
April 14
Winter Semester 2025

EECS 483: Compiler Construction
Lecture 24:
LR Grammars, Bottom-Up Parsing

1

Announcements

2

- Reminder: Assignment 5 Due Sunday

- Midterm regrades done. Grades updated on Canvas

- Course Evaluations are now open. Please fill them out!

Final Exam Info

3

- Final Exam on Wednesday 04/30 4-6pm

- Location:

DOW 1010 (uniqname starts with A-L)

DOW 1014 (uniqname starts with M-Z)

- Topics: Assignments 4 and 5, lecture material after spring break.

- Exam Review on Monday, 04/21

- 1 page of notes, double sided ok, printed or written ok.

- Practice material:

https://maxsnew.com/teaching/eecs-483-wn24/syllabus.html
questions about lexing/parsing/analysis/optimization

Appel book, Dragon book linked on webpage have exercises as well.

https://maxsnew.com/teaching/eecs-483-wn24/syllabus.html

LR GRAMMARS

4

The Parsing Problem
• The Parsing Problem:
– Input: a context-free grammar G

– Output: a parser that takes in a string and outputs a parse tree of that string in
G or raises an exception if there is no parse tree.

– Notice that an ambiguous grammar may be parsed in multiple ways

• In practice: fuse the generation of the parse tree with semantic actions
that construct the abstract syntax tree
– The parse tree is usually never “materialized” in memory

• Another “mini-compiler” for a DSL
• Bad news: best algorithms are O(n^3)
– CYK, Earley, GLR algorithms

• Compromise: find restrictions on CFGs that allow for O(n) parsing
– Intuition: parsing is a search problem, find restrictions that limit the amount

of backtracking needed.

– Cost: more burden on the programmer (i.e., you) to adapt their grammar to fit
the restriction

5

LL(1) Summary
• Top-down parsing that finds the leftmost derivation.
• Language Grammar
⇒ LL(1) grammar (manual rewrite)

⇒ prediction table (intermediate representation)

⇒ recursive-descent parser (code generation)

• Problems:
– Grammar must be LL(1)

– Can extend to LL(k) (it just makes the table bigger)

– Grammar cannot be left recursive (parser functions will loop!)

• Is there a better way?

6

Bottom-up Parsing (LR Parsers)
• LR(k) parser:
– Left-to-right scanning

– Rightmost derivation

– k lookahead symbols

• LR grammars are more expressive than LL
– Can handle left-recursive (and right recursive) grammars; virtually all

programming languages

– Easier to express programming language syntax (no left factoring)

• Technique: “Shift-Reduce” parsers
– Work bottom up instead of top down

– Construct right-most derivation of a program in the grammar

– Used by many parser generators (e.g. yacc, ocamlyacc, lalrpop, etc.)

– Better error detection/recovery

7

Top-down vs. Bottom up
• Consider the left-

recursive grammar:

• (1 + 2 + (3 + 4)) + 5

• What part of the
tree must we
know after scanning
just “(1 + 2” ?

• In top-down, must
be able to guess
which productions
to use…

8

S

S + E

E 5

S + E

1

S + E

E 2

(S)

E 4

(S)

S + E

3
Top-down

S

S + E

E 5

S + E

1

S + E

E 2

(S)

E 4

(S)

S + E

3
Bottom-up

Note: ‘(‘ has
been scanned
but not
consumed.
Processing it is
still pending.

S ⟼ S + E | E
E ⟼ number | (S)

Progress of Bottom-up Parsing
Reductions Scanned Input Remaining
(1 + 2 + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(E + 2 + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + 2 + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + E + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (E + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (S + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (S + E)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (S)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + E) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
E + 5 ⟻ (1 + 2 + (3 + 4)) + 5
S + 5 ⟻ (1 + 2 + (3 + 4)) + 5
S + E ⟻ (1 + 2 + (3 + 4)) + 5
S

9

S ⟼ S + E | E
E ⟼ number | (S)

R
ig

ht
m

os
t d

er
iv

at
io

n

Shift/Reduce Parsing
• Parser state:
– Stack of terminals and nonterminals.
– Unconsumed input is a string of terminals
– Current derivation step is stack + input

