
Graph Coloring

Register Allocation



Register Allocation
3(.5) Steps

1. Liveness analysis: identify when each variable's value 
is needed in the program

2. Conflict analysis: identify which variables interfere 
with each other

3. Graph Coloring: assign variables to registers so that 
interfering registers are assigned different registers.

1. Spilling: if necessary, assign some variables to stack 
slots 



Example
def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

Interference 
Graph

x

y

z

i a

i' a'



Example
def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

x

y

z

i a

i' a'



Example
def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

x

y

z

i a

i' a'



Example
def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

rax rsi rdx rdi

x

y

z

i a

i' a'



y

Example

xzia i'a'

rax rsi rdx rdi

def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)



y

Example

xzia i'a'

f: 
  mov rax, 0 
loop: 
  cmp rsi, 0 
  jne els 
  imul rax, rdx 
  ret 
els: 
  sub rsi, 1 
  add rcx, rdi 
  jmp loop

rax rsi rdx rdi

def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)



Graph Coloring Register Allocation
Given our register conflict graph, want to assign a register 
to each variable so that no interfering variables are assigned 
the same register.

Equivalent to graph coloring of the interference graph

• think of each register as a “color” and we want to paint 
each node so that no adjacent nodes are the same color.

Efficient algorithm for graph coloring -> efficient algorithm 
for graph coloring!



Graph Coloring Register Allocation
Given our register conflict graph, want to assign a register 
to each variable so that no interfering variables are assigned 
the same register.

Equivalent to graph coloring of the interference graph

• think of each register as a “color” and we want to paint 
each node so that no adjacent nodes are the same color.

Efficient algorithm for graph coloring -> efficient algorithm 
for graph coloring!



Graph Coloring Register Allocation
Given our register conflict graph, want to assign a register 
to each variable so that no interfering variables are assigned 
the same register.

Equivalent to graph coloring of the interference graph

• think of each register as a “color” and we want to paint 
each node so that no adjacent nodes are the same color.

Efficient algorithm for graph coloring -> efficient algorithm 
for graph coloring!



Graph Coloring is Hard
Determining a whether a graph is k-colorable is NP-
complete for k > 2.

• So no polytime algorithm is known

Does that mean register allocation is NP-hard?



Graph Coloring is Hard
Determining a whether a graph is k-colorable is NP-
complete for k > 2.

• So no polytime algorithm is known

Does that mean register allocation is NP-hard?



Is Register Allocation Hard?
Chaitin et al, "Register allocation via coloring", Computer 
Languages 1981

• Showed that the register allocation problem for a 
language with assignments and arbitrary control flow 
(goto) is equivalent to graph coloring

• every graph arises as the interference graph of some 
program

So register allocation of their language is NP complete.

• But our programs are more restrictive: Functional/SSA 
form...we'll come back to this



Is Register Allocation Hard?
Chaitin et al, "Register allocation via coloring", Computer 
Languages 1981

• Showed that the register allocation problem for a 
language with assignments and arbitrary control flow 
(goto) is equivalent to graph coloring

• every graph arises as the interference graph of some 
program

So register allocation of their language is NP complete.

• But our programs are more restrictive: Functional/SSA 
form...we'll come back to this



Is Register Allocation Hard?
Chaitin et al, "Register allocation via coloring", Computer 
Languages 1981

• Showed that the register allocation problem for a 
language with assignments and arbitrary control flow 
(goto) is equivalent to graph coloring

• every graph arises as the interference graph of some 
program

So register allocation of their language is NP complete.

• But our programs are more restrictive: Functional/SSA 
form...we'll come back to this



Is Register Allocation Hard?
Chaitin et al, "Register allocation via coloring", Computer 
Languages 1981

• Showed that the register allocation problem for a 
language with assignments and arbitrary control flow 
(goto) is equivalent to graph coloring

• every graph arises as the interference graph of some 
program

So register allocation of their language is NP complete.

• But our programs are more restrictive: Functional/SSA 
form...we'll come back to this



  

Chaitin's Algorithm

● Intuition:

● Suppose we are trying to k-color a graph and find a node 
with fewer than k edges.

● If we delete this node from the graph and color what 
remains, we can find a color for this node if we add it back 
in.

● Reason: With fewer than k neighbors, some color must be 
left over.

● Algorithm:

● Find a node with fewer than k outgoing edges.

● Remove it from the graph.

● Recursively color the rest of the graph.

● Add the node back in.

● Assign it a valid color.



