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Lecture 21:  
Lexing Part 2, Automata
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Reminders
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Midterm Regrade Requests due this week

Assignment 4 due on Friday

Assignment 5 to be released on Monday



Lexer Generators as Compilers

3

Lexing is tedious and error-prone to implement manually. Just like assembly code!

Instead, implement a lexer generator, a compiler for a domain-specific language 
for lexers.

Just like the compilers we've been working on this semester:

1. Design a source language for lexers: regular expressions + action code

2. Describe its semantics: regular expressions are a syntax for formal 

languages

3. Transform into an intermediate representation: non-deterministic finite 

automata 
4. Optimize that intermediate representation: determinize and minimize the 

NFA into a DFA

5. Generate code from the optimized IR



Terminology

4

A regular expression R is an expression built up from epsilon, empty, single 
characters, disjunction, sequencing and Kleene star


The semantics of a regular expression is that it represents a formal language a subset 
of all possible input strings


A recognizer for a regular expression R, is a function String -> Bool that outputs true if 
and only if the input string is in the formal language described by the regular expression


The core of implementing a lexer is implementing recognizers for regular expressions.

But it's not the entirety: we also need to be able to find the longest match for multiple 
regular expressions.



Recognizing Regular Languages

• Finite Automata

• DFA (Deterministic Finite Automata)

• NFA (Non-deterministic Finite Automata)

How can we efficiently implement a recognizer for a 
regular language?



Finite State Automata
A (non-deterministic) finite state automaton over an alphabet Σ consists of

• A finite set of states S 
• A distinguished start state s₀ ∈ S 
• A subset of accepting states Acc ⊆ S 
• A set of transitions δ, where each transition t ∈ δ has 
• a source state src(t)

• a target state tgt(t)

• a label lbl(t), which is either a character c ∈ Σ or ε

src(t) tgt(t)
lbl(t)
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A Simple Automaton

" H E Y A "

Finite Automata:  Takes an input string and determines 
whether it’s a valid sentence of a language

accept or reject
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" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

The double circle indicates that this 

state is an accepting state.  The 

automaton accepts the string if it 

ends in an accepting state.

The double circle indicates that this 

state is an accepting state.  The 

automaton accepts the string if it 

ends in an accepting state.
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Finite State Automata

What language does this FA recognize? 

Σ = {0,1} 

0 1
0 

1
1 

0



Non-determinism
NFAs use "angelic" non-determinism, meaning we non-
deterministically branch and if any of the branches succeeds, we 
succeed.

Think of it as we have an "angel" or "oracle" who will look into the 
future and tell us what the best choice to make is, if there is one.

Unfortunately, not supported by current hardware. Need to simulate 
this instead.



DFA vs. NFA

•  Deterministic Finite Automata (DFA) 
–  One transition per input per state 
–  No ε-moves 

•  Nondeterministic Finite Automata (NFA) 
–  Can have multiple transitions for one input in a given 

state 
–  Can have ε-moves 



DFA vs. NFA
•  NFAs and DFAs recognize the same set of 

languages (regular languages) 
–  For a given NFA, there exists a DFA, and vice versa 

•  DFAs are faster to execute 
–  There are no choices to consider 
–  Tradeoff: simplicity 

•  For a given language DFA can be exponentially larger than 
NFA. 



Automating Lexical Analyzer (scanner) 
Construction

To convert a specification into code: 

1  Write down the RE for the input language 

2  Build a big NFA 

3  Build the DFA that simulates the NFA 

4  Systematically shrink the DFA 

5  Turn it into code 

Scanner generators 

•  Lex and Flex work along these lines 

•  Algorithms are well-known and well-understood 



• We'll go through the "classic" procedure above but 
some scanners use different approaches:

• Brzozowski: use the "derivative" operation on 
languages to directly produce a DFA from a 
regexp

• Advantage: simple to implement, extends easily 
to support regex conjunction, negation. Often 
used for regex interpreters