• Parsing is a sequence of shift and reduce operations:
• Shift: move look-ahead token to the stack
• Reduce: Replace symbols γ at top of stack with nonterminal X such that X ⟼ γ

is a production. (pop γ, push X)
Stack Input Action
 (1 + 2 + (3 + 4)) + 5 shift (
(1 + 2 + (3 + 4)) + 5 shift 1
(1 + 2 + (3 + 4)) + 5 reduce: E ⟼ number
(E + 2 + (3 + 4)) + 5 reduce: S ⟼ E
(S + 2 + (3 + 4)) + 5 shift +
(S + 2 + (3 + 4)) + 5 shift 2
(S + 2 + (3 + 4)) + 5 reduce: E ⟼ number
(S + E + (3 + 4)) + 5 reduce: S ⟼ S + E
(S + (3 + 4)) + 5 shift +

10

S ⟼ S + E | E
E ⟼ number | (S)

Shift/Reduce Parsing
• Parser state:
– Stack of terminals and nonterminals.

– Unconsumed input is a string of terminals

– Current derivation step is stack + input

• Invariant: Stack plus input is a step in building the Rightmost derivation
in reverse

Stack Input Derivation steps
 (1 + 2 + (3 + 4)) + 5 (1 + 2 + (3 + 4)) + 5
(1 + 2 + (3 + 4)) + 5
(1 + 2 + (3 + 4)) + 5
(E + 2 + (3 + 4)) + 5 (E + 2 + (3 + 4)) + 5
(S + 2 + (3 + 4)) + 5 (S + 2 + (3 + 4)) + 5
(S + 2 + (3 + 4)) + 5
(S + 2 + (3 + 4)) + 5
(S + E + (3 + 4)) + 5 (S + E + (3 + 4)) + 5
(S + (3 + 4)) + 5 (S + (3 + 4)) + 5

11

S ⟼ S + E | E
E ⟼ number | (S)

R
ightm

ost
derivation

LR(0) GRAMMARS

12

Simple LR parsing with no look ahead.

LR Parser States
• Goal: know what set of reductions are legal at any given point.
• Idea: Summarize all possible stack prefixes α as a finite parser state.
– Parser state is computed by a DFA that reads the stack σ.

– Accept states of the DFA correspond to unique reductions that apply.

• Example: LR(0) parsing
– Left-to-right scanning, Right-most derivation, zero look-ahead tokens

– Too weak to handle many language grammars (e.g. the “sum” grammar)

– But, helpful for understanding how the shift-reduce parser works.

13

Example LR(0) Grammar: Tuples
• Example grammar for non-empty tuples and identifiers:

• Example strings:
– x

– (x,y)

– ((((x))))

– (x, (y, z), w)

– (x, (y, (z, w)))

14

S ⟼ (L) | id
L ⟼ S | L , S

Parse tree for:
(x, (y, z), w)

(L)

L , S

L , S

(L)

L , Sx

S

y

S z

w

S

Shift/Reduce Parsing
• Parser state:
– Stack of terminals and nonterminals.

– Unconsumed input is a string of terminals

– Current derivation step is stack + input

• Parsing is a sequence of shift and reduce operations:
• Shift: move look-ahead token to the stack: e.g.

Stack Input Action
 (x, (y, z), w) shift (
(x, (y, z), w) shift x

• Reduce: Replace symbols γ at top of stack with nonterminal X such that
X ⟼ γ is a production. (pop γ, push X): e.g.

 Stack Input Action
(x , (y, z), w) reduce S ⟼ id

(S , (y, z), w) reduce L ⟼ S

15

S ⟼ (L) | id
L ⟼ S | L , S

Example Run
Stack Input Action
 (x, (y, z), w) shift (
(x, (y, z), w) shift x
(x , (y, z), w) reduce S ⟼ id
(S , (y, z), w) reduce L ⟼ S
(L , (y, z), w) shift ,
(L, (y, z), w) shift (
(L, (y, z), w) shift y
(L, (y , z), w) reduce S ⟼ id
(L, (S , z), w) reduce L ⟼ S
(L, (L , z), w) shift ,
(L, (L, z), w) shift z
(L, (L, z), w) reduce S ⟼ id
(L, (L, S), w) reduce L ⟼ L, S
(L, (L), w) shift)
(L, (L) , w) reduce S ⟼ (L)
(L, S , w) reduce L ⟼ L, S
(L , w) shift ,
(L, w) shift w
(L, w) reduce S ⟼ id
(L, S) reduce L ⟼ L, S
(L) shift)
(L) reduce S ⟼ (L)
S

