
April 14 
Winter Semester 2025

EECS 483: Compiler Construction
Lecture 24:  
LR Grammars, Bottom-Up Parsing
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Announcements
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- Reminder: Assignment 5 Due Sunday

- Midterm regrades done. Grades updated on Canvas

- Course Evaluations are now open. Please fill them out!



Final Exam Info
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- Final Exam on Wednesday 04/30 4-6pm

- Location:


DOW 1010 (uniqname starts with A-L)

DOW 1014 (uniqname starts with M-Z)


- Topics: Assignments 4 and 5, lecture material after spring break.

- Exam Review on Monday, 04/21

- 1 page of notes, double sided ok, printed or written ok.

- Practice material: 


https://maxsnew.com/teaching/eecs-483-wn24/syllabus.html 
questions about lexing/parsing/analysis/optimization 

Appel book, Dragon book linked on webpage have exercises as well.

https://maxsnew.com/teaching/eecs-483-wn24/syllabus.html


LR GRAMMARS
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The Parsing Problem
• The Parsing Problem: 
– Input: a context-free grammar G 

– Output: a parser that takes in a string and outputs a parse tree of that string in 
G or raises an exception if there is no parse tree. 

– Notice that an ambiguous grammar may be parsed in multiple ways 

• In practice: fuse the generation of the parse tree with semantic actions 
that construct the abstract syntax tree 
– The parse tree is usually never “materialized” in memory 

• Another “mini-compiler” for a DSL 
• Bad news: best algorithms are O(n^3) 
– CYK, Earley, GLR algorithms 

• Compromise: find restrictions on CFGs that allow for O(n) parsing 
– Intuition: parsing is a search problem, find restrictions that limit the amount 

of backtracking needed. 

– Cost: more burden on the programmer (i.e., you) to adapt their grammar to fit 
the restriction

5



LL(1) Summary
• Top-down parsing that finds the leftmost derivation. 
• Language Grammar  
⇒ LL(1) grammar (manual rewrite) 

⇒ prediction table (intermediate representation) 

⇒ recursive-descent parser (code generation) 

• Problems:  
– Grammar must be LL(1) 

– Can extend to LL(k)  (it just makes the table bigger) 

– Grammar cannot be left recursive (parser functions will loop!) 

• Is there a better way?
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Bottom-up Parsing  (LR Parsers)
• LR(k) parser:   
– Left-to-right scanning 

– Rightmost derivation 

– k lookahead symbols 

• LR grammars are more expressive than LL 
– Can handle left-recursive (and right recursive) grammars; virtually all 

programming languages 

– Easier to express programming language syntax (no left factoring) 

• Technique:  “Shift-Reduce” parsers 
– Work bottom up instead of top down 

– Construct right-most derivation of a program in the grammar 

– Used by many parser generators (e.g. yacc, ocamlyacc, lalrpop, etc.) 

– Better error detection/recovery
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Top-down vs. Bottom up
• Consider the left- 

recursive grammar: 

• (1 + 2 + (3 + 4)) + 5 

• What part of the 
tree must we  
know after scanning 
just “(1 + 2” ? 

• In top-down, must 
be able to guess 
which productions 
to use…
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Progress of Bottom-up Parsing
Reductions     Scanned    Input Remaining 
(1 + 2 + (3 + 4)) + 5 ⟻        (1 + 2 + (3 + 4)) + 5 
(E + 2 + (3 + 4)) + 5 ⟻         (         1 + 2 + (3 + 4)) + 5 
(S + 2 + (3 + 4)) + 5 ⟻   (1     + 2 + (3 + 4)) + 5 
(S + E + (3 + 4)) + 5 ⟻         (1 + 2    + (3 + 4)) + 5 
(S + (3 + 4)) + 5 ⟻   (1 + 2    + (3 + 4)) + 5 
(S + (E + 4)) + 5 ⟻   (1 + 2 + (3   + 4)) + 5 
(S + (S + 4)) + 5 ⟻   (1 + 2 + (3   + 4)) + 5 
(S + (S + E)) + 5 ⟻      (1 + 2 + (3 + 4  )) + 5 
(S + (S)) + 5 ⟻     (1 + 2 + (3 + 4  )) + 5 
(S + E) + 5 ⟻            (1 + 2 + (3 + 4)  ) + 5 
(S) + 5 ⟻     (1 + 2 + (3 + 4)  ) + 5 
E + 5 ⟻      (1 + 2 + (3 + 4))  + 5  
S + 5 ⟻      (1 + 2 + (3 + 4))  + 5  
S + E ⟻      (1 + 2 + (3 + 4)) + 5           
S
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Shift/Reduce Parsing
• Parser state: 
– Stack of terminals and nonterminals. 
– Unconsumed input is a string of terminals 
– Current derivation step is        stack + input 