• Disadvantage: computationally expensive to 
generate minimal DFAs

Alternative Approaches



Automating Lexical Analyzer (scanner) 
Construction

 
RE→ NFA  (Thompson’s construction) 

•  Build an NFA for each term 

•  Combine them with ε-moves 

NFA → DFA (subset construction) 

•  Build the simulation 

DFA → Minimal DFA 

•  Hopcroft’s algorithm                          

DFA →RE (Not part of the scanner construction)  

•  All pairs, all paths problem 

•  Take the union of all paths from s0 to an accepting state 

minimal 
DFA 

RE NFA DFA 

The Cycle of  Constructions 

Lexical Spec Scanner 



minimal 
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RE NFA DFA 

The Cycle of  Constructions 

Lexical Spec Scanner 



Key idea 
•  NFA pattern for each symbol & each operator 
•  Join them with ε moves in precedence order 

RE →NFA using Thompson’s Construction 

S0  S1  
a

NFA for a 

S0  S1  
a

S3  S4  
b

NFA for ab 

ε 

NFA for a | b 

S0  

S1  S2  
a

S3  S4  
b

S5  
ε 

ε ε 

ε 

S0  S1  
ε S3  S4  

ε 

NFA for a* 

a

ε 

ε 

Ken Thompson, CACM, 1968 



Example of Thompson’s Construction 

Let’s try a ( b | c )*  

1.  a, b, & c 

2.  b | c 

3.  ( b | c )*   

S0  S1  
a

S0  S1  
b

S0  S1  
c

S2  S3  
b

S4  S5  
c

S1 S6  S0  S7  

ε 

ε 

ε ε 

ε ε 

ε ε 

S1  S2  
b

S3  S4  
c

S0  S5  
ε 

ε 

ε 

ε 



Example of Thompson’s Construction     (con’t) 

4.  a ( b | c )*  

 

Of course, a human would design something 
simpler ... 

S0  S1  
a

b | c 
But, we can automate production of  
the more complex one ... 

S0  S1  
a ε 

S4  S5  
b

S6  S7  
c

S3 S8  S2  S9  

ε 

ε 

ε ε 

ε ε 

ε ε 



minimal 
DFA 

RE NFA DFA 

The Cycle of  Constructions 

Lexical Spec Scanner 



NFA to DFA : Trick 

•  Simulate the NFA 

•  Each state of DFA 

  = a non-empty subset of states of the NFA 

•  Start state 

  = the set of NFA states reachable through e-moves from 
    NFA start state 

•  Add a transition S !a S’ to DFA iff 
–  S’ is the set of NFA states reachable from any state in S after 

seeing the input a, considering ε-moves as well 



NFA to DFA (2) 

•  Multiple transitions 
–  Solve by subset construction 
–  Build new DFA based upon the set of states each 

representing a unique subset of states in NFA 

1 2 
a 

a 
b R= a+ b* 

ε-closure(1) = {1} include state “1” 
(1,a) ! {1,2} include state “1/2” 
(1,b) ! ERROR 
(1/2,a) !1/2 
(1/2,b) ! 2 include state “2” 

start 1 2 

a 

a 
1/2 start b 

b 

(2,a) ! ERROR 
(2,b) ! 2 
Any state with “2” in name is a final state 



NFA to DFA (3)  

•  ε transitions 
–  Any state reachable by an ε transition is “part of the state” 
–  ε-closure - Any state reachable from S by ε transitions is in 

the ε-closure; treat ε-closure as 1 big state, always include 
ε-closure as part of the state 

2 3 

a b 

start 
1 

ε ε 

1.  ε-closure(1)     = {1,2,3};                                      include1/2/3 
2.  Move(1/2/3, a) = {2, 3} + ε-closure(2,3) = {2,3} ; include 2/3 
3.  Move(1/2/3, b) = {3} + ε-closure(3)  = {3}          ; include state 3 
4.  Move(2/3, a)   = {2} + ε-closure(2)  = {2,3} 
5.  Move(2/3, b)   = {3} + ε-closure(3)  = {3}  
6.  Move(3, b)   = {3} + ε-closure(3)  = {3}  

a*b* 



NFA to DFA (3)  