  

Chaitin's Algorithm



  

Chaitin's Algorithm

a

b c

d e

g f



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e

a



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e

a

g



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e

a

g

f



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e

a

g



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e

a

g



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e

a



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e

a



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3



  

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3



  

One Problem

● What if we can't find a node with fewer 
than k neighbors?

● Choose and remove an arbitrary node, 
marking it “troublesome.”

● Use heuristics to choose which one.

● When adding node back in, it may be 
possible to find a valid color.

● Otherwise, we have to spill that node.



  

Chaitin's Algorithm Reloaded

a

b c

d

e

f

g

R
0

R
1

R
2

R
0

R
1

R
2

Registers



  

Chaitin's Algorithm Reloaded

a

b c

d

e

f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g



  

f

Chaitin's Algorithm Reloaded

a

b c

d

e

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f



  

e

f

Chaitin's Algorithm Reloaded

a

b c

d

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e



  

d

e

f

Chaitin's Algorithm Reloaded

a

b c

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d



  

c

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c



  

c

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c

b



  

c

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c

b

a



  

c

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c

b



  

c

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c

b



  

c

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c



  

c

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c



  

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c



  

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c



  

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

c



  

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

c



  

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c

(spilled)



  

d

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

d

c

e

(spilled)



  

d

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

d

c

e

(spilled)



  

d

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g

d

c

e

(spilled)



  

d

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g

d

c

e

(spilled)



  

d

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

d

c

e

(spilled)



  

d

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

d

c

e

(spilled)



  

Another Example



  

Another Example

a

b c

d

ef



  

Another Example

a

b c

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers



  

a

Another Example

b c

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a



  

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c



  

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b



  

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e



  

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e

f



  

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e

f

d



  

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e

f



  

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e

f



  

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e



  

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e



  

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b



  

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b



  

c

a

Another Example

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b



  

c

a

Another Example

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b



  

c

a

Another Example

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

b



  

c

a

Another Example

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

b



  

c

a

Another Example

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

b



  

c

a

Another Example

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

b



  

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e

f

d



  

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e

f



  

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e

f



  

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e



  

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e



  

c

a

Another Example

b

d

f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e



  

c

a

Another Example

b

d

f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e



  

c

a

Another Example

b

d

f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c
e



  

c

a

Another Example

b

d

f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c
e



  

c

a

Another Example

b

d

f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a
e



  

c

a

Another Example

b

d

f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a
e

(spilled)



  

c

a

Another Example

b

d

f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

e

(spilled)



  

c

a

Another Example

b

d

f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

e

(spilled)

(spilled)



Chaitin's Algorithm
Chaitin's algorithm is efficient (O(|V| + |E|), simple to 
implement

• How good the coloring is depends on the order we add 
the nodes to the graph
- called the elimination ordering

• For every graph, there is a elimination ordering such that 
Chaitin's algorithm produces an optimal coloring
- therefore finding this optimal elimination ordering for 

a general graph is NP-complete



Chaitin's Algorithm
Chaitin's algorithm is efficient (O(|V| + |E|), simple to 
implement

• How good the coloring is depends on the order we 
color the nodes to the graph
- called the elimination ordering

• For every graph, there is a elimination ordering such that 
Chaitin's algorithm produces an optimal coloring
- therefore finding this optimal elimination ordering for 

a general graph is NP-complete



Chaitin's Algorithm
Chaitin's algorithm is efficient (O(|V| + |E|), simple to 
implement

• How good the coloring is depends on the order we 
color the nodes to the graph
- called the elimination ordering

• For every graph, there is a elimination ordering such that 
Chaitin's algorithm produces an optimal coloring
- therefore finding this optimal elimination ordering for 

a general graph is NP-complete



Graph Coloring SSA Programs
Hack et al, "Register Allocation for Programs in SSA-Form", 
Compiler Construction 2006

• The interference graphs of an SSA program are all 
chordal
- Every cycle >= 4 nodes has a chord
- Has a perfect elimination ordering, an optimal 

elimination order that is efficiently computable

• Graph coloring chordal graphs is solvable in O(|V| + |E|) 
= O(|V|^2)



Hack et al, "Register Allocation for Programs in SSA-Form", 
Compiler Construction 2006