• Parsing is a sequence of shift and reduce operations: 
• Shift: move look-ahead token to the stack 
• Reduce: Replace symbols γ at top of stack with nonterminal X such that X ⟼ γ 

is a production.  (pop γ, push X) 
Stack     Input    Action 
         (1 + 2 + (3 + 4)) + 5       shift ( 
(          1 + 2 + (3 + 4)) + 5   shift 1 
(1            + 2 + (3 + 4)) + 5   reduce: E ⟼ number 
(E            + 2 + (3 + 4)) + 5   reduce: S ⟼ E 
(S     + 2 + (3 + 4)) + 5   shift + 
(S +               2 + (3 + 4)) + 5   shift 2 
(S + 2                 + (3 + 4)) + 5   reduce: E ⟼ number 
(S + E                 + (3 + 4)) + 5   reduce: S ⟼ S + E 
(S           + (3 + 4)) + 5   shift +
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Shift/Reduce Parsing
• Parser state: 
– Stack of terminals and nonterminals. 

– Unconsumed input is a string of terminals 

– Current derivation step is        stack + input 

• Invariant: Stack plus input is a step in building the Rightmost derivation 
in reverse 

Stack     Input    Derivation steps 
                (1 + 2 + (3 + 4)) + 5       (1 + 2 + (3 + 4)) + 5 
(          1 + 2 + (3 + 4)) + 5    
(1             + 2 + (3 + 4)) + 5    
(E           + 2 + (3 + 4)) + 5   (E + 2 + (3 + 4)) + 5 
(S             + 2 + (3 + 4)) + 5   (S + 2 + (3 + 4)) + 5 
(S +                 2 + (3 + 4)) + 5    
(S + 2                        + (3 + 4)) + 5    
(S + E                                      + (3 + 4)) + 5   (S + E + (3 + 4)) + 5 
(S                                            + (3 + 4)) + 5   (S + (3 + 4)) + 5
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LR(0) GRAMMARS
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Simple LR parsing with no look ahead. 



LR Parser States
• Goal: know what set of reductions are legal at any given point. 
• Idea: Summarize all possible stack prefixes α as a finite parser state. 
– Parser state is computed by a DFA that reads the stack σ. 

– Accept states of the DFA correspond to unique reductions that apply. 

• Example: LR(0) parsing 
– Left-to-right scanning, Right-most derivation, zero look-ahead tokens 

– Too weak to handle many language grammars (e.g. the “sum” grammar) 

– But, helpful for understanding how the shift-reduce parser works.
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Example LR(0) Grammar: Tuples
• Example grammar for non-empty tuples and identifiers: 

• Example strings: 
– x    

– (x,y)    

– ((((x)))) 

– (x, (y, z), w) 

– (x, (y, (z, w)))
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S ⟼ ( L )  |  id 
L ⟼ S   |   L , S
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Shift/Reduce Parsing
• Parser state: 
– Stack of terminals and nonterminals. 

– Unconsumed input is a string of terminals 

– Current derivation step is        stack + input 

• Parsing is a sequence of shift and reduce operations: 
• Shift: move look-ahead token to the stack: e.g. 

Stack    Input      Action 
          (x,  (y, z), w)           shift ( 
(      x,  (y, z), w)      shift x 

• Reduce: Replace symbols γ at top of stack with nonterminal X such that 
X ⟼ γ is a production.  (pop γ, push X): e.g. 

   Stack      Input      Action 
(x        ,  (y, z), w)       reduce S ⟼ id 

(S              ,  (y, z), w)      reduce L ⟼ S
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S ⟼ ( L )  |  id 
L ⟼ S   |   L , S



Example Run
Stack   Input    Action 
       (x,  (y, z), w)   shift ( 
(        x,  (y, z), w)    shift x 
(x    ,  (y, z), w)    reduce S ⟼ id 
(S    ,  (y, z), w)   reduce L ⟼ S 
(L    ,  (y, z), w)   shift , 
(L,                  (y, z), w)   shift ( 
(L, (           y, z), w)   shift y 
(L, (y         , z), w)   reduce S ⟼ id 
(L, (S         , z), w)   reduce L ⟼ S 
(L, (L         , z), w)   shift , 
(L, (L,            z), w)   shift z 
(L, (L, z                      ), w)   reduce S ⟼ id 
(L, (L, S                      ), w)   reduce L ⟼ L, S 
(L, (L            ), w)   shift ) 
(L, (L)             , w)   reduce S ⟼ ( L ) 
(L, S             , w)   reduce L ⟼ L, S 
(L              , w)   shift , 
(L,                w)   shift w 
(L, w                  )   reduce S ⟼ id 
(L, S                  )   reduce L ⟼ L, S 
(L                   )   shift ) 
(L)        reduce S ⟼ ( L ) 
S
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S ⟼ ( L )  |  id 
L ⟼ S   |   L , S



