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Parsing I: Context Free Grammars
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Announcements
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- Assignment 5 starter code and specification released.

Delay on autograder release, will be out by Tuesday or Wednesday.

Covers register allocation and assertion removal optimizations.

Due on Sunday, April 20, with usual 2 late days.


- Last Midterm regrade requests due today. Midterm scores will be 
finalized on canvas by the end of the week.



Parsing: Finding Syntactic Structure
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{
  if (b == 0) a = b;
  while (a != 1) {
    print_int(a);
    a = a – 1;
  }
}
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Syntactic Analysis aka Parsing
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The task of the syntactic analysis is to produce an abstract syntax tree from a token stream (the 
output from lexing), rejecting the input if it is not well-formed.


Similarities to lexing:


1. Input is a string (of tokens rather than characters)


2. Need to identify *if* the input is well-formed (language recognition)


3. Need to decide which of possibly multiple outputs to produce (ambiguity)


Differences:


1. Output is a tree rather than a string


2. Formalisms for lexing are too weak (regular expressions and finite automata)


3. Reason about ambiguity more directly in our grammar formalism (rather than only relying on 
tie-break rules, longest match conventions)



Parser Generators as Compilers
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Writing parsers by hand is difficult, so we often use parser generators, 
similar to our lexer generators.

Adapt our formula for parser generators:

1. Design a source language for parsers: context-free grammars 
2. Describe its semantics: CFGs define the set of parse trees for 

every string (not just a formal language)

3. Transform into an intermediate representation: stack-based 

automata 
4. Generate code from the IR



Parser Generators as Compilers

6

Writing parsers by hand is difficult, so we often use parser generators, 
similar to our lexer generators.


The theory for parser generators is not as clean as lexer generators. 
Because parser generators are more powerful, they are also more 
computationally expensive to analyze and compile efficiently.


In practice we work with restricted versions of CFGs that support 
efficient algorithms and are flexible in practice.



Limitations of Regular Languages
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Regular expressions and finite automata are not powerful enough to identify if an 
input string is well-formed for realistic programming languages.


Example:


Languages include delimited expressions like 


parentheses "(1 + 2 + (3 + 4)) + 5"


braces "fn foo() { 1 }"


And reject unbalanced examples


"(1 + 2 + (3 + 4) + 5" is not valid, unmatched left paren.



Limitations of Regular Languages
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Regular expressions and finite automata are not powerful enough to identify if an 
input string is well-formed for realistic programming languages.


Example:


Dyck language over just two character alphabet '(' and ')' consists of those 
words where the parentheses are balanced.


E.g., "(()()(((()))))" but not "(())(()"


Parsing a real language is at least as hard as parsing the Dyck language.


Theorem: The Dyck language is not regular, i.e., there is no regular expression 
expressing it.



Limitations of Regular Languages
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Theorem: The Dyck language is not regular, i.e., there is no regular expression 
expressing it.


Proof:


   Idea: Regular expressions are equivalent to finite automata, which have a finite 
number of states. Finite states means you can only count so high.


Consider a very long string of open parentheses ((((((...n times where n is > the 
number of states of the automaton. Since n is > the number of states, there 
must be some smaller prefix (((((...m where m < n and the automaton reaches 
the same state.


If the automaton decides the Dyck language, then (((...m)))...m is accepted, but 
therefore also (((...n)))...m is also accepted, which is incorrect.



CONTEXT FREE GRAMMARS
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Context-free Grammars
• Here is a specification of the language of balanced parens: 

• The definition is recursive – S mentions itself. 

• Idea: “derive” a string in the language by starting with S and rewriting 
according to the rules:
– Example:   S ⟼  (S)S ⟼ ((S)S)S ⟼ ((ε)S)S ⟼ ((ε)S)ε ⟼ ((ε)ε)ε = (()) 

• You can replace the “nonterminal” S by one of its definitions anywhere 
• A context-free grammar accepts a string iff there is a derivation from 

the start symbol
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S ⟼ (S)S 

S ⟼ ε

Note: Once again we  
have to take care to 
distinguish meta-language 
elements (e.g. “S” and “⟼”)  
from object-language  
elements (e.g. “(“ ).*

* And, since we’re writing this description in English, we are 
careful distinguish the meta-meta-language (e.g. words) from the 
meta-language and object-language (e.g. symbols) by using quotes.



