
Graph Coloring

Register Allocation



Register Allocation
3(.5) Steps

1. Liveness analysis: identify when each variable's value 
is needed in the program

2. Conflict analysis: identify which variables interfere 
with each other

3. Graph Coloring: assign variables to registers so that 
interfering registers are assigned different registers.

1. Spilling: if necessary, assign some variables to stack 
slots 



Example
def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)
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Example

xzia i'a'

rax rsi rdx rdi

def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)



y

Example

xzia i'a'

f: 
  mov rax, 0 
loop: 
  cmp rsi, 0 
  jne els 
  imul rax, rdx 
  ret 
els: 
  sub rsi, 1 
  add rcx, rdi 
  jmp loop

rax rsi rdx rdi

def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)



Graph Coloring Register Allocation
Given our register conflict graph, want to assign a register 
to each variable so that no interfering variables are assigned 
the same register.

Equivalent to graph coloring of the interference graph

• think of each register as a “color” and we want to paint 
each node so that no adjacent nodes are the same color.

Efficient algorithm for graph coloring -> efficient algorithm 
for graph coloring!
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• So no polytime algorithm is known

Does that mean register allocation is NP-hard?
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Is Register Allocation Hard?
Chaitin et al, "Register allocation via coloring", Computer 
Languages 1981

• Showed that the register allocation problem for a 
language with assignments and arbitrary control flow 
(goto) is equivalent to graph coloring

• every graph arises as the interference graph of some 
program

So register allocation of their language is NP complete.

• But our programs are more restrictive: Functional/SSA 
form...we'll come back to this
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Chaitin's Algorithm

● Intuition:

● Suppose we are trying to k-color a graph and find a node 
with fewer than k edges.

● If we delete this node from the graph and color what 
remains, we can find a color for this node if we add it back 
in.

● Reason: With fewer than k neighbors, some color must be 
left over.

● Algorithm:

● Find a node with fewer than k outgoing edges.

● Remove it from the graph.

● Recursively color the rest of the graph.

● Add the node back in.

● Assign it a valid color.
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One Problem

● What if we can't find a node with fewer 
than k neighbors?

● Choose and remove an arbitrary node, 
marking it “troublesome.”

● Use heuristics to choose which one.

● When adding node back in, it may be 
possible to find a valid color.

● Otherwise, we have to spill that node.
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Chaitin's Algorithm
Chaitin's algorithm is efficient (O(|V| + |E|), simple to 
implement

• How good the coloring is depends on the order we add 
the nodes to the graph
- called the elimination ordering

• For every graph, there is a elimination ordering such that 
Chaitin's algorithm produces an optimal coloring
- therefore finding this optimal elimination ordering for 

a general graph is NP-complete
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- therefore finding this optimal elimination ordering for 

a general graph is NP-complete



Graph Coloring SSA Programs
Hack et al, "Register Allocation for Programs in SSA-Form", 
Compiler Construction 2006

• The interference graphs of an SSA program are all 
chordal
- Every cycle >= 4 nodes has a chord
- Has a perfect elimination ordering, an optimal 

elimination order that is efficiently computable

• Graph coloring chordal graphs is solvable in O(|V| + |E|) 
= O(|V|^2)



Hack et al, "Register Allocation for Programs in SSA-Form", 
Compiler Construction 2006

• The interference graphs of an SSA program are all 
chordal
- Every cycle >= 4 nodes has a chord
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Coloring Chordal Graphs
Theorem: Every chordal graph has a perfect 
elimination ordering
• a total ordering of nodes v1,v2,v3,... such that for each vi, 

vi forms a clique with all its neighbors later in the order

• Chaitin's algo produces an optimal coloring if we use a 
PEO
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Theorem: Every chordal graph has a perfect 
elimination ordering
• a total ordering of nodes v1,v2,v3,... such that for each vi, 

vi forms a clique with all its neighbors earlier in the 
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Every SSA Interference Graph is 
Chordal

Theorem:  A graph is chordal iff it has a perfect 
elimination ordering
• a total ordering of nodes v1,v2,v3,... such that for each vi, 

vi forms a clique with all its neighbors later in the order

SSA programs have a simple PEO:

 "in-scope" or "dominance" relation 

a variable x dominates y if x in scope or defined 
simultaneously wiht y

• x's definition is "closer to the root" of the AST than y

• easy to compute: pre-order traversal of the nodes
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Coloring a Chordal Graph
def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

Interference 
Graph
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Using Register Assignment
1. For each function definition, we’ll run liveness, conflict 
analysis and register allocation, producing a mapping from 
variable names to registers/stack offsets.

2. How does your code generation change?



Effects on Codegen
• No longer always put result in RAX: put result in 

let x = y * z

in ...

Want the result of y * z to go wherever x is stored, not 
RAX.



Implementing Local Tail Calls

def f(a,b,c): e in 
... 
local_tail_call(f; [x,y,z]) 

mov r_x, r_a 
mov r_y, r_b 
mov r_z, r_z 
jmp f 

what if a,b,c registers 
and x,y,z registers 
overlap? 
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nop mov r2, r1 xchg rax, r3 
xchg rax, r4 
xchg rax, r5 
xchg rax, r3 

SSA reg allocation is polytime, but minimizing 
the resulting number of movs/xchg is NP hard
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Register Allocation vs Calling 
Conventions

Now that we are using registers we need to take care to 
respect treatment of registers in the calling conventions we 
use.

In System V AMD 64 Calling convention, registers are 
divided into two classes:

• volatile aka caller-save: when you make a call, the 
value of these registers may change when the callee 
returns

• non-volatile aka callee-save: when you make a call, 
the value of these registers will be the same when the 
callee returns
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Volatile/Caller Save registers
volatile aka caller-save

let x = ... in

let y = f(z) in

x + y

if x is stored in a volatile register, its value may be 
overwritten by the call.

• Easy solution: save all live volatiles to the stack before a 
call, restore after the call

• Harder solution: add nodes to interference graph for 
volatile registers, add conflicts at every non-tail call
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Non-volatile/Callee Save registers
def f(x): 
  ... 
  let y = ... in 
  let z = x + y in z 
if y is stored in a non-volatile register, its value must be 
restored when we return

• Easy solution: save all non-volatiles to the stack at the 
beginning of every global function def, restore them 
before every return/external tail call

• Harder solution: treat non-volatiles as "hidden args" of 
global fundefs, with ret/tail calls as uses. 
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