Action Selection Problem
• Given a stack σ and a look-ahead symbol b, should the parser: 
– Shift b onto the stack (new stack is σb) 

– Reduce a production X ⟼ γ, assuming that σ = αγ  (new stack is αX)? 

• Sometimes the parser can reduce but shouldn’t 
– For example, X ⟼ ε can always be reduced 

• Sometimes the stack can be reduced in different ways 

• Main idea:  decide what to do based on a prefix α of the stack plus the 
look-ahead symbol. 
– The prefix α is different for different possible reductions since in productions 

X ⟼ γ and Y ⟼ β, γ and β might have different lengths. 

• Main goal: know what set of reductions are legal at any point. 
– How do we keep track?
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LR(0) States
• An LR(0) state is a set of items keeping track of progress on possible 

upcoming reductions. 
• An LR(0) item is a production from the language with an extra 

separator “.” somewhere in the right-hand-side 

• Example items:     S ⟼ .( L )     or   S ⟼ (. L)    or    L ⟼ S. 

• Intuition: 
– Stuff before the ‘.’ is already on the stack 

(beginnings of possible γ’s to be reduced) 

– Stuff after the ‘.’ is what might be seen next 

– The prefixes α are represented by the state itself
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Constructing the DFA: Start state & Closure

• First step:  Add a new production    
S’ ⟼ S$  to the grammar 

• Start state of the DFA =  empty stack,  
so it contains the item: 
    S’ ⟼ .S$ 

• Closure of a state: 
– Adds items for all productions whose LHS nonterminal occurs in an item in 

the state just after the ‘.’ 

– The added items have the ‘.’ located at the beginning (no symbols for those 
items have been added to the stack yet) 

– Note that newly added items may cause yet more items to be added to the 
state… keep iterating until a fixed point is reached. 

• Example:  CLOSURE({S’ ⟼ .S$})  =  {S’ ⟼ .S$, S ⟼ .(L), S⟼.id} 

• Resulting “closed state” contains the set of all possible productions that 
might be reduced next.
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S’ ⟼ S$ 
S ⟼ ( L )  |  id 
L ⟼ S   |   L , S



Example: Constructing the DFA

• First, we construct a state with the initial item S’ ⟼ .S$
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S’ ⟼ S$ 
S ⟼ ( L )  |  id 
L ⟼ S   |   L , S

S’ ⟼ .S$



Example: Constructing the DFA

• Next, we take the closure of that state: 
CLOSURE({S’ ⟼ .S$}) = {S’ ⟼ .S$, S ⟼ .( L ), S ⟼ .id} 

• In the set of items, the nonterminal S appears after the ‘.’ 
• So we add items for each S production in the grammar
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S’ ⟼ S$ 
S ⟼ ( L )  |  id 
L ⟼ S   |   L , S

S’ ⟼ .S$ 
S ⟼ .( L )  
S ⟼ .id



Example: Constructing the DFA

• Next we add the transitions: 
• First, we see what terminals and 

nonterminals can appear after the ‘.’ 
in the source state. 
– Outgoing edges have those label. 

• The target state (initially) includes 
all items from the source state that 
have the edge-label symbol after the 
‘.’, but we advance the ‘.’  (to 
simulate shifting the item onto the 
stack)
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S’ ⟼ S$ 
S ⟼ ( L )  |  id 
L ⟼ S   |   L , S

S’ ⟼ .S$ 
S ⟼ .( L )  
S ⟼ .id

S ⟼ (. L )

S ⟼ id.

