EECS 483: COMPILERS

Announcements

e QGarter Part I:
— Grades are out

— If you had a major issue on your assignment, discuss with course staff at
office hours and/or private piazza posts.

e QGarter Part Il:

— Include updated spec as well as your executable tests/any other tests you
saw fit to write.

POLL

IS IMPLEMENTING A CORRECT
COMPILER HARD?

Empirical Evidence that Compiling is Hard

Egg-eater: 5/57 submissions passed 100% of autograder tests.

Not very scientific...

PLDI

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr

University of Utah, School of Computing
{jxyang, chenyang, eeide, regehr }@cs.utah.edu

Compiler Bugs

[Regehr's group: Yang et al. PLDI 2011]

Csmith 79 bugs \\
random (25 critical)
test-case generation

o N
Programs)\ E E\/M

More recently:

* ALIVE/ALIVE2 projects

 miscompilation of C, Rust ...8 other C
sources [Lee et al. OOPSLA 2018] Compilers j

325 bugs

in total

Approaches to Software Reliability

* Social
— Code reviews
— Extreme/Pair programming

« Methodological

— Design patterns

— Test-driven development This isn’t a tradeoff... all of these methods
— Version control should be used.
— Bug tracking Even “formal” methods can have holes:

* Did you prove the right thing?
. * Do your assumptions match reality?
° Technologlcal Knuth. “Beware of bugs in the above code; I have only

— “lint” tools, static analysis proved it correct, not tried it.”
— Fuzzers, random testing

e Mathematical

— Sound programming
languages tools

— “Formal” verification

Goal: Verified Software Correctness

* Social
— Code reviews
— Extreme/Pair programmi

« Methodological
— Design patterns
— Test-driven development
— Version control
— Bug tracking

« Technological
— “lint” tools, static analysis
— Fuzzers, random testing

e Mathematical

— Sound programming
languages tools

— “Formal” verification

Q: How can we move
the needle towards

mathematical software
correctness properties?

Taking advantage of

advances in computer science:

* Moore's law

 improved programming languages
& theoretical understanding

* better tools:
interactive theorem provers

CompCert — A Verified C Compiler

Optimizing C Compiler,
proved correct end-to-end
with machine-checked proof in Coq

Xavier Leroy
INRIA
Programmed

{ Cog e
T ,/’ Other
Parser, \,\- S ~ languages 2,/ Type Graph Printing to asm
typechecker, ’\ m,n,.ML | —————— reconstruction coloring in Caml!
/
PowerPC —

simplifier (CIL)

assembly

CFG B 5 Linearization Layoyt q' the Generation of
r \ - y'l eiyen H =i hiagtind Programmed and
s y /, :: , proved in Coq
T |
< Model® 2 L c 3 B T Data o =
'\\ checker ' -St aﬂ;\ e o Dataflow analyses prozr;;l:(rl‘;n H suw:g:;(;?ons eg;sr:;rha(l:gﬁ)an:%n 4 (,;g;?us';ss) ari:::mle:‘(iec r:::’c;y I
< > Y :
T \Nanalyzer [I
.
-~y /
_y ~
—y ~— /
L — — [pe— — /
= —(Clanguage ,
Ve
7’
CompcCert P
i v
Compiler ”
-
- -
-
pr—— -

ISA

Csmith on CompCert?

[Yang et al. PLDI 2011]

Csmith
random
test-case generation

=
[ource » CompCert BRI

Programs
J

Verification Works!

"The striking thing about our CompCert results is that the middle-end
bugs we found in all other compilers are absent. As of early 2011, the
under-development version of CompCert is the only compiler we have
tested for which Csmith cannot find wrong-code errors. This is not for
lack of trying: we have devoted about six CPU-years to the task. The

apparent unbreakability of CompCert supports a strong argument that
developing compiler optimizations within a proof framework, where
safety checks are explicit and machine-checked, has tangible benefits for

compiler users."
— Regehret. al 2011

Compiler Verification

Several components:

1. Specification: come up with precise specifications for when a
compiler is correct.

1. Functional correctness
2. Security preservation, robustness to side-channel attacks
2. Proof: prove that a compilation technique satisfies the specification

3. Verification: computer-checked proof that a particular
implementation is correct

Compiler Verification

Several components:

1. Specification: come up with precise specifications for when a
compiler is correct.

1. Functional correctness
2. Security preservation, robustness to side-channel attacks
2. Proof: prove that a compilation technique satisfies the specification

3. Verification: computer-checked proof that a particular
implementation is correct

PROVING BOA-- CORRECT

WRAPPING UP 483

What have we learned?

Different phases of the compiler
— Lexing/Parsing/Type Checking

Different intermediate representations
Interesting programming language features

— Dynamic typing, heap-allocation, closures
Meta lessons

— How to work with an evolving codebase
— Implementing programs with rich specifications

What we didn’t get to cover

Much more on parsing

— PEGs, Earley Parsing,
Macro systems

— Preprocessors, LISP/Scheme/Rust-style of generative parsing
Static Typing

— Overloading, Traits/Typeclasses
Interesting programming language features

— Objects/Classes, concurrency/parallelism
Interesting compilation techniques

— JIT compilation, bytecode interpreters
Other intermediate representations

— SSA, Continuation-passing style

Efficient data structures for compilation

Runtime System features
— Garbage collection, exceptions, debuggers

10

Where to learn more?

Classes at UM:

EECS 583:

— Graduate compilers. More focus on practical use of LLVM, reading
research papers, implementing optimizations

EECS 490 and 590:

— Programming languages courses. More focus on Type Systems,
programming language features, mathematical reasoning about programs

Open source projects

Language implementations (e.g., Rust of course)
Common compiler backends: LLVM, Cranelift, MLIR

Compiler frontends: Tree-sitter, LALRPOP

11

Where to learn more?

Research at UM:
Michigan Programming Languages and Software Engineering (MPLSE):

mplse.org

Academic conferences

PLDI (Programming Language Design and Implementation)

POPL (Principles of Programming Languages)
ICFP (Functional Programming)

OOPSLA (Object-oriented ...)

CC (Compiler Construction)

...and many more

12

Thanks!

To course staff: Steven, Daniel
To you for taking the class

Feedback wanted:

— Please fill out course evaluations so we can improve the course in the
future

13

