

EECS 483: Compiler Construction

Lecture 23:

LL(1) Grammars, Top-Down Parsing

Month Day Winter Semester 2025

Announcements

- Assignment 5 Autograder released

Starter code updated with additional public test cases, small bugfix to the cli.

Get started! Different structure from previous assignments

Searching for derivations.

LL & LR PARSING

CFGs Mathematically

- A Context-free Grammar (CFG) consists of
 - A set of *terminals* (e.g., a token or ε)
 - A set of *nonterminals* (e.g., S and other syntactic variables)
 - A designated nonterminal called the start symbol
 - A set of productions:
 LHS → RHS
 - LHS is a nonterminal
 - RHS is a *string* of terminals and nonterminals
- Example: The balanced parentheses language:

$$S \mapsto (S)S$$

 $S \mapsto \varepsilon$

$$S \mapsto \epsilon$$

Derivations in CFGs

- Example: derive (1 + 2 + (3 + 4)) + 5
- $S \mapsto E + S \mid E$ $E \mapsto \text{number} \mid (S)$

•
$$\underline{\mathbf{S}} \mapsto \underline{\mathbf{E}} + \mathbf{S}$$

$$\mapsto$$
 (**S**) + S

$$\mapsto (\underline{\mathbf{E}} + \mathbf{S}) + \mathbf{S}$$

$$\mapsto$$
 $(1 + \mathbf{S}) + \mathbf{S}$

$$\mapsto$$
 $(1 + \mathbf{E} + S) + S$

$$\mapsto$$
 $(1 + 2 + \mathbf{S}) + \mathbf{S}$

$$\mapsto$$
 $(1 + 2 + \mathbf{E}) + \mathbf{S}$

$$\mapsto$$
 (1 + 2 + (**S**)) + S

$$\mapsto$$
 (1 + 2 + (**E** + S)) + S

$$\mapsto$$
 (1 + 2 + (3 + **S**)) + S

$$\mapsto$$
 (1 + 2 + (3 + **E**)) + S

$$\mapsto$$
 (1 + 2 + (3 + 4)) + **S**

$$\mapsto$$
 (1 + 2 + (3 + 4)) + **E**

$$\mapsto$$
 (1 + 2 + (3 + 4)) + 5

For arbitrary strings α , β , γ and production rule $A \mapsto \beta$ a single step of the derivation is:

$$\alpha A \gamma \mapsto \alpha \beta \gamma$$

(substitute β for an occurrence of A)

In general, there are many possible derivations for a given string

Note: Underline indicates symbol being expanded.

Example: Left- and rightmost derivations

Leftmost derivation:

•
$$\underline{\mathbf{S}} \mapsto \underline{\mathbf{E}} + \mathbf{S}$$

 $\mapsto (\underline{\mathbf{S}}) + \mathbf{S}$
 $\mapsto (\underline{\mathbf{E}} + \mathbf{S}) + \mathbf{S}$
 $\mapsto (1 + \underline{\mathbf{S}}) + \mathbf{S}$
 $\mapsto (1 + \underline{\mathbf{E}} + \mathbf{S}) + \mathbf{S}$
 $\mapsto (1 + 2 + \underline{\mathbf{E}}) + \mathbf{S}$
 $\mapsto (1 + 2 + (\underline{\mathbf{E}})) + \mathbf{S}$
 $\mapsto (1 + 2 + (\underline{\mathbf{E}} + \mathbf{S})) + \mathbf{S}$
 $\mapsto (1 + 2 + (3 + \underline{\mathbf{E}})) + \mathbf{S}$
 $\mapsto (1 + 2 + (3 + \underline{\mathbf{E}})) + \mathbf{S}$
 $\mapsto (1 + 2 + (3 + 4)) + \underline{\mathbf{E}}$
 $\mapsto (1 + 2 + (3 + 4)) + \underline{\mathbf{E}}$

