtime system

2. x86 Assembly code, our target

3. SSA, our intermediate representation

4. Snake lang, our source language

5. Regular expressions, context-free grammars, for the
front-end.

Use these first couple of weeks to get up to speed on Rust.
Other languages will be introduced over the course of the
semester.

10

Course Webpage

11

Full syllabus and all the details here are on my personal webpage:
https://maxsnew.com/teaching/eecs-483-wn26

https://maxsnew.com/teaching/eecs-483-wn26

Evaluation
Your final grade in this course will be based on your performance in
three areas:

• 65% Programming Assignments, each weighted equally

• 30-35% exams, midterm and final, each weighted equally

• 0-5% attendance and participation

12

Attendance and Participation

• Attendance and active engagement in class are very helpful to your understanding of
the material.

• Attendance policy: attendance is incentivized but not necessary.

• We will have a sign in sheet and we will note who participates in class.

• You will get a participation score of 0-5 at the end of the course.

• Each participation point will count as one percentage point towards your final
grade, replacing a percentage point from the exams.

• If you get a 0 participation score, you can still get a perfect grade in the class if
you ace the exams and homeworks.

Homework Assignments
Completed solo or in groups of 2. Do not
collaborate with anyone unless you are in a group
together.

Autograded on gradescope with some public and
some hidden test cases. Unlimited submissions.

Homeworks due on Friday with late submissions
accepted for 2 days afterwards at a 10% penalty
per day.

14

Exams
Midterm exam: programming language basics, scope, SSA form, x86
assembly

Final exam: second half of the course. Data representations,
optimization, compiler frontend

Exams are complementary to programming assignments. Programming
assignments demonstrate practical knowledge while exams
demonstrate theoretical understanding.

15

Baby's First Compiler

When we implement a compiler (to assembly) we need to address the following
questions:

1. What is the syntax of the language we are compiling?

2. What is the semantics of the language we are compiling?

3. How can we implement that semantics in assembly code?

4. How can we generate that assembly code programmatically?

16

Snake v0: "Neonate"

1. What is the syntax of the language we are compiling?

 Integer literals

2. What is the semantics of the language we are compiling?

 Print out the number to stdout

3. How can we implement that semantics in assembly code?

 Produce a function that outputs that number, call that function from Rust.

4. How can we generate that assembly code programmatically?

17

For Next Time

• Read the course webpage: http://maxsnew.com/teaching/eecs-483-wn25/

• Install Rust, nasm, run today's neonate implementation locally

• Work through the first 4 chapters of the Rust book: https://rust-
book.cs.brown.edu/

• Attend discussion section on Friday for more intro to Rust

18

http://maxsnew.com/teaching/eecs-483-wn25/
https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/