•  ε transitions 
–  Any state reachable by an ε transition is “part of the state” 
–  ε-closure - Any state reachable from S by ε transitions is in 

the ε-closure; treat ε-closure as 1 big state, always include 
ε-closure as part of the state 

2 3 

a b 

start 
1 

ε ε 

1.  ε-closure(1)     = {1,2,3};                                      include1/2/3 
2.  Move(1/2/3, a) = {2, 3} + ε-closure(2,3) = {2,3} ; include 2/3 
3.  Move(1/2/3, b) = {3} + ε-closure(3)  = {3}          ; include state 3 
4.  Move(2/3, a)   = {2} + ε-closure(2)  = {2,3} 
5.  Move(2/3, b)   = {3} + ε-closure(3)  = {3}  
6.  Move(3, b)   = {3} + ε-closure(3)  = {3}  

2/3 3 

a b 

start 
1/2/3 

a b 

a*b* 

b 



NFA to DFA - Example 

1 

2 

3 start 

a 

a 
b 

a 

4 

6 5 

ε 

ε 
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B 

NFA to DFA - Example 

1 

2 

3 start 

a 

a 
b 

a 

4 

6 5 

ε 

ε 

ε 

a 

b 

b 

A 

4 

6 a 
a start 

ε-closure(1) = {1, 2, 3, 5} 

 Create a new state  A = {1, 2, 3, 5} 

move(A, a) = {3, 6}  + ε-closure(3,6) = {3,6} 

Create B = {3,6} 

move(A, b) = {4} + ε-closure(4)  = {4} 

move(B, a) = {6} + ε-closure(6)  = {6} 

move(B, b) = {4} + ε-closure(4)  = {4} 

 

move(6, a) = {6} + ε-closure(6) = {6} 

move(6, b) ! ERROR 
 

move(4, a|b) ! ERROR 



Class Problem 
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Convert this NFA to a DFA 

A = { 0, 1, 2, 4, 7 }


B = { 1, 2, 3, 4, 6, 7, 8 }


C = { 1, 2, 4, 5, 6, 7 }


D = { 1, 2, 4, 5, 6, 8, 8, 9 }

A D

B

C

a

a

a

a

b

b

b

b

minimal?
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Convert this NFA to a DFA 

A = { 0, 1, 2, 4, 7 } == (a|b)*ab


B = { 1, 2, 3, 4, 6, 7, 8 } == b|A


C = { 1, 2, 4, 5, 6, 7 } == A


D = { 1, 2, 4, 5, 6, 8, 8, 9 } == ε|A

A D

B

C

a

a

a

a

b

b

b

b

not minimal, A == C



Class Problem 
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Convert this NFA to a DFA 

A = { 0, 1, 2, 4, 7 } == (a|b)*ab


B = { 1, 2, 3, 4, 6, 7, 8 } == b|A


C = { 1, 2, 4, 5, 6, 7 } == A


D = { 1, 2, 4, 5, 6, 8, 8, 9 } == ε|A

D

B

A,C

a

a

a

b

b

b

minimal



NFA to DFA : cont.. 

•  An NFA may be in many states at any time 
 

•  How many different states ? 
 

•  If there are N states, the NFA must be in some 
subset of those N states 
 

•  How many subsets are there? 

   2^N - 1 = finitely many 



NFA Determinization: Correctness
The powerset construction takes an NFA N and constructs an equivalent DFA 
Pow(N).

Equivalent means that a string has an accepting trace in N (starting at the 
start state) if and only if it does in Pow(N) (starting at the start state).


Idea of proof is to generalize to a statement about traces starting at any state:

For any state s in N and accepting trace starting at s, show that for all 
states S in Pow(N) if s in S, then there is an accepting trace starting at S.

