
April 2
Winter Semester 2025

EECS 483: Compiler Construction
Lecture 21:
Lexing Part 2, Automata

1

Reminders

2

Midterm Regrade Requests due this week

Assignment 4 due on Friday

Assignment 5 to be released on Monday

Lexer Generators as Compilers

3

Lexing is tedious and error-prone to implement manually. Just like assembly code!

Instead, implement a lexer generator, a compiler for a domain-specific language
for lexers.

Just like the compilers we've been working on this semester:

1. Design a source language for lexers: regular expressions + action code

2. Describe its semantics: regular expressions are a syntax for formal

languages

3. Transform into an intermediate representation: non-deterministic finite

automata
4. Optimize that intermediate representation: determinize and minimize the

NFA into a DFA

5. Generate code from the optimized IR

Terminology

4

A regular expression R is an expression built up from epsilon, empty, single
characters, disjunction, sequencing and Kleene star

The semantics of a regular expression is that it represents a formal language a subset
of all possible input strings

A recognizer for a regular expression R, is a function String -> Bool that outputs true if
and only if the input string is in the formal language described by the regular expression

The core of implementing a lexer is implementing recognizers for regular expressions.

But it's not the entirety: we also need to be able to find the longest match for multiple
regular expressions.

Recognizing Regular Languages

• Finite Automata

• DFA (Deterministic Finite Automata)

• NFA (Non-deterministic Finite Automata)

How can we efficiently implement a recognizer for a
regular language?

Finite State Automata
A (non-deterministic) finite state automaton over an alphabet Σ consists of

• A finite set of states S
• A distinguished start state s₀ ∈ S
• A subset of accepting states Acc ⊆ S
• A set of transitions δ, where each transition t ∈ δ has
• a source state src(t)

• a target state tgt(t)

• a label lbl(t), which is either a character c ∈ Σ or ε

src(t) tgt(t)
lbl(t)

" "start

A,B,C,...,Z

A Simple Automaton

" "start

A,B,C,...,Z

Each circle is a state of the

automaton. The automaton's

configuration is determined

by what state(s) it is in.

Each circle is a state of the

automaton. The automaton's

configuration is determined

by what state(s) it is in.

A Simple Automaton

" "start

A,B,C,...,Z

These arrows are called

transitions. The automaton

changes which state(s) it is in

by following transitions.

These arrows are called

transitions. The automaton

changes which state(s) it is in

by following transitions.

A Simple Automaton

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

Finite Automata: Takes an input string and determines
whether it’s a valid sentence of a language

accept or reject

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

The double circle indicates that this

state is an accepting state. The

automaton accepts the string if it

ends in an accepting state.

The double circle indicates that this

state is an accepting state. The

automaton accepts the string if it

ends in an accepting state.

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

These are called -transitionsε . These

transitions are followed automatically and

without consuming any input.

These are called -transitionsε . These

transitions are followed automatically and

without consuming any input.

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

Finite State Automata

What language does this FA recognize?

Σ = {0,1}

0 1
0

1
1

0

Non-determinism
NFAs use "angelic" non-determinism, meaning we non-
deterministically branch and if any of the branches succeeds, we
succeed.

Think of it as we have an "angel" or "oracle" who will look into the
future and tell us what the best choice to make is, if there is one.

Unfortunately, not supported by current hardware. Need to simulate
this instead.

DFA vs. NFA

•  Deterministic Finite Automata (DFA)
–  One transition per input per state
–  No ε-moves

•  Nondeterministic Finite Automata (NFA)
–  Can have multiple transitions for one input in a given

state
–  Can have ε-moves

DFA vs. NFA
•  NFAs and DFAs recognize the same set of

languages (regular languages)
–  For a given NFA, there exists a DFA, and vice versa

•  DFAs are faster to execute
–  There are no choices to consider
–  Tradeoff: simplicity

•  For a given language DFA can be exponentially larger than
NFA.

