
April 16
Winter Semester 2025

EECS 483: Compiler Construction
Lecture 25:
Parsing in Practice, Verified Compilation

1

Announcements

2

- Reminder: Assignment 5 Due Sunday

- Exam review on Monday

- Course Evaluations are now open. Please fill them out!

LALRPOP DEMO

3

Debugging parser conflicts.
Disambiguating grammars.

Poll

4

Is implementing a compiler difficult?

Is implementing a bug-free compiler difficult?

Is implementing a bug-free compiler important?

When Do Bugs Matter

5

"move fast and break things"

bugs are cheap bugs are expensive

medical software

aerospace software
social media

banking

smart contracts

The more expensive bugs are,

the more effort is justified in eliminating them

devtools

weather app

hardware design

Expensive Bugs of History: Ariane 5
- The first launch of the European
Space Agency's Ariane 5 rocket in
1996 ended with an explosion 37
seconds after launch

- Root cause: a conversion from a 64-
bit float to a 16 bit int overflowed and
the resulting exception was not
handled. Led to junk data that
triggered a self-destruct.

- Estimated cost: ~$750 million
(inflation adjusted)

Details: https://dl.acm.org/doi/
10.1145/251880.251992

https://dl.acm.org/doi/10.1145/251880.251992
https://dl.acm.org/doi/10.1145/251880.251992
https://dl.acm.org/doi/10.1145/251880.251992

Approaches to Software Reliability

• Social
– Code reviews
– Extreme/Pair programming

• Methodological
– Design patterns
– Test-driven development
– Version control
– Bug tracking

• Technological
– “lint” tools, static analysis
– Fuzzers, random testing

• Mathematical
– Sound programming

languages tools
– “Formal” verification

More “formal”: eliminate
with certainty as many problems
as possible.

Less “formal”: Techniques may
miss problems in programs

This isn’t a tradeoff… all of these methods
should be used.
Even “formal” methods can have holes:
• Did you prove the right thing?
• Do your assumptions match reality?
• Knuth. “Beware of bugs in the above code; I have only
proved it correct, not tried it.”

Goal: Verified Software Correctness

• Social
– Code reviews
– Extreme/Pair programming

• Methodological
– Design patterns
– Test-driven development
– Version control
– Bug tracking

• Technological
– “lint” tools, static analysis
– Fuzzers, random testing

• Mathematical
– Sound programming

languages tools
– “Formal” verification

Q: How can we move
the needle towards
mathematical software
correctness properties?

Taking advantage of
advances in computer science:
• Moore's law
• improved programming languages

& theoretical understanding
• better tools:

interactive theorem provers

Compilers are Essential Infrastructure

9

If formal verification methods are applied only to source code in e.g.,
C, then those guarantees are only valid if the compiler is bug-free.

Best practice when using unverified compilers is to do analysis/auditing
of the actual assembly code

Verifying the compiler: high impact, as it enables other verified software

CompCert – A Verified C Compiler

17

Xavier Leroy
INRIA

Optimizing C Compiler,
proved correct end-to-end
with machine-checked proof in Coq

C language

CompCert
Compiler

ISA

Rocq

Compiler Bugs

Csmith
random

test-case generation

LLVM

…8 other C
compilers

79 bugs
(25 critical)

202 bugs
325 bugs
in total

Source
Programs

[Regehr's group: Yang et al. PLDI 2011]

More recently:

• ALIVE/ALIVE2 projects
• miscompilation of C, Rust

sources [Lee et al. OOPSLA 2018]

Finding and Understanding Bugs in C Compilers

Yang, Chen, Eide and Regehr, PLDI 2011

https://dl.acm.org/doi/10.1145/1993316.1993532

https://dl.acm.org/doi/10.1145/1993316.1993532

Csmith on CompCert?

CompCert

Csmith
random

test-case generation

Source
Programs

[Yang et al. PLDI 2011]

0 bugs(!!)

Verification Works!

"The striking thing about our CompCert results is that the middle-end

bugs we found in all other compilers are absent. As of early 2011, the

under-development version of CompCert is the only compiler we have

tested for which Csmith cannot find wrong-code errors. This is not for

lack of trying: we have devoted about six CPU-years to the task. The
apparent unbreakability of CompCert supports a strong argument that
developing compiler optimizations within a proof framework, where
safety checks are explicit and machine-checked, has tangible benefits for
compiler users."

– Regehr et. al 2011

Can it Scale?
• Use of theorem proving to verify “real” software is still considered to be the

bleeding edge
of research.

• CompCert – fully verified C compiler
Leroy, INRIA

• Vellvm – formalized LLVM IR
Zdancewic, Penn

• Ynot – verified DBMS, web services
Morrisett, Harvard

• Verified Software Toolchain
Appel, Princeton

• Bedrock – web programming, packet filters
Chlipala, MIT

• CertiKOS – certified OS kernel
Shao & Ford, Yale

• CakeML – certified compiler
• SEL4 – certified secure OS microkernel
• Kami – verified RISCV architecture
• DaisyNSF – verified NFS file system
• …

Verified Compilers: How it's Made
• Compcert is implemented in the interactive theorem prover Rocq (https://

rocq-prover.org/)

• Rocq, and similar systems Lean, Agda, Idris are all based on dependent
type theory, essentially they are "just" functional programming languages
with an extremely fancy type system

• The type system is so powerful that you can use it to write full functional
correctness. Based on the "Curry-Howard correspondence" that unifies
logical reasoning and programming

https://rocq-prover.org/
https://rocq-prover.org/
https://rocq-prover.org/
https://rocq-prover.org/

Demo:
verifying simple compilers in Agda