• The interference graphs of an SSA program are all 
chordal
- Every cycle >= 4 nodes has a chord

x

y

z

w

x

y

z

w

Not chordal chordal

Graph Coloring SSA Programs



Coloring Chordal Graphs
Theorem: Every chordal graph has a perfect 
elimination ordering
• a total ordering of nodes v1,v2,v3,... such that for each vi, 

vi forms a clique with all its neighbors later in the order

• Chaitin's algo produces an optimal coloring if we use a 
PEO

x

y

z

ww,x,y,z
not perfect: N(w) non-clique

x,w,y,z
perfect



Coloring Chordal Graphs
Theorem: Every chordal graph has a perfect 
elimination ordering
• a total ordering of nodes v1,v2,v3,... such that for each vi, 

vi forms a clique with all its neighbors earlier in the 
order

• Chaitin's algo produces an optimal coloring if we use a 
PEO

x

y

z

ww,x,y,z
not perfect: N(w) non-clique

x,w,y,z
perfect



Coloring Chordal Graphs
Theorem: Every chordal graph has a perfect 
elimination ordering
• a total ordering of nodes v1,v2,v3,... such that for each vi, 

vi forms a clique with all its neighbors earlier in the 
order

• Chaitin's algo produces an optimal coloring if we use a 
PEO

x

y

z

ww,x,y,z
not perfect: N(w) non-clique

x,w,y,z
perfect



Coloring Chordal Graphs
Theorem: Every chordal graph has a perfect 
elimination ordering
• a total ordering of nodes v1,v2,v3,... such that for each vi, 

vi forms a clique with all its neighbors earlier in the 
order

• Chaitin's algo produces an optimal coloring if we use a 
PEO

x

y

z

wx,y,z,w
not perfect: N(w) non-clique

w,x,y,z
perfect



Every SSA Interference Graph is 
Chordal

Theorem:  A graph is chordal iff it has a perfect 
elimination ordering
• a total ordering of nodes v1,v2,v3,... such that for each vi, 

vi forms a clique with all its neighbors later in the order

SSA programs have a simple PEO:

 "in-scope" or "dominance" relation 

a variable x dominates y if x in scope or defined 
simultaneously wiht y

• x's definition is "closer to the root" of the AST than y

• easy to compute: pre-order traversal of the nodes



Every SSA Interference Graph is 
Chordal

Theorem:  A graph is chordal iff it has a perfect 
elimination ordering
• a total ordering of nodes v1,v2,v3,... such that for each vi, 

vi forms a clique with all its neighbors later in the order

SSA programs have a simple PEO:

 "in-scope" or "dominance" relation 
- a variable x dominates y if is in scope when y is 

defined (includes simultaneous defs)

• x's definition is "closer to the root" of the AST than y

• easy to compute: pre-order traversal of the nodes



Every SSA Interference Graph is 
Chordal

Theorem:  A graph is chordal iff it has a perfect 
elimination ordering
• a total ordering of nodes v1,v2,v3,... such that for each vi, 

vi forms a clique with all its neighbors later in the order

SSA programs have a simple PEO:

 "in-scope" or "dominance" relation 
- a variable x dominates y if is in scope when y is 

defined (includes simultaneous defs)

• x's definition is "closer to the root" of the AST than y

• easy to compute: pre-order traversal of the nodes



Coloring a Chordal Graph
def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

Interference 
Graph

x

y

z

i a

i' a'



def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

x y z i a i' a'

x

y

z

i a

i' a'



def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

x y z i a i' a'



def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

x y z i a i' a'

x



x

def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

x y z i a i' a'



def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

x y z i a i' a'

y

x



def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

x y z i a i' a'

y

x



def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

x y z i a i' a'

z

y

x



def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

x y z i a i' a'

z

y

x



def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

x y z i a i' a'

i

z

y

x



def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

x y z i a i' a'

i

z

y

x



def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

x y z i a i' a'

ai

z

y

x



def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

x y z i a i' a'

ai

z

y

x



def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

x y z i a i' a'

i'

ai

z

y

x



def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

x y z i a i' a'

i'

ai

z

y

x



def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

x y z i a i' a'

a'i'

ai

z

y

x



def f(x,y,z): 
  def loop(i,a): 
    if i == 0: 
      a * z 
    else: 
      let i' = i - 1 in 
      let a' = a + x in 
      icall(loop; i', a') 
  end 
  icall(loop; y, 0)

x y z i a i' a'

a'i'

ai

z

y

x



Using Register Assignment
1. For each function definition, we’ll run liveness, conflict 
analysis and register allocation, producing a mapping from 
variable names to registers/stack offsets.

2. How does your code generation change?



Effects on Codegen
• No longer always put result in RAX: put result in 

let x = y * z

in ...

Want the result of y * z to go wherever x is stored, not 
RAX.