Automating Lexical Analyzer (scanner)
Construction

To convert a specification into code:

1  Write down the RE for the input language

2  Build a big NFA

3  Build the DFA that simulates the NFA

4  Systematically shrink the DFA

5  Turn it into code

Scanner generators

•  Lex and Flex work along these lines

•  Algorithms are well-known and well-understood

• We'll go through the "classic" procedure above but
some scanners use different approaches:

• Brzozowski: use the "derivative" operation on
languages to directly produce a DFA from a
regexp

• Advantage: simple to implement, extends easily
to support regex conjunction, negation. Often
used for regex interpreters

• Disadvantage: computationally expensive to
generate minimal DFAs

Alternative Approaches

Automating Lexical Analyzer (scanner)
Construction

RE→ NFA (Thompson’s construction)

•  Build an NFA for each term

•  Combine them with ε-moves

NFA → DFA (subset construction)

•  Build the simulation

DFA → Minimal DFA

•  Hopcroft’s algorithm

DFA →RE (Not part of the scanner construction)

•  All pairs, all paths problem

•  Take the union of all paths from s0 to an accepting state

minimal
DFA

RE NFA DFA

The Cycle of Constructions

Lexical Spec Scanner

minimal
DFA

RE NFA DFA

The Cycle of Constructions

Lexical Spec Scanner

Key idea
•  NFA pattern for each symbol & each operator
•  Join them with ε moves in precedence order

RE →NFA using Thompson’s Construction

S0 S1
a

NFA for a

S0 S1
a

S3 S4
b

NFA for ab

ε

NFA for a | b

S0

S1 S2
a

S3 S4
b

S5
ε

ε ε

ε

S0 S1
ε S3 S4

ε

NFA for a*

a

ε

ε

Ken Thompson, CACM, 1968

Example of Thompson’s Construction

Let’s try a (b | c)*

1. a, b, & c

2. b | c

3. (b | c)*

S0 S1
a

S0 S1
b

S0 S1
c

S2 S3
b

S4 S5
c

S1 S6 S0 S7

ε

ε

ε ε

ε ε

ε ε

S1 S2
b

S3 S4
c

S0 S5
ε

ε

ε

ε

Example of Thompson’s Construction (con’t)

4.  a (b | c)*

Of course, a human would design something
simpler ...

S0 S1
a

b | c
But, we can automate production of
the more complex one ...

S0 S1
a ε

S4 S5
b

S6 S7
c

S3 S8 S2 S9

ε

ε

ε ε

ε ε

ε ε

minimal
DFA

RE NFA DFA

The Cycle of Constructions

Lexical Spec Scanner

NFA to DFA : Trick

•  Simulate the NFA

•  Each state of DFA

 = a non-empty subset of states of the NFA

•  Start state

 = the set of NFA states reachable through e-moves from
 NFA start state

•  Add a transition S !a S’ to DFA iff
–  S’ is the set of NFA states reachable from any state in S after

seeing the input a, considering ε-moves as well

NFA to DFA (2)

•  Multiple transitions
–  Solve by subset construction
–  Build new DFA based upon the set of states each

representing a unique subset of states in NFA

1 2
a

a
b R= a+ b*

ε-closure(1) = {1} include state “1”
(1,a) ! {1,2} include state “1/2”
(1,b) ! ERROR
(1/2,a) !1/2
(1/2,b) ! 2 include state “2”

start 1 2

a

a
1/2 start b

b

(2,a) ! ERROR
(2,b) ! 2
Any state with “2” in name is a final state

NFA to DFA (3)

•  ε transitions
–  Any state reachable by an ε transition is “part of the state”
–  ε-closure - Any state reachable from S by ε transitions is in

the ε-closure; treat ε-closure as 1 big state, always include
ε-closure as part of the state