CFGs Mathematically
• A Context-free Grammar (CFG) consists of  
– A set of terminals  (e.g., a lexical token or ε) 

– A set of nonterminals (e.g., S and other syntactic variables) 

– A designated nonterminal called the start symbol 

– A set of productions:      LHS ⟼ RHS 
• LHS is a nonterminal 
• RHS is a string of terminals and nonterminals 

• Example:   The balanced parentheses language: 

• How many terminals?  How many nonterminals? Productions? 
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S ⟼ (S)S 

S ⟼ ε



Another Example: Sum Grammar
• A grammar that accepts parenthesized sums of numbers: 

  e.g.:  (1 + 2 + (3 + 4)) + 5 

• Note the vertical bar ‘|’ is shorthand for multiple productions: 

 S ⟼ E + S    4 productions 

 S ⟼ E     2 nonterminals: S, E 

 E ⟼ number   4 terminals: (, ), +, number 

 E ⟼ (S)     Start symbol: S
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S  ⟼  E + S  |   E 

E  ⟼  number  |   ( S )



Derivations in CFGs
• Example: derive (1 + 2 + (3 + 4)) + 5 
• S ⟼ E + S 

⟼ (S) + S 

⟼ (E + S) + S  

⟼ (1 + S) + S      

⟼ (1 + E + S) + S      

⟼ (1 + 2 + S) + S           

⟼ (1 + 2 + E) + S      

⟼ (1 + 2 + (S)) + S     

⟼ (1 + 2 + (E + S)) + S     

⟼ (1 + 2 + (3 + S)) + S    

⟼ (1 + 2 + (3 + E)) + S    

⟼ (1 + 2 + (3 + 4)) + S 

⟼ (1 + 2 + (3 + 4)) + E    

⟼ (1 + 2 + (3 + 4)) + 5      
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S ⟼ E + S  |  E 
E ⟼ number | ( S )

For arbitrary strings α, β, γ and 
production rule   A ⟼ β
a single step of the derivation is: 

αAγ  ⟼   αβγ

( substitute β for an occurrence of A)

In general, there are many possible 
derivations for a given string 

Note: Underline indicates symbol 
being expanded. 



From Derivations to Parse Trees

• Tree representation of the 
derivation 

• Leaves of the tree are terminals 
– In-order traversal yields the input 

sequence of tokens 

• Internal nodes: nonterminals  
• No information about the 

order of the derivation steps 

• (1 + 2 + (3 + 4)) + 5     
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Parse Tree
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From Derivations to Parse Trees

• Idea: Think of the non-terminals of 
the CFG as mutually-recursive 
enum types in Rust 
 
enum S { 
  Plus(E,PlusSign,S), 
  Exp(E)  
} 
enum E { 
  Num(number), 
  Paren(LP,S,RP) 
} 

• Then the parse trees are 
the values of the enum 
type
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Parse Tree

4
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From Parse Trees to Abstract Syntax

• Parse tree: 
“concrete syntax”

• Abstract syntax tree 
(AST): 

• Hides, or abstracts, 
unneeded information.
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S

E   +   S

(    S    ) E

E   +   S 5

1 E   +   S

2 E

(    S    )

E   +   S

3 E

• Parse Trees 
enum S { 
  Plus(E,PlusSign,S), 
  Exp(E)  
} 
enum E { 
  Num(number), 
  Paren(LP,S,RP) 
}

• AST 
enum Exp { 
  Plus(Exp,Exp), 
  Num(number)  
}

S ⟼ E + S  |  E 
E ⟼ number | ( S )



Derivation Orders
• Productions of the grammar can be applied in any order. 
• There are two standard orders: 
– Leftmost derivation: Find the left-most nonterminal and apply a 

production to it. 
– Rightmost derivation: Find the right-most nonterminal and apply a 

production there. 

• Idea: These are search strategies for finding a parse tree 
– Both strategies (and any other) yield the same parse tree! 
– Parse tree doesn’t contain the information about what order the 

productions were applied. 
– Just like an enum value doesn't tell you an order in which its subtrees 

were constructed.
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Example: Left- and rightmost derivations

• Leftmost derivation:    Rightmost derivation: 

• S ⟼ E + S      S ⟼ E + S 

⟼ (S) + S        ⟼ E + E 

⟼ (E + S) + S       ⟼ E + 5
⟼ (1 + S) + S       ⟼ (S) + 5
⟼ (1 + E + S) + S      ⟼ (E + S) + 5 

⟼ (1 + 2 + S) + S      ⟼ (E + E + S) + 5
⟼ (1 + 2 + E) + S      ⟼ (E + E + E) + 5 

⟼ (1 + 2 + (S)) + S      ⟼ (E + E + (S)) + 5 

⟼ (1 + 2 + (E + S)) + S        ⟼ (E + E + (E + S)) + 5 

⟼ (1 + 2 + (3 + S)) + S     ⟼ (E + E + (E + E)) + 5 

⟼ (1 + 2 + (3 + E)) + S     ⟼ (E + E + (E + 4)) + 5 

⟼ (1 + 2 + (3 + 4)) + S       ⟼ (E + E + (3 + 4)) + 5 
⟼ (1 + 2 + (3 + 4)) + E       ⟼ (E + 2 + (3 + 4)) + 5 
⟼ (1 + 2 + (3 + 4)) + 5       ⟼ (1 + 2 + (3 + 4)) + 5
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S ⟼ E + S  |  E 
E ⟼ number | ( S )



Loops and Termination
• Some care is needed when defining CFGs 
• Consider: 

– This grammar has nonterminal definitions that are “nonproductive”. 
(i.e. they don’t mention any terminal symbols) 

– There is no finite derivation starting from S, so the language is empty. 