 \mapsto (1 + 2 + (3 + 4)) + 5

Rightmost derivation:

$$\underline{S} \mapsto E + \underline{S}$$

$$\mapsto E + \underline{E}$$

$$\mapsto \underline{E} + 5$$

$$\mapsto (\underline{S}) + 5$$

$$\mapsto (E + \underline{S}) + 5$$

$$\mapsto (E + E + \underline{S}) + 5$$

$$\mapsto (E + E + (\underline{S})) + 5$$

$$\mapsto (E + E + (E + \underline{S})) + 5$$

$$\mapsto (E + E + (E + \underline{E})) + 5$$

$$\mapsto (E + E + (E + \underline{E})) + 5$$

$$\mapsto (E + E + (E + \underline{A})) + 5$$

$$\mapsto (E + E + (E + \underline{A})) + 5$$

$$\mapsto (E + E + (A + A)) + 5$$

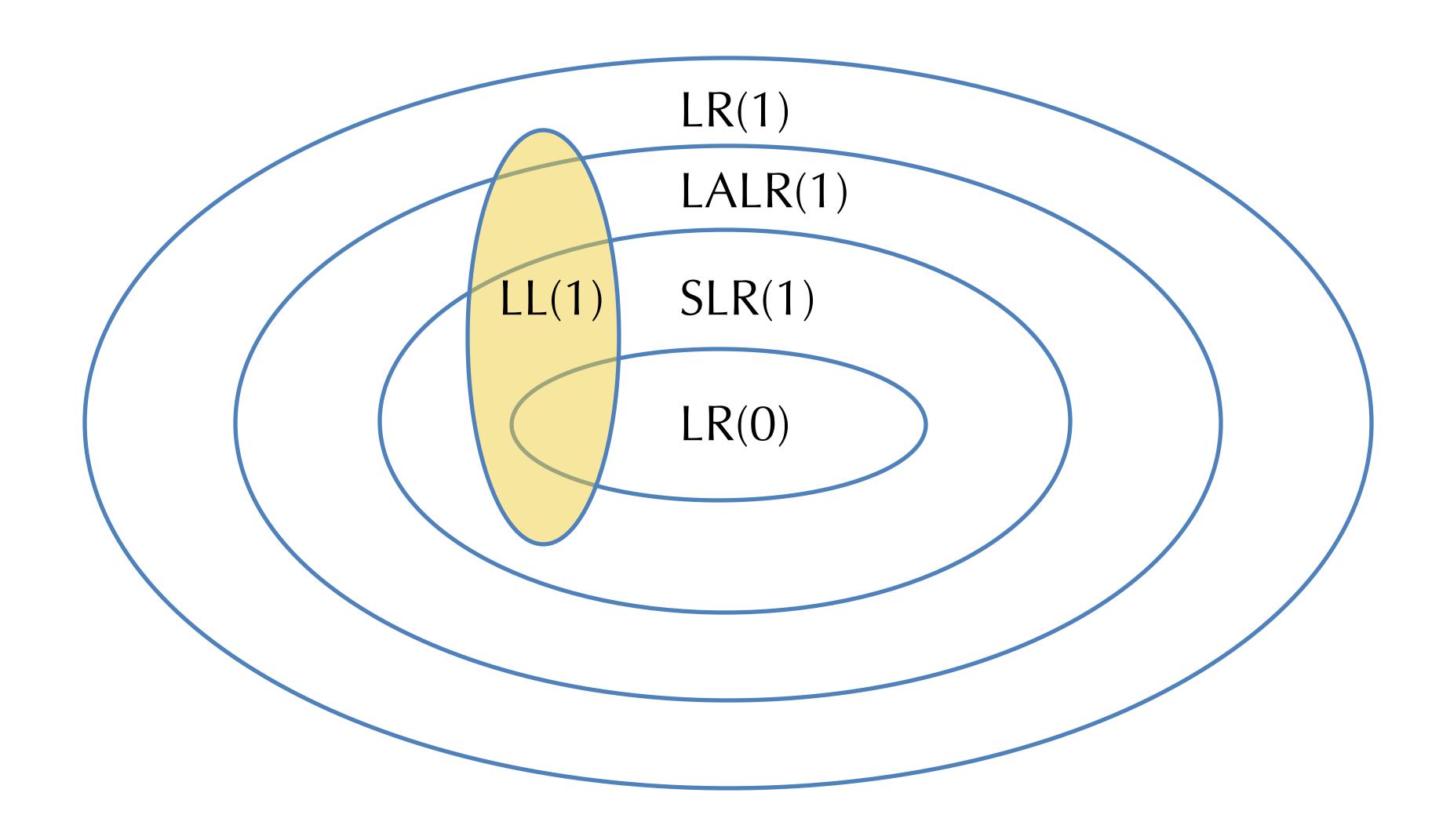
$$\mapsto (E + A + A) + 5$$

$$\mapsto (A + A + A) + 5$$

CFGs In Practice

- Context-free Grammars are elegant, declarative specifications, generalizing regular expressions
- A parser for a CFG amounts to a search procedure for derivations
- Unlike regular expressions, which are easily compiled to linear time recognizers, practical algorithms for parsing general CFGs are O(n^3) in input string length
 - Compromise: add restrictions to the CFGs
 - Benefit: Linear time
 - Drawback: have to rewrite the grammar to make it fit the restrictions