2 3

a b

start
1

ε ε

1.  ε-closure(1) = {1,2,3}; include1/2/3
2.  Move(1/2/3, a) = {2, 3} + ε-closure(2,3) = {2,3} ; include 2/3
3.  Move(1/2/3, b) = {3} + ε-closure(3) = {3} ; include state 3
4.  Move(2/3, a) = {2} + ε-closure(2) = {2,3}
5.  Move(2/3, b) = {3} + ε-closure(3) = {3}
6.  Move(3, b) = {3} + ε-closure(3) = {3}

a*b*

NFA to DFA (3)

•  ε transitions
–  Any state reachable by an ε transition is “part of the state”
–  ε-closure - Any state reachable from S by ε transitions is in

the ε-closure; treat ε-closure as 1 big state, always include
ε-closure as part of the state

2 3

a b

start
1

ε ε

1.  ε-closure(1) = {1,2,3}; include1/2/3
2.  Move(1/2/3, a) = {2, 3} + ε-closure(2,3) = {2,3} ; include 2/3
3.  Move(1/2/3, b) = {3} + ε-closure(3) = {3} ; include state 3
4.  Move(2/3, a) = {2} + ε-closure(2) = {2,3}
5.  Move(2/3, b) = {3} + ε-closure(3) = {3}
6.  Move(3, b) = {3} + ε-closure(3) = {3}

2/3 3

a b

start
1/2/3

a b

a*b*

b

NFA to DFA - Example

1

2

3 start

a

a
b

a

4

6 5

ε

ε

ε

B

NFA to DFA - Example

1

2

3 start

a

a
b

a

4

6 5

ε

ε

ε

a

b

b

A

4

6 a
a start

ε-closure(1) = {1, 2, 3, 5}

 Create a new state A = {1, 2, 3, 5}

move(A, a) = {3, 6} + ε-closure(3,6) = {3,6}

Create B = {3,6}

move(A, b) = {4} + ε-closure(4) = {4}

move(B, a) = {6} + ε-closure(6) = {6}

move(B, b) = {4} + ε-closure(4) = {4}

move(6, a) = {6} + ε-closure(6) = {6}

move(6, b) ! ERROR

move(4, a|b) ! ERROR

Class Problem

0 1

4

2

6

3

5

9 7 ε ε

ε

ε

ε
ε

ε

ε
a

a

b

8 b

Convert this NFA to a DFA

Class Problem

0 1

4

2

6

3

5

9 7 ε ε

ε

ε

ε
ε

ε

ε
a

a

b

8 b

Convert this NFA to a DFA

A = { 0, 1, 2, 4, 7 }

B = { 1, 2, 3, 4, 6, 7, 8 }

C = { 1, 2, 4, 5, 6, 7 }

D = { 1, 2, 4, 5, 6, 8, 8, 9 }

A D

B

C

a

a

a

a

b

b

b

b

minimal?

Class Problem

0 1

4

2

6

3

5

9 7 ε ε

ε

ε

ε
ε

ε

ε
a

a

b

8 b

Convert this NFA to a DFA

A = { 0, 1, 2, 4, 7 } == (a|b)*ab

B = { 1, 2, 3, 4, 6, 7, 8 } == b|A

C = { 1, 2, 4, 5, 6, 7 } == A

D = { 1, 2, 4, 5, 6, 8, 8, 9 } == ε|A

A D

B

C

a

a

a

a

b

b

b

b

not minimal, A == C

Class Problem

0 1

4

2

6

3

5

9 7 ε ε

ε

ε

ε
ε

ε

ε
a

a

b

8 b

Convert this NFA to a DFA

A = { 0, 1, 2, 4, 7 } == (a|b)*ab

B = { 1, 2, 3, 4, 6, 7, 8 } == b|A

C = { 1, 2, 4, 5, 6, 7 } == A

D = { 1, 2, 4, 5, 6, 8, 8, 9 } == ε|A

D

B

A,C

a

a

a

b

b

b

minimal

NFA to DFA : cont..

•  An NFA may be in many states at any time

•  How many different states ?

•  If there are N states, the NFA must be in some
subset of those N states

•  How many subsets are there?