16

S ⟼ (L) | id
L ⟼ S | L , S

Action Selection Problem
• Given a stack σ and a look-ahead symbol b, should the parser:
– Shift b onto the stack (new stack is σb)

– Reduce a production X ⟼ γ, assuming that σ = αγ (new stack is αX)?

• Sometimes the parser can reduce but shouldn’t
– For example, X ⟼ ε can always be reduced

• Sometimes the stack can be reduced in different ways

• Main idea: decide what to do based on a prefix α of the stack plus the
look-ahead symbol.
– The prefix α is different for different possible reductions since in productions

X ⟼ γ and Y ⟼ β, γ and β might have different lengths.

• Main goal: know what set of reductions are legal at any point.
– How do we keep track?

17

LR(0) States
• An LR(0) state is a set of items keeping track of progress on possible

upcoming reductions.
• An LR(0) item is a production from the language with an extra

separator “.” somewhere in the right-hand-side

• Example items: S ⟼ .(L) or S ⟼ (. L) or L ⟼ S.

• Intuition:
– Stuff before the ‘.’ is already on the stack

(beginnings of possible γ’s to be reduced)

– Stuff after the ‘.’ is what might be seen next

– The prefixes α are represented by the state itself

18

S ⟼ (L) | id
L ⟼ S | L , S

Constructing the DFA: Start state & Closure

• First step: Add a new production
S’ ⟼ S$ to the grammar

• Start state of the DFA = empty stack,
so it contains the item:
 S’ ⟼ .S$

• Closure of a state:
– Adds items for all productions whose LHS nonterminal occurs in an item in

the state just after the ‘.’

– The added items have the ‘.’ located at the beginning (no symbols for those
items have been added to the stack yet)

– Note that newly added items may cause yet more items to be added to the
state… keep iterating until a fixed point is reached.

• Example: CLOSURE({S’ ⟼ .S$}) = {S’ ⟼ .S$, S ⟼ .(L), S⟼.id}

• Resulting “closed state” contains the set of all possible productions that
might be reduced next.

19

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

Example: Constructing the DFA

• First, we construct a state with the initial item S’ ⟼ .S$

20

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$

Example: Constructing the DFA

• Next, we take the closure of that state:
CLOSURE({S’ ⟼ .S$}) = {S’ ⟼ .S$, S ⟼ .(L), S ⟼ .id}

• In the set of items, the nonterminal S appears after the ‘.’
• So we add items for each S production in the grammar

21

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

Example: Constructing the DFA

• Next we add the transitions:
• First, we see what terminals and

nonterminals can appear after the ‘.’
in the source state.
– Outgoing edges have those label.

• The target state (initially) includes
all items from the source state that
have the edge-label symbol after the
‘.’, but we advance the ‘.’ (to
simulate shifting the item onto the
stack)

22

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

S ⟼ (. L)

S ⟼ id.

S’ ⟼ S.$

id

S

(

Example: Constructing the DFA

• Finally, for each new state, we take the closure.
• Note that we have to perform two iterations to compute

CLOSURE({S ⟼ (. L)})
– First iteration adds L ⟼ .S and L ⟼ .L, S

– Second iteration adds S ⟼ .(L) and S ⟼ .id

23

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

S ⟼ (. L)
L ⟼ .S
L ⟼ .L, S
S ⟼ .(L)
S ⟼ .id

S ⟼ id.

S’ ⟼ S.$

id

S

(

Full DFA for the Example

24

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

S ⟼ (. L)
L ⟼ .S
L ⟼ .L, S
S ⟼ .(L)
S ⟼ .id

S ⟼ id. L ⟼ L, . S
S ⟼ .(L)
S ⟼ .id

L ⟼ L, S.