Classification of Grammars



LL(1) GRAMMARS

Consider finding left-most derivations

Look at only one input symbol at a time.

$$S \mapsto E + S \mid E$$

 $E \mapsto \text{number} \mid (S)$

Partly-derived String	Look-ahead	Parsed/Unparsed Input
<u>S</u>		(1 + 2 + (3 + 4)) + 5
$\mapsto \underline{\mathbf{E}} + S$		(1 + 2 + (3 + 4)) + 5
\mapsto ($\underline{\mathbf{S}}$) + S	1	(1 + 2 + (3 + 4)) + 5
$\mapsto (\underline{\mathbf{E}} + S) + S$	1	(1 + 2 + (3 + 4)) + 5
\mapsto $(1 + \underline{\mathbf{S}}) + S$	2	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + \underline{\mathbf{E}} + S) + S$	2	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 + \underline{\mathbf{S}}) + S$		(1 + 2 + (3 + 4)) + 5
\mapsto $(1 + 2 + \mathbf{E}) + S$		(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 + (\underline{\mathbf{S}})) + S$	3	(1 + 2 + (3 + 4)) + 5
\mapsto (1 + 2 + ($\underline{\mathbf{E}}$ + S)) +	S 3	(1 + 2 + (3 + 4)) + 5
├		

There is a problem

 We want to decide which production to apply based on the look-ahead symbol.

$$S \mapsto E + S \mid E$$

 $E \mapsto \text{number} \mid (S)$

• But, there is a choice:

$$(1) \hspace{1cm} S \longmapsto E \longmapsto (S) \longmapsto (E) \longmapsto (1)$$

VS.

$$(1) + 2 \quad S \mapsto E + S \mapsto (S) + S \mapsto (E) + S \mapsto (1) + S \mapsto (1) + E \mapsto (1) + 2$$

• Given the look-ahead symbol: '(' it isn't clear whether to pick $S \mapsto E$ or $S \mapsto E + S$ first.

Grammar is the problem

- Not all grammars can be parsed "top-down" with only a single lookahead symbol.
- *Top-down*: starting from the start symbol (root of the parse tree) and going down
- LL(1) means
 - <u>L</u>eft-to-right scanning
 - <u>L</u>eft-most derivation,
 - <u>1</u> lookahead symbol
- This language isn't "LL(1)"
- Is it LL(k) for some k?

$$S \mapsto E + S \mid E$$

 $E \mapsto number \mid (S)$

• What can we do?

Making a grammar LL(1)

- *Problem:* We can't decide which S production to apply until we see the symbol after the first expression.
- Solution: "Left-factor" the grammar. There is a common S prefix for each choice, so add a new non-terminal S' at the decision point:

$$S \mapsto E + S \mid E$$

$$E \mapsto number \mid (S)$$

$$S \mapsto ES'$$

$$S' \mapsto \varepsilon$$

$$S' \mapsto + S$$

$$E \mapsto number \mid (S)$$

- Also need to eliminate left-recursion somehow. Why?
- Consider:

$$S \mapsto S + E \mid E$$

 $E \mapsto number \mid (S)$

LL(1) Parse of the input string

• Look at only one input symbol at a time.

$$S \mapsto ES'$$
 $S' \mapsto \varepsilon$
 $S' \mapsto + S$
 $E \mapsto number \mid (S)$

