EECS 483: Compiler Construction

Lecture 25:
Parsing in Practice, Verified Compilation

April 16
Winter Semester 2025

Announcements

- Reminder: Assignment 5 Due Sunday
- Exam review on Monday
- Course Evaluations are now open. Please fill them out!

Debugging parser conflicts.

Disambiguating grammars.

LALRPOP DEMO

Poll

Is iImplementing a compiler difficult?
Is iImplementing a bug-free compiler difficult?

Is iImplementing a bug-free compiler important?

When Do Bugs Matter

"'move fast and break things" hardware design

banking

devtools |
medical software

social media
aerospace software

weather a
PP smart contracts

ﬁ

bugs are cheap

bugs are expensive

The more expensive bugs are,
the more effort is justified in eliminating them

Expensive Bugs of History: Ariane 5

- The first launch of the European

Space Agency's Ariane 5 rocket in
1996 ended with an explosion 37 2
seconds after launch ’

- Root cause: a conversion from a 64-
bit float to a 16 bit int overflowed and
the resulting exception was not
handled. Led to junk data that
triggered a self-destruct.

- Estimated cost: ~$750 million
(inflation adjusted)

Details: https://dl.acm.org/dol/
10.1145/251880.251992

https://dl.acm.org/doi/10.1145/251880.251992
https://dl.acm.org/doi/10.1145/251880.251992
https://dl.acm.org/doi/10.1145/251880.251992

Approaches to Software Reliability

Social
— Code reviews

— Extreme/Pair programming

Methodological

— Design patterns

— Test-driven development
— Version control

— Bug tracking

Technological
— “lint” tools, static analysis
— Fuzzers, random testing

Mathematical

— Sound programming
languages tools

— “Formal” verification

This isn’t a tradeoff... all of these methods
should be used.

Even “formal” methods can have holes:

» Did you prove the right thing?

* Do your assumptions match reality?

 Knuth. “Beware of bugs in the above code; | have only
proved it correct, not tried it.”

Goal: Veritied Software Correctness

 Social
— Code reviews

— Extreme/Pair programmif Q: How can we move
the needle towards

* Methodological mathematical software

— Design patterns correctness properties¢
— Test-driven development

— Version control
— Bug tracking Taking advantage of

advances in computer science:

* Moore's law

* improved programming languages
& theoretical understanding

* Detter tools:
interactive theorem provers

» Technological
— “lint” tools, static analysis
— Fuzzers, random testing

e Mathematical

— Sound programming
languages tools

— “Formal” verification

Compilers are Essential Infrastructure

It formal verification methods are applied only to source code in e.g.,
C, then those guarantees are only valid if the compiler is bug-free.

Best practice when using unverified compilers is to do analysis/auditing
of the actual assembly code

Verifying the compiler: high impact, as it enables other verified software

CompCert — A Verified C Compiler

Optimizing C Compiler,
proved correct end-to-end
with machine-checked proof in Rocg

Xavier Leroy
INRIA

P -

y 4 B
\
(C e
\\\‘o_.qﬂ// a8 \\\
e \ ’/ Other A\
N 4 ?)
typzzgse?;rll(er | P -y N \I;anguages 4 Tipe Gah Pritting 5 aam Programmed
’ (ini S - " : .
simplifier (CIL) \\ mini-ML ; v reconstruction coloring syntax in Caml
i S g - V:
\\ //
h Y /
PowerPC
(OXTo I (-0 — — — -— em = PP — T —— J— PP — TP — P P——— PR _—— -,
assembly
______ 52T ’ ” s e Layout of the Generation of
TN V's - s 1 Im:lat! S}lack ?re- i CiFGfonstructno_l;, |Validation ||Validation | Lnr;fsnzc;ggn activation | Power PC I
Program \‘ 52 ranslation allocation instruction recognition of the REmr i Progra mmed and
prover)’/ 4 :
atnd = J , proved in Coq
< W ™,
y Model R - v = G P Y Constant _ Common o | Register allocation by | | ot n? ;:i = Machine Memory I
A checker & y = Static 25N 2 Y | propagation " | subexpressions 4 graph coloring (Maps, Sets) arithmetic model
SRS ol (\
_ “analyzer)’ I
~ _ >
ay, /
-~
¥ /
L

_—y
~~
_—e s

C language

CompCert P
Compiler P

17

Compiler Bugs

[Regehr's group: Yang et al. PLDI 2011]

Csmith
random
test-case generation

79 bugs

VXddlilerY)

e

: SEUTEE / ‘ 202 bugs
-) g 325 bugs
| frograms LLVM in total

More recently:

* ALIVE/ALIVE2 projects

 miscompilation of C, Rust ...8 other C
sources [Lee et al. OOPSLA 201 8] Comp”ers

Finding and Understanding Bugs in C Compilers
Yang, Chen, Eide and Regehr, PLDI 2011
https://dl.acm.org/doi/10.1145/1993316.1993532

https://dl.acm.org/doi/10.1145/1993316.1993532

Csmith on CompCert?

[Yang et al. PLDI 2011]

Csmith
random
test-case generation

~_>

s N
Source

Programs
N Y

> CompCert 0 bugs(!!)

Verification Works!

"The striking thing about our CompCert results is that the middle-end

bugs we found in all other compilers are absent. As of early 2011, the
under-development version of CompCert is the only compiler we have

tested for which Csmith cannot find wrong-code errors. This is not for
ack of trying: we have devoted about six CPU-years to the task. The

apparent unbreakability of CompCert supports a strong argument that
developing compiler optimizations within a proof framework, where
safety checks are explicit and machine-checked, has tangible benefits for

compiler users."
— Regehr et. al 2011

Can i1t Scale?

Use of theorem proving to verify “real” software is still considered to be the
b_ﬂeedlng egge @ ‘f;) (.) Verified
O Tesearch.] =) Software
&) Toolchain
CompCert — fully veritied C compiler
Leroy, INRIA Vcl,l\gm
Vellvm — formalized LLVM IR T A Verified Implementation of ML

Zdancewic, Penn

Ynot — verified DBMS, web services
Morrisett, Harvard @
Verified Software Toolchain
Appel, Princeton AIRBUS

Bedrock — web programming, packet filters
Chlipala, p/v\lgf o P

CertiKOS — certified OS kernel
Shao & Ford, Yale

CakeML — certified compiler

SEL4 — certified secure OS microkernel OQ

Kami — verified RISCV architecture GO gle Met(]
DaisyNSF — verified NFS file system

=" Microsoft

dWsS

BEDROCK galois

Systems Inc

Verified Compilers: How it's Made

« Compcert is implemented in the interactive theorem prover Rocq (https://
rocq-prover.org/)

 Rocq, and similar systems Lean, Agda, |dris are all based on dependent

type theory, essentially they are "just” functional programming languages
with an extremely fancy type system

* The type system is so powerful that you can use it to write full functional

correctness. Based on the "Curry-Howard correspondence” that unifies
logical reasoning and programming

https://rocq-prover.org/
https://rocq-prover.org/
https://rocq-prover.org/
https://rocq-prover.org/

Demo:
verifying simple compilers in Agda