S ⟼ (L .)
L ⟼ L . , S

S ⟼ (L).L ⟼ S.S’ ⟼ S.$

Done!

id id S

S

$

(

(

S
)

(

L

id

,

Reduce state: ‘.’ at
the end of the

production

• Current state: run the
 DFA on the stack.

• If a reduce state is
 reached, reduce

• Otherwise, if the next
 token matches an
 outgoing edge, shift.

• If no such transition,
 it is a parse error.

1 2

3

4

5

67

8 9

Using the DFA
• Run the parser stack through the DFA.
• The resulting state tells us which productions might be

reduced next.
– If not in a reduce state, then shift the next symbol and transition

according to DFA.
– If in a reduce state, X ⟼ γ with stack αγ, pop γ and push X.

• Optimization: No need to re-run the DFA from beginning
every step
– Store the state with each symbol on the stack: e.g. 1(3(3L5)6

– On a reduction X ⟼ γ, pop stack to reveal the state too:
e.g. From stack 1(3(3L5)6 reduce S ⟼ (L) to reach stack 1(3

– Next, push the reduction symbol: e.g. to reach stack 1(3S

– Then take just one step in the DFA to find next state: 1(3S7

25

Implementing the Parsing Table
Represent the DFA as a table of shape:

 state * (terminals + nonterminals)
• Entries for the “action table” specify two kinds of actions:
– Shift and goto state n

– Reduce using reduction X ⟼ γ
• First pop γ off the stack to reveal the state

• Look up X in the “goto table” and goto that state

26

St
at

e

Terminal Symbols Nonterminal Symbols

Action
table

Example Parse Table

27

() id , $ S L

1 s3 s2 g4
2 S⟼id S⟼id S⟼id S⟼id S⟼id

3 s3 s2 g7 g5
4 DONE

5 s6 s8
6 S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L)

7 L ⟼ S L ⟼ S L ⟼ S L ⟼ S L ⟼ S

8 s3 s2 g9
9 L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S

sx = shift and goto state x
gx = goto state x (used when we reduce)

Example
• Parse the token stream: (x, (y, z), w)$

Stack Stream Action (according to table)
ε1 (x, (y, z), w)$ s3

ε1(3 x, (y, z), w)$ s2

ε1(3x2 , (y, z), w)$ Reduce: S⟼id

ε1(3S , (y, z), w)$ g7 (from state 3 follow S)

ε1(3S7 , (y, z), w)$ Reduce: L⟼S

ε1(3L , (y, z), w)$ g5 (from state 3 follow L)

ε1(3L5 , (y, z), w)$ s8

ε1(3L5,8 (y, z), w)$ s3

ε1(3L5,8(3 y, z), w)$ s2

28

LR(0) Limitations
• An LR(0) machine only works if states with reduce actions

have a single reduce action.
– In such states, the machine always reduces (ignoring lookahead)

• With more complex grammars, the DFA construction will
yield states with shift/reduce and reduce/reduce conflicts:

 OK shift/reduce reduce/reduce

• Such conflicts can often be resolved by using a look-ahead
symbol: SLR(1) or LR(1)

29

S ⟼ (L). S ⟼ (L).
 L ⟼ .L , S

 S ⟼ L ,S.
S ⟼ ,S.

Examples
• Consider the left associative and right associative “sum” grammars:

 left right

• One is LR(0) the other isn’t… which is which and why?
• What kind of conflict do you get? Shift/reduce or Reduce/reduce?

• Ambiguities in associativity/precedence usually lead to shift/reduce
conflicts.

30

S ⟼ S + E | E
E ⟼ number | (S)

S ⟼ E + S | E
E ⟼ number | (S)

Examples
• Consider the left associative and right associative “sum” grammars:

 left right

• One is LR(0) the other isn’t… which is which and why?
• What kind of conflict do you get? Shift/reduce or Reduce/reduce?

If the stack is a single E, then the state is

shift-reduce conflict: we can either shift the + or reduce the E to an S.
LR(0) parser can't decide

31

S ⟼ S + E | E
E ⟼ number | (S)

S ⟼ E + S | E
E ⟼ number | (S)

S ⟼ E .+ S
S ⟼ E.