 2^N - 1 = finitely many

NFA Determinization: Correctness
The powerset construction takes an NFA N and constructs an equivalent DFA
Pow(N).

Equivalent means that a string has an accepting trace in N (starting at the
start state) if and only if it does in Pow(N) (starting at the start state).

Idea of proof is to generalize to a statement about traces starting at any state:

For any state s in N and accepting trace starting at s, show that for all
states S in Pow(N) if s in S, then there is an accepting trace starting at S.

For any state S in Pow(N), show that there exists a state s in S that has an
accepting trace in N starting at s.

Proof each of these holds by induction on the length of the trace.

minimal
DFA

RE NFA DFA

The Cycle of Constructions

Lexical Spec Scanner

State Minimization

•  Resulting DFA can be quite large
–  Contains redundant or equivalent states

2

5

b

start
1

3

b

a
b

a
a

4

b

a

1 2 3
start

a a

b b

Both DFAs accept
b*ab*a

State Minimization (2)

•  Idea – find groups of equivalent states and
merge them
–  All transitions from states in group G1 go to states in

another group G2
–  Construct minimized DFA such that there is 1 state for

each group of states

2

5

b

start
1

3

b

a
b

a
a

4

b

a

Basic strategy: identify
distinguishing transitions

DFA Minimization
Overview of algorithm:

Produce a partition of the states, so that states are in the same
partition if they are equivalent.

Initialize: two sets, accepting and rejecting

Update: If any states in the same partition make transitions to
different partitions, split them.

Repeat until no new partitions are created

Minimized DFA has the partitions as states.

Similar to iterative fixpoint algorithms for dataflow analysis!

minimal
DFA

RE NFA DFA

The Cycle of Constructions

Lexical Spec Scanner

DFA Implementation

•  A DFA can be implemented by a 2D table T
–  One dimension is “states”
–  Other dimension is “input symbol”
–  For every transition Si !a Sk define T[i,a] = k

•  DFA “execution”
–  If in state Si and input a, read T[i,a] = k and skip to

state Sk
–  Very efficient

DFA Table Implementation : Example

Implementation Cont ..

•  NFA -> DFA conversion is at the heart of tools
such as flex

•  But, DFAs can be huge

•  In practice, flex-like tools trade off speed for
space in the choice of NFA and DFA
representations

Lexer Generator

• Given regular expressions to describe the
language (token types),

• Step 1: Generates NFA that can recognize the
regular language defined

• Step 2: Transforms NFA to DFA

• Implemented in various lexer generators tools:
lex/flex (C), ocamllex (OCaml), logos/lalrpop
(Rust)

Challenges for Lexical Analyzer

• How do we determine which lexemes are
associated with each token?

• Regular expression to describe token type

• When there are multiple ways we could scan
the input, how do we know which one to
pick?

• How do we address these concerns
efficiently?

Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*

Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*

f o tr

Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

Conflict Resolution

● Assume all tokens are specified as
regular expressions.

● Algorithm: Left-to-right scan.

● Tiebreaking rule one: Maximal munch.

● Always match the longest possible prefix of
the remaining text.

Implementing Maximal Munch

● Given a set of regular expressions, how
can we use them to implement maximum
munch?

● Idea:

● Convert expressions to NFAs.

● Run all NFAs in parallel, keeping track of the
last match.

● When all automata get stuck, report the last
match and restart the search at that point.

• Example

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

Other Conflicts

T_Do do
T_Double double
T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o bu el

disambiguate with an ordering between the choices

Summary

119

• Lexers scan the input program, grouping substrings into higher level
tokens

• Lexing is tedious and error-prone to implement manually. Just like
assembly code!

• Can use a lexer generator, a compiler for a domain-specific
language for lexers.

• Use regular expressions as syntax, finite automata as intermediate
representation

• Widely available tools, well known algorithms

• Caveat: computationally limited, not powerful enough for parsing

or semantic analysis. New formalisms next time!