S’ ⟼ S.$

id

S
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Example: Constructing the DFA

• Finally, for each new state, we take the closure. 
• Note that we have to perform two iterations to compute 

CLOSURE({S ⟼ ( . L )}) 
– First iteration adds L ⟼ .S and L ⟼ .L, S 

– Second iteration adds S ⟼ .(L) and S ⟼ .id
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S’ ⟼ S$ 
S ⟼ ( L )  |  id 
L ⟼ S   |   L , S

S’ ⟼ .S$ 
S ⟼ .( L )  
S ⟼ .id

S ⟼ (. L ) 
L ⟼ .S  
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Full DFA for the Example
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S’ ⟼ .S$ 
S ⟼ .( L )  
S ⟼ .id

S ⟼ (. L ) 
L ⟼ .S  
L ⟼ .L, S 
S ⟼ .(L) 
S ⟼ .id

S ⟼ id. L ⟼ L, . S 
S ⟼ .( L ) 
S ⟼ .id

L ⟼ L, S.

S ⟼ ( L .) 
L ⟼ L . , S

S ⟼ ( L ).L ⟼ S.S’ ⟼ S.$

Done!
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the end of the 
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• Current state: run the 
   DFA on the stack. 
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   reached, reduce 

• Otherwise, if the next 
  token matches an  
  outgoing edge, shift. 

• If no such transition, 
  it is a parse error. 
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Using the DFA
• Run the parser stack through the DFA. 
• The resulting state tells us which productions might be 

reduced next. 
– If not in a reduce state, then shift the next symbol and transition 

according to DFA. 
– If in a reduce state, X ⟼ γ with stack αγ, pop γ and push X. 

• Optimization: No need to re-run the DFA from beginning 
every step 
– Store the state  with each symbol on the stack:  e.g. 1(3(3L5)6 

– On a reduction X ⟼ γ, pop stack to reveal the state too: 
e.g.    From stack 1(3(3L5)6  reduce S ⟼ ( L ) to reach stack 1(3 

– Next, push the reduction symbol: e.g. to reach stack 1(3S 

– Then take just one step in the DFA to find next state: 1(3S7 
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Implementing the Parsing Table
Represent the DFA as a table of shape:  

                      state * (terminals + nonterminals) 
• Entries for the “action table” specify two kinds of actions: 
– Shift and goto state n 

– Reduce using reduction X ⟼ γ
• First pop γ off the stack to reveal the state 

• Look up X in the “goto table” and goto that state

26
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Example Parse Table
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( ) id , $ S L

1 s3 s2 g4
2 S⟼id S⟼id S⟼id S⟼id S⟼id

3 s3 s2 g7 g5
4 DONE

5 s6 s8
6 S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L)

7 L ⟼ S L ⟼ S L ⟼ S L ⟼ S L ⟼ S

8 s3 s2 g9
9 L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S

sx  = shift and goto state x 
gx  = goto state x (used when we reduce)



Example
• Parse the token stream:  (x, (y, z), w)$ 

Stack   Stream   Action (according to table) 
ε1     (x, (y, z), w)$ s3

ε1(3    x, (y, z), w)$  s2 

ε1(3x2     , (y, z), w)$  Reduce: S⟼id 

ε1(3S     , (y, z), w)$  g7   (from state 3 follow S)  

ε1(3S7     , (y, z), w)$  Reduce: L⟼S 

ε1(3L     , (y, z), w)$  g5   (from state 3 follow L) 

ε1(3L5     , (y, z), w)$  s8 

ε1(3L5,8       (y, z), w)$  s3 

ε1(3L5,8(3       y, z), w)$  s2
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LR(0) Limitations
• An LR(0) machine only works if states with reduce actions 

have a single reduce action. 
– In such states, the machine always reduces (ignoring lookahead) 

• With more complex grammars, the DFA construction will 
yield states with shift/reduce and reduce/reduce conflicts: 

    OK      shift/reduce         reduce/reduce 

• Such conflicts can often be resolved by using a look-ahead 
symbol: SLR(1) or LR(1)
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S ⟼ ( L ). S ⟼ ( L ). 
  L ⟼ .L , S

   S ⟼ L ,S. 
S ⟼ ,S.



Examples
• Consider the left associative and right associative “sum” grammars:  

    
    left       right 

• One is LR(0) the other isn’t…  which is which and why? 
• What kind of conflict do you get?  Shift/reduce or Reduce/reduce? 

• Ambiguities in associativity/precedence usually lead to shift/reduce 
conflicts. 
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S ⟼ S + E  |  E 
E ⟼ number | ( S )

S ⟼ E + S  |  E 
E ⟼ number | ( S )



Examples
• Consider the left associative and right associative “sum” grammars:   

   
    left       right 

• One is LR(0) the other isn’t…  which is which and why? 
• What kind of conflict do you get?  Shift/reduce or Reduce/reduce? 