SLR(1) (“simple” LR) Parsers
• What conflicts are there in LR(0) parsing?
– reduce/reduce conflict: an LR(0) state has two reduce actions

– shift/reduce conflict: an LR(0) state mixes reduce and shift actions

• Can we use lookahead to disambiguate?

• SLR(1) – uses the same DFA construction as LR(0)
– modifies the actions based on lookahead. More powerful

• Suppose reducing an A nonterminal is possible in some state:
– compute Follow(A) for the given grammar

– if the lookahead symbol is in Follow(A), then reduce, otherwise shift

– can disambiguate between reduce/reduce conflicts if the follow sets are
disjoint

32

LR(1) Parsing
• Yet more powerful than SLR(1)
• Algorithm is similar to LR(0) DFA construction:
– LR(1) state = set of LR(1) items

– An LR(1) item is an LR(0) item + a set of look-ahead symbols:
 A ⟼ α.β , L

• LR(1) closure is a little more complex:
• Form the set of items just as for LR(0) algorithm.

• Whenever a new item C ⟼ .γ is added because A ⟼ β.Cδ , L is

already in the set, we need to compute its look-ahead set M:

1. The look-ahead set M includes FIRST(δ)
(the set of terminals that may start strings derived from δ)

2. If δ is itself ε or can derive ε (i.e. it is nullable), then the look-ahead M also

contains L

33

Example Closure

• Start item: S’ ⟼ .S$, {}

• Since S is to the right of a ‘.’, add:
 S ⟼ .E + S , {$} Note: {$} is FIRST($)
 S ⟼ .E , {$}

• Need to keep closing, since E appears to the right of a ‘.’ in
‘.E + S’:
 E ⟼ .number , {+} Note: + added for reason 1
 E ⟼ .(S) , {+} FIRST(+ S) = {+}

• Because E also appears to the right of ‘.’ in ‘.E’ we get:
 E ⟼ .number , {$} Note: $ added for reason 2
 E ⟼ .(S) , {$} δ is ε

• All items are distinct, so we’re done

34

S’ ⟼ S$
S ⟼ E + S | E
E ⟼ number | (S)

Using the DFA

• The behavior is determined if:
– There is no overlap among the

look-ahead sets for each reduce
item, and

– None of the look-ahead symbols
appear to the right of a ‘.’

35

S’ ⟼ .S$ {}
S ⟼ .E + S {$}
S ⟼ .E {$}
E ⟼ .num {+}
E ⟼ .(S) {+}
E ⟼ .num {$}
E ⟼ .(S) {$}

S ⟼ E .+ S {$}
S ⟼ E. {$}

E

1

+ $ E

1 g2
2 s3 S ⟼ E

2
+

Fragment of the Action & Goto tables

Choice between shift
and reduce is resolved.

LR variants
• LR(1) gives maximal power out of a 1 look-ahead symbol parsing table
– DFA + stack is a push-down automaton

• In practice, LR(1) tables are big.
– Modern implementations (e.g., menhir) directly generate code

• LALR(1) = “Look-ahead LR”
– Merge any two LR(1) states whose items are identical except for the look-ahead sets:

– Such merging can lead to nondeterminism (e.g., reduce/reduce conflicts), but
– Results in a much smaller parse table and works well in practice
– This is the usual technology for automatic parser generators: yacc, ocamlyacc

• GLR = “Generalized LR” parsing
– Efficiently compute the set of all parses for a given input
– Later passes should disambiguate based on other context

36

S’ ⟼ .S$ {}
S ⟼ .E + S {$}
S ⟼ .E {$}
E ⟼ .num {+}
E ⟼ .(S) {+}
E ⟼ .num {$}
E ⟼ .(S) {$}

S’ ⟼ .S$ {}
S ⟼ .E + S {$}
S ⟼ .E {$}
E ⟼ .num {+,$}
E ⟼ .(S) {+,$}

Classification of Grammars

37

LR(0)

SLR(1)

LALR(1)

LR(1)

LL(1)

LALRPOP DEMO

38

Debugging parser conflicts.
Disambiguating grammars.