• Consider: 

– This grammar is productive, but again there is no finite derivation starting from S, so 
the language is empty 

• Easily generalize these examples to a “cycle” of many nonterminals, which can 
be harder to find in a large grammar 

• Upshot:  be aware of “vacuously empty” CFG grammars. 
– Every nonterminal should eventually rewrite to an alternative that contains only 

terminal symbols.
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S ⟼   E 
E ⟼   S

S ⟼   ( S )



Regular Expressions to CFGs
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Theorem: every Regex can be expressed as a CFG, i.e. there is a CFG that generates 
exactly the strings in the Regex

– ‘a’	 	 	 S -> a

– ∅                   S with no productions

– ε	 	 	 S -> ε

– R1 | R2	 	 S -> S1 

                                S -> S2 

                                where S1 -> ... and S2 -> ... are CFGs for R1, R2 

– R1R2	 	 S -> S1 S2  

                                 where S1, S2 are CFGs for R1, R2 

– R*	 	 	 S -> ε 
                     S -> SR S


                             where SR are CFGs for R




GRAMMARS FOR 
PROGRAMMING LANGUAGES
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Associativity, ambiguity, and precedence. 



Associativity

Leftmost derivation: 
S ⟼ E + S  
 ⟼ 1 + S   
 ⟼ 1 + E + S  
 ⟼ 1 + 2 + S   
 ⟼ 1 + 2 + E  
 ⟼ 1 + 2 + 3

Rightmost derivation: 
S ⟼ E + S  
 ⟼ E + E + S  
 ⟼ E + E + E 
 ⟼ E + E + 3 
 ⟼ E + 2 + 3 
 ⟼ 1 + 2 + 3 
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S  

E   +   S

1 E   +   S

2 E

3
Parse Tree

3

+

1 +

2

AST

S ⟼ E + S  |  E 
E ⟼ number | ( S )

Consider the input:    1 + 2 + 3 



Associativity
• This grammar makes ‘+’  right associative… 
– i.e., the abstract syntax tree is the same for both  

1 + 2 + 3 and 1 + (2 + 3) 

• Note that the grammar is right recursive… 

• How would you make ‘+’ left associative?   
• What are the trees for “1 + 2 + 3”?
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S ⟼ E + S  |  E 
E ⟼ number | ( S )

S refers to itself 
on the right of +



Ambiguity
• Consider this grammar: 

• Claim: it accepts the same set of strings as the previous one. 
• What’s the difference? 
• Consider these two leftmost derivations: 
– S ⟼ S + S ⟼ 1 + S ⟼ 1 + S + S ⟼ 1 + 2 + S ⟼ 1 + 2 + 3 

– S ⟼ S + S ⟼ S + S + S ⟼ 1 + S + S ⟼ 1 + 2 + S ⟼ 1 + 2 + 3 

• One derivation gives left 
associativity, the other gives 
right associativity to ‘+’ 
– Which is which?
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S  ⟼   S + S   |  ( S )  |  number

+ +

1 +

2 3

+ 3

1 2

AST 1 AST 2



Why do we care about ambiguity?
• The ‘+’ operation is associative, so it doesn’t matter which tree we pick.  

Mathematically,   x + (y + z) = (x + y) + z 
– But, some operations aren’t associative.    Examples? 

– Some operations are only left (or right) associative.  Examples? 

• Moreover, if there are multiple operations, ambiguity in the grammar 
leads to ambiguity in their precedence 

• Consider:   

• Input: 1 + 2 * 3 
– One parse = (1 + 2) * 3 = 9 

– The other = 1 + (2 * 3) = 7
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*
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vs.

S  ⟼   S + S   |   S * S  |  ( S )  |  number



Eliminating Ambiguity
• We can often eliminate ambiguity by adding nonterminals and 

allowing recursion only on the left (or right) . 
• Higher-precedence operators go farther from the start symbol. 
• Example:   

• To disambiguate:   
– Decide (following math) to make ‘*’ higher precedence than ‘+’ 

– Make ‘+’ left associative 

– Make ‘*’ right associative 

• Note: 
– S2 corresponds to ‘atomic’ 

expressions
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S  ⟼   S + S   |   S * S  |  ( S )  |  number

S0  ⟼   S0 + S1 |   S1 

S1  ⟼   S2 * S1   |   S2 

S2  ⟼   number  | ( S0 ) 



Context Free Grammars: Summary
• Context-free grammars allow concise specifications of 

programming languages. 
– An unambiguous CFG specifies how to parse: convert a token stream to 

a parse tree 
– Parse trees describe what productions were used to construct the string 
– Derivations describe a trace of what order the productions were used 

in 

– Ambiguity can (often) be removed by encoding precedence and 
associativity in the grammar. 

• Even with an unambiguous CFG, there may be more than one 
derivation  
– Though all derivations correspond to the same parse tree. 

• Next time: parsing CFGs
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