 
If the stack is a single E, then the state is 
 
 
 
 
 
shift-reduce conflict: we can either shift the + or reduce the E to an S. 
LR(0) parser can't decide 
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S ⟼ S + E  |  E 
E ⟼ number | ( S )

S ⟼ E + S  |  E 
E ⟼ number | ( S )

S ⟼ E .+ S  
S ⟼ E.  



SLR(1) (“simple” LR) Parsers
• What conflicts are there in LR(0) parsing? 
– reduce/reduce conflict:  an LR(0) state has two reduce actions  

– shift/reduce conflict: an LR(0) state mixes reduce and shift actions 

• Can we use lookahead to disambiguate? 

• SLR(1) – uses the same DFA construction as LR(0)  
– modifies the actions based on lookahead. More powerful 

• Suppose reducing an A nonterminal is possible in some state: 
– compute Follow(A) for the given grammar 

– if the lookahead symbol is in Follow(A), then reduce, otherwise shift 

– can disambiguate between reduce/reduce conflicts if the follow sets are 
disjoint
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LR(1) Parsing
• Yet more powerful than SLR(1) 
• Algorithm is similar to LR(0) DFA construction: 
– LR(1) state = set of LR(1) items 

– An LR(1) item is an LR(0) item + a set of look-ahead symbols: 
        A ⟼  α.β  ,  L

• LR(1) closure is a little more complex: 
• Form the set of items just as for LR(0) algorithm. 

• Whenever a new item C ⟼ .γ is added because A ⟼ β.Cδ , L    is 

already in the set, we need to compute its look-ahead set M: 

1. The look-ahead set M includes FIRST(δ)  
(the set of terminals that may start strings derived from δ) 

2. If δ is itself ε or can derive ε (i.e. it is nullable), then the look-ahead M also 

contains L
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Example Closure

• Start item:     S’ ⟼ .S$    ,   {}   

• Since S is to the right of a ‘.’, add:    
        S ⟼ .E + S    ,   {$}       Note: {$} is FIRST($) 
        S ⟼ .E          ,   {$} 

• Need to keep closing, since E appears to the right of a ‘.’ in 
‘.E + S’: 
   E ⟼ .number ,   {+}    Note: + added for reason 1 
      E ⟼ .( S )       ,   {+}               FIRST(+ S) = {+} 

• Because E also appears to the right of ‘.’ in ‘.E’ we get: 
   E ⟼ .number ,   {$}    Note: $ added for reason 2 
      E ⟼ .( S )       ,   {$}                          δ is ε

• All items are distinct, so we’re done
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S’ ⟼ S$ 
S ⟼ E + S  |  E 
E ⟼ number | ( S )



Using the DFA

• The behavior is determined if: 
– There is no overlap among the 

look-ahead sets for each reduce  
item, and 

– None of the look-ahead symbols 
appear to the right of a ‘.’
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S’ ⟼ .S$ {} 
S ⟼ .E + S {$} 
S ⟼ .E  {$} 
E ⟼ .num {+} 
E ⟼ .( S ) {+} 
E ⟼ .num {$} 
E ⟼ .( S ) {$}

S ⟼ E .+ S {$} 
S ⟼ E.  {$}

E

1

+ $ E

1 g2
2 s3 S ⟼ E

2
+

Fragment of the Action & Goto tables

Choice between shift 
and reduce is resolved.



LR variants
• LR(1) gives maximal power out of a 1 look-ahead symbol parsing table 
– DFA + stack is a push-down automaton 

• In practice, LR(1) tables are big. 
– Modern implementations (e.g., menhir) directly generate code 

• LALR(1)  = “Look-ahead LR” 
– Merge any two LR(1) states whose items are identical except for the look-ahead sets: 

– Such merging can lead to nondeterminism (e.g., reduce/reduce conflicts), but 
– Results in a much smaller parse table and works well in practice 
– This is the usual technology for automatic parser generators: yacc, ocamlyacc 

• GLR = “Generalized LR” parsing 
– Efficiently compute the set of all parses for a given input 
– Later passes should disambiguate based on other context
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S’ ⟼ .S$ {} 
S ⟼ .E + S {$} 
S ⟼ .E {$} 
E ⟼ .num {+} 
E ⟼ .( S ) {+} 
E ⟼ .num {$} 
E ⟼ .( S ) {$}

S’ ⟼ .S$ {} 
S ⟼ .E + S {$} 
S ⟼ .E {$} 
E ⟼ .num {+,$} 
E ⟼ .( S ) {+,$}



Classification of Grammars
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LR(0)

SLR(1)

LALR(1)

LR(1)

LL(1)



LALRPOP DEMO
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Debugging parser conflicts. 
Disambiguating grammars. 


