
EECS 483: COMPILERS

Announcements

• Garter Part I:
– Grades are out
– If you had a major issue on your assignment, discuss with course staff at

office hours and/or private piazza posts.

• Garter Part II:
– Include updated spec as well as your executable tests/any other tests you

saw fit to write.

2

POLL

3

IS IMPLEMENTING A CORRECT
COMPILER HARD?

Empirical Evidence that Compiling is Hard

Egg-eater: 5/57 submissions passed 100% of autograder tests.

Not very scientific…

PLDI

4

Compiler Bugs

Csmith
random

test-case generation

LLVM

…8 other C
compilers

79 bugs
(25 critical)

202 bugs
325 bugs
in total

Source
Programs

[Regehr's group: Yang et al. PLDI 2011]

More recently:

• ALIVE/ALIVE2 projects
• miscompilation of C, Rust

sources [Lee et al. OOPSLA 2018]

Approaches to Software Reliability

• Social
– Code reviews
– Extreme/Pair programming

• Methodological
– Design patterns
– Test-driven development
– Version control
– Bug tracking

• Technological
– “lint” tools, static analysis
– Fuzzers, random testing

• Mathematical
– Sound programming

languages tools
– “Formal” verification

More “formal”: eliminate
with certainty as many problems
as possible.

Less “formal”: Techniques may
miss problems in programs

This isn’t a tradeoff… all of these methods
should be used.
Even “formal” methods can have holes:
• Did you prove the right thing?
• Do your assumptions match reality?
• Knuth. “Beware of bugs in the above code; I have only
proved it correct, not tried it.”

Goal: Verified Software Correctness

• Social
– Code reviews
– Extreme/Pair programming

• Methodological
– Design patterns
– Test-driven development
– Version control
– Bug tracking

• Technological
– “lint” tools, static analysis
– Fuzzers, random testing

• Mathematical
– Sound programming

languages tools
– “Formal” verification

Q: How can we move
the needle towards
mathematical software
correctness properties?

Taking advantage of
advances in computer science:
• Moore's law
• improved programming languages

& theoretical understanding
• better tools:

interactive theorem provers

CompCert – A Verified C Compiler

17

Xavier Leroy
INRIA

Optimizing C Compiler,
proved correct end-to-end
with machine-checked proof in Coq

C language

CompCert
Compiler

ISA

Csmith on CompCert?

CompCert

Csmith
random

test-case generation

Source
Programs

[Yang et al. PLDI 2011]

0 bugs(!!)

Verification Works!

"The striking thing about our CompCert results is that the middle-end
bugs we found in all other compilers are absent. As of early 2011, the

under-development version of CompCert is the only compiler we have
tested for which Csmith cannot find wrong-code errors. This is not for
lack of trying: we have devoted about six CPU-years to the task. The
apparent unbreakability of CompCert supports a strong argument that
developing compiler optimizations within a proof framework, where
safety checks are explicit and machine-checked, has tangible benefits for
compiler users."

– Regehr et. al 2011

Compiler Verification
Several components:
1. Specification: come up with precise specifications for when a

compiler is correct.
1. Functional correctness
2. Security preservation, robustness to side-channel attacks

2. Proof: prove that a compilation technique satisfies the specification
3. Verification: computer-checked proof that a particular

implementation is correct

5

Compiler Verification
Several components:
1. Specification: come up with precise specifications for when a

compiler is correct.
1. Functional correctness
2. Security preservation, robustness to side-channel attacks

2. Proof: prove that a compilation technique satisfies the specification
3. Verification: computer-checked proof that a particular

implementation is correct

6

PROVING BOA-- CORRECT

7

WRAPPING UP 483

8

What have we learned?
• Different phases of the compiler

– Lexing/Parsing/Type Checking

• Different intermediate representations
• Interesting programming language features

– Dynamic typing, heap-allocation, closures

• Meta lessons
– How to work with an evolving codebase
– Implementing programs with rich specifications

9

What we didn’t get to cover
• Much more on parsing

– PEGs, Earley Parsing,

• Macro systems
– Preprocessors, LISP/Scheme/Rust-style of generative parsing

• Static Typing
– Overloading, Traits/Typeclasses

• Interesting programming language features
– Objects/Classes, concurrency/parallelism

• Interesting compilation techniques
– JIT compilation, bytecode interpreters

• Other intermediate representations
– SSA, Continuation-passing style

• Efficient data structures for compilation
• Runtime System features

– Garbage collection, exceptions, debuggers

10

Where to learn more?
Classes at UM:
• EECS 583:

– Graduate compilers. More focus on practical use of LLVM, reading
research papers, implementing optimizations

• EECS 490 and 590:
– Programming languages courses. More focus on Type Systems,

programming language features, mathematical reasoning about programs

Open source projects
• Language implementations (e.g., Rust of course)
• Common compiler backends: LLVM, Cranelift, MLIR
• Compiler frontends: Tree-sitter, LALRPOP

11

Where to learn more?
Research at UM:
• Michigan Programming Languages and Software Engineering (MPLSE):

mplse.org

Academic conferences
• PLDI (Programming Language Design and Implementation)
• POPL (Principles of Programming Languages)
• ICFP (Functional Programming)
• OOPSLA (Object-oriented …)
• CC (Compiler Construction)
• …and many more

12

Thanks!
• To course staff: Steven, Daniel

• To you for taking the class

• Feedback wanted:
– Please fill out course evaluations so we can improve the course in the

future

13

