EECS 483: Compiler Construction

Lecture 0: Course Overview, Baby's First Compiler

January 7, 2026

Introductions

Instructor: Max S. New GSl: Yuchen Jiang

Programming Language Implementation

When you write a program in your favorite programming language, how does it get executed?

Interpreted Compiled

Another program, an "interpreter’ Another program, a "compiler" and
reads in your program and outputs another program, which we
implements its behavior already know how to run. Most

commonly, the binary format that
your CPU executes.

Just-in-time compilation (Javascript v8): an interpreter that
selectively compiles part of the program to speed up execution

Bytecode interpreters (Java): compile to a language for which
you have a fast interpreter implemented.

3

Fundamentally, a compiler is a kind of translator

compiler : SourceProgram —> TargetProgram

Usually the source programs are easy to write, and the target programs are easy to use.

gcc, clang : C/C++ —> Bilnary /* a.out, .exe x/
emcc : C/C++ —> WebAssembly

rustc : Rust —> Binary

javac : Java -> JvmByteCode /* .class x/
scalac : Scala -> JvmByteCode

gwt : Java —> JavaScript /* .]S %/

v8 : JavaScript —> Binary

nasm : X64 —> Binary

pdftex : LaTeX —> PDF

pandoc : Markdown —> PDF or Html or Doc

Why Study Compilers?

» Compilers are software infrastructure programmers interact with every day.

Understanding them gives you a deeper understanding of how your programs
are executed.

* (Give you the tools to design and implement your own programming
languages.

* |Learn techniques like lexing/parsing, constraint solving, tree data types that
can be applied to other programming tasks.

 Build up a medium-sized code base with complex but precise specifications.

Learning Objectives

 What does it mean for a compiler to be correct?

 How are high-level programming features implemented in machine code?
« How are modern compilers architected?

 How should programs be represented as data”

« How can linear structures be parsed into tree-like data?

 How to analyze programs to produce more efficient code?

 How to design, implement, grow and test a codebase over time?

What do compillers look like on the inside?

Source Code

(Character stream)
if (b==0) { a=1; }

Token stream:
if| ([bf==J0) | {|a|=]0]:|}

Abstract Syntax Tree:

Intermediate code:

11:

%cnd = icmp eq 164 %b, 0
None br il %cnd, label %12,
label %13
12:

store i64* %a, 1

br label %13
13:

b

Assembly Code
11:

cmpg %eax, S$O
jeq 12
jmp 13

12:

Course Topics Outline

 Part 1: Interpreters, Semantics, Basic Translation to Machine Code
 Part 2: SSA Intermediate Representation

 Part 3: Memory Management

* Part 4: Program Analysis and Optimization

 Part 5: Compiler Frontends (Lexing and Parsing)

Programming Assignments

Over the course of 5 homework assignments, we
will build up to an optimizing compiler from the
'Snake" language to SSA form to x86_64 assembly
code.

We will build up features of the Snake language
over time. Start today with almost nothing and build
up to a reasonable dynamically typed, functionalish
programming language, a simplified version of
Python, JavaScript or Scheme.

Languages

We will be working with many programming languages In
this course. You are not required to have had direct
experience with any of them:

1. Rust for the compiler and runtime system
2. X806 Assembly code, our target

3. SSA, our intermediate representation

4. Snake lang, our source language

5. Regular expressions, context-free grammars, for the
front-end.

Use these first couple of weeks to get up to speed on Rust.
Other languages will be introduced over the course of the
semester.

10

Course Webpage

Full syllabus and all the detalls here are on my personal webpage:
https://maxsnew.com/teaching/eecs-483-wn26

11

https://maxsnew.com/teaching/eecs-483-wn26

Evaluation

Your final grade in this course will be based on your performance in
three areas:

 65% Programming Assignments, each weighted equally
* 30-35% exams, midterm and final, each weighted equally
* 0-5% attendance and participation

12

Attendance and Participation

« Attendance and active engagement in class are very helpful to your understanding of
the material.

» Attendance policy: attendance is incentivized but not necessary.
 We will have a sign in sheet and we will note who participates in class.
* You will get a participation score of 0-5 at the end of the course.

e Each participation point will count as one percentage point towards your final
grade, replacing a percentage point from the exams.

* |f you get a O participation score, you can still get a perfect grade in the class if
you ace the exams and homeworks.

Homework Assignments

Completed solo or in groups of 2. Do not
collaborate with anyone unless you are in a group
together.

Autograded on gradescope with some public and
some hidden test cases. Unlimited submissions.

Homeworks due on Friday with late submissions
accepted for 2 days afterwards at a 10% penalty
per day.

14

Exams

Midterm exam: programming language basics, scope, SSA form, x86
assembly

Final exam: second half of the course. Data representations,
optimization, compiler frontend

Exams are complementary to programming assignments. Programming
assignments demonstrate practical knowledge while exams
demonstrate theoretical understanding.

15

Baby's First Compiler

When we implement a compiler (to assembly) we need to address the following
questions:

1. What is the syntax of the language we are compiling?
2. What is the semantics of the language we are compiling”?
3. How can we implement that semantics in assembly code?

4. How can we generate that assembly code programmatically?

16

Snake vO: "Neonate"

1. What is the syntax of the language we are compiling?
Integer literals

2. What is the semantics of the language we are compiling?
Print out the number to stdout

3. How can we implement that semantics in assembly code?
Produce a function that outputs that number, call that function from Rust.

4. How can we generate that assembly code programmatically?

17

For Next Time

 Read the course webpage: http://maxsnew.com/teaching/eecs-483-wn25/

e |nstall Rust, nasm, run today's neonate implementation locally

 Work through the first 4 chapters of the Rust book: https://rust-
book.cs.brown.edu/

* Attend discussion section on Friday for more intro to Rust

18

http://maxsnew.com/teaching/eecs-483-wn25/
https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/
https://rust-book.cs.brown.edu/