For any state S in Pow(N), show that there exists a state s in S that has an 
accepting trace in N starting at s.

Proof each of these holds by induction on the length of the trace.



minimal 
DFA 

RE NFA DFA 

The Cycle of  Constructions 

Lexical Spec Scanner 



State Minimization 

•  Resulting DFA can be quite large 
–  Contains redundant or equivalent states 

2 

5 

b 

start 
1 

3 

b 

a 
b 

a 
a 

4 

b 

a 

1 2 3 
start 

a a 

b b 

Both DFAs accept 
b*ab*a 



State Minimization (2) 

•  Idea – find groups of equivalent states and 
merge them 
–  All transitions from states in group G1 go to states in 

another group G2 
–  Construct minimized DFA such that there is 1 state for 

each group of states 

2 

5 

b 

start 
1 

3 

b 

a 
b 

a 
a 

4 

b 

a 

Basic strategy: identify 
distinguishing transitions 



DFA Minimization
Overview of algorithm:


Produce a partition of the states, so that states are in the same 
partition if they are equivalent.

Initialize: two sets, accepting and rejecting

Update: If any states in the same partition make transitions to 
different partitions, split them.

Repeat until no new partitions are created

Minimized DFA has the partitions as states.


Similar to iterative fixpoint algorithms for dataflow analysis!



minimal 
DFA 

RE NFA DFA 

The Cycle of  Constructions 

Lexical Spec Scanner 



DFA Implementation 

•  A DFA can be implemented by a 2D table T 
–  One dimension is “states” 
–  Other dimension is “input symbol” 
–  For every transition Si !a Sk define T[i,a] = k 

•   DFA “execution” 
–  If in state Si and input a, read T[i,a] = k and skip to 

state Sk 
–  Very efficient 



DFA Table Implementation : Example 



Implementation Cont .. 

•  NFA -> DFA conversion is at the heart of tools 
such as flex 

•  But, DFAs can be huge 

•  In practice, flex-like tools trade off speed for 
space in the choice of NFA and DFA 
representations 



Lexer Generator

• Given regular expressions to describe the 
language (token types),  

•  Step 1: Generates NFA that can recognize the  
regular language defined 

• Step 2: Transforms NFA to DFA  

• Implemented in various lexer generators tools: 
lex/flex (C), ocamllex (OCaml), logos/lalrpop 
(Rust)



Challenges for Lexical Analyzer

• How do we determine which lexemes are 
associated with each token?

• Regular expression to describe token type

• When there are multiple ways we could scan 
the input, how do we know which one to 
pick?

• How do we address these concerns 
efficiently?



  

Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*
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f o tr



  

Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr



  

Conflict Resolution

● Assume all tokens are specified as 
regular expressions.

● Algorithm: Left-to-right scan.

● Tiebreaking rule one: Maximal munch.

● Always match the longest possible prefix of 
the remaining text.



  

Implementing Maximal Munch

● Given a set of regular expressions, how 
can we use them to implement maximum 
munch?

● Idea:

● Convert expressions to NFAs.

● Run all NFAs in parallel, keeping track of the 
last match.

● When all automata get stuck, report the last 
match and restart the search at that point.



• Example



  

T_Do do
T_Double double
T_Mystery    [A-Za-z]

Implementing Maximal Munch
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Other Conflicts

T_Do do
T_Double double
T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o bu el

disambiguate with an ordering between the choices



Summary
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• Lexers scan the input program, grouping substrings into higher level 
tokens


• Lexing is tedious and error-prone to implement manually. Just like 
assembly code!


• Can use a lexer generator, a compiler for a domain-specific 
language for lexers.


• Use regular expressions as syntax, finite automata as intermediate 
representation


• Widely available tools, well known algorithms

• Caveat: computationally limited, not powerful enough for parsing 

or semantic analysis. New formalisms next time!