Partly-derived String	Look-ahead	Parsed/Unparsed Input
<u>S</u>		(1 + 2 + (3 + 4)) + 5
$\mapsto \underline{\mathbf{E}} S'$		(1 + 2 + (3 + 4)) + 5
$\longmapsto (\underline{\mathbf{S}}) S'$	1	(1 + 2 + (3 + 4)) + 5
$\longmapsto (\underline{\mathbf{E}} \ S') \ S'$	1	(1+2+(3+4))+5
$\longmapsto (1 \ \underline{\mathbf{S'}}) \ S'$	+	(1 + 2 + (3 + 4)) + 5
\mapsto $(1 + \underline{\mathbf{S}}) S'$	2	(1 + 2 + (3 + 4)) + 5
\longmapsto (1 + $\mathbf{\underline{E}}$ S') S'	2	(1 + 2 + (3 + 4)) + 5
\mapsto (1 + 2 S') S'	+	(1 + 2 + (3 + 4)) + 5
\mapsto (1 + 2 + $\underline{\mathbf{S}}$) S'		(1 + 2 + (3 + 4)) + 5
\mapsto (1 + 2 + E S') S'		(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 + (\underline{\mathbf{S}})S') S'$	3	(1 + 2 + (3 + 4)) + 5

Predictive Parsing

• Given an LL(1) grammar:

- For a given nonterminal, the lookahead symbol uniquely determines the production to apply.

- Top-down parsing = predictive parsing
- Driven by a predictive parsing table:
 nonterminal * input token → production

$T \mapsto S$ \$	
$S \mapsto ES'$	
$S' \longmapsto \epsilon$	
$S' \mapsto + S$	
$E \mapsto number \mid (S)$	

	number	+			\$ (EOF)
T	\longrightarrow S\$		→S\$		
S	$\mapsto E S'$		\mapsto E S'		
S'		\mapsto + S		→ E	→ E
E	→ num		\longrightarrow (S)		

 Note: it is convenient to add a special end-of-file token \$ and a start symbol T (top-level) that requires \$.

How do we construct the parse table?

- Consider a given production: $A \rightarrow \gamma$
- Construct the set of all input tokens that may appear *first* in strings that can be derived from γ
 - Add the production $\rightarrow \gamma$ to the entry (A,token) for each such token.
- If γ can derive ϵ (the empty string), then we construct the set of all input tokens that may *follow* the nonterminal A in the grammar.
 - Add the production $\rightarrow \gamma$ to the entry (A, token) for each such token.

Note: The grammar is LL(1) if and only if all entries have at most one production

Example

- First(T) = First(S)
- First(S) = First(E)
- $First(S') = \{ + \}$
- First(E) = { number, '(' }
- Follow(S') = Follow(S)
- Follow(S) = $\{\$, ')'\} \cup Follow(S')$

 $T \mapsto S\$$ $S \mapsto ES'$ $S' \mapsto \varepsilon$ $S' \mapsto + S$ $E \mapsto number \mid (S)$

Note: we want the *least* solution to this system of set equations... a *fixpoint* computation. Just like in program analysis!

	number	+	(\$ (EOF)
T	\mapsto S\$		S\$		
S	→ E S'		⊷E S'		
S'		\mapsto + S		$\mapsto \epsilon$	$\mapsto \epsilon$
E	⊷ num.		\mapsto (S)		

Converting the table to code

- Define n mutually recursive functions
 - one for each nonterminal A: parse_A
 - The type of parse_A is () -> ast if A is not an auxiliary nonterminal
 - Parse functions for auxiliary nonterminals (e.g., S') take extra ast's as inputs, one for each nonterminal in the "factored" prefix.
- Each function "peeks" at the lookahead token and then follows the production rule in the corresponding entry.
 - Consume terminal tokens from the input stream
 - Call parse_X to create sub-tree for nonterminal X
 - If the rule ends in an auxiliary nonterminal, call it with appropriate ast's. (The auxiliary rule is responsible for creating the ast after looking at more input.)
 - Otherwise, this function builds the ast tree itself and returns it.

	number	+	(\$ (EOF)
T	\longrightarrow S\$		\longrightarrow S\$		
S	\mapsto E S'		\mapsto E S'		
S'		\mapsto + S		$\mapsto \epsilon$	\longrightarrow ϵ
E	→ num.		\mapsto (S)		

Hand-generated LL(1) code for the table above.

DEMO: HANDPARSER.RS

LL(1) Summary

- Top-down parsing that finds the leftmost derivation.
- Language Grammar
 - ⇒ LL(1) grammar (manual rewrite)
 - ⇒ prediction table (intermediate representation)
 - ⇒ recursive-descent parser (code generation)
- Problems:
 - Grammar must be LL(1)
 - Can extend to LL(k) (it just makes the table bigger)
 - Grammar cannot be left recursive (parser functions will loop!)

• Is there a better way?

Next time LR GRAMMARS