Implementing Local Tail Calls

def f(a,b,c): e in 
... 
local_tail_call(f; [x,y,z]) 

mov r_x, r_a 
mov r_y, r_b 
mov r_z, r_z 
jmp f 

what if a,b,c registers 
and x,y,z registers 
overlap? 



Implementing Local Tail Calls

def f(a,b,c): e in 
... 
local_tail_call(f; [x,y,z]) 

mov r_x, r_a 
mov r_y, r_b 
mov r_z, r_z 
jmp f 

what if a,b,c registers 
and x,y,z registers 
overlap? 



Implementing Local Tail Calls

r0 r1 r2 r3 r4 r5

r0 r1 r2 r3 r4 r5

nop mov r2, r1 xchg rax, r3 
xchg rax, r4 
xchg rax, r5 
xchg rax, r3 

SSA reg allocation is polytime, but minimizing 
the resulting number of movs/xchg is NP hard



Implementing Local Tail Calls

r0 r1 r2 r3 r4 r5

r0 r1 r2 r3 r4 r5

nop mov r2, r1 xchg rax, r3 
xchg rax, r4 
xchg rax, r5 
xchg rax, r3 

SSA reg allocation is polytime, but minimizing 
the resulting number of movs/xchg is NP hard



Implementing Local Tail Calls

r0 r1 r2 r3 r4 r5

r0 r1 r2 r3 r4 r5

nop mov r2, r1 xchg rax, r3 
xchg rax, r4 
xchg rax, r5 
xchg rax, r3 

SSA reg allocation is polytime, but minimizing 
the resulting number of movs/xchg is NP hard



Implementing Local Tail Calls

r0 r1 r2 r3 r4 r5

r0 r1 r2 r3 r4 r5

nop mov r2, r1 xchg rax, r3 
xchg rax, r4 
xchg rax, r5 
xchg rax, r3 

SSA reg allocation is polytime, but minimizing 
the resulting number of movs/xchg is NP hard



Implementing Local Tail Calls

r0 r1 r2 r3 r4 r5

r0 r1 r2 r3 r4 r5

nop mov r2, r1 xchg rax, r3 
xchg rax, r4 
xchg rax, r5 
xchg rax, r3 

SSA reg allocation is polytime, but minimizing 
the resulting number of movs/xchg is NP hard



Register Allocation vs Calling 
Conventions

Now that we are using registers we need to take care to 
respect treatment of registers in the calling conventions we 
use.

In System V AMD 64 Calling convention, registers are 
divided into two classes:

• volatile aka caller-save: when you make a call, the 
value of these registers may change when the callee 
returns

• non-volatile aka callee-save: when you make a call, 
the value of these registers will be the same when the 
callee returns



Register Allocation vs Calling 
Conventions

Now that we are using registers we need to take care to 
respect treatment of registers in the calling conventions we 
use.

In System V AMD 64 Calling convention, registers are 
divided into two classes:

• volatile aka caller-save: when you make a call, the 
value of these registers may change when the callee 
returns

• non-volatile aka callee-save: when you make a call, 
the value of these registers will be the same when the 
callee returns



Register Allocation vs Calling 
Conventions

Now that we are using registers we need to take care to 
respect treatment of registers in the calling conventions we 
use.

In System V AMD 64 Calling convention, registers are 
divided into two classes:

• volatile aka caller-save: when you make a call, the 
value of these registers may change when the callee 
returns

• non-volatile aka callee-save: when you make a call, 
the value of these registers will be the same when the 
callee returns



Register Allocation vs Calling 
Conventions

Now that we are using registers we need to take care to 
respect treatment of registers in the calling conventions we 
use.

In System V AMD 64 Calling convention, registers are 
divided into two classes:

• volatile aka caller-save: when you make a call, the 
value of these registers may change when the callee 
returns

• non-volatile aka callee-save: when you make a call, 
the value of these registers will be the same when the 
callee returns



Volatile/Caller Save registers
volatile aka caller-save

let x = ... in

let y = f(z) in

x + y

if x is stored in a volatile register, its value may be 
overwritten by the call.

• Easy solution: save all live volatiles to the stack before a 
call, restore after the call

• Harder solution: add nodes to interference graph for 
volatile registers, add conflicts at every non-tail call



Volatile/Caller Save registers
volatile aka caller-save

let x = ... in

let y = f(z) in

x + y

if x is stored in a volatile register, its value may be 
overwritten by the call.

• Easy solution: save all live volatiles to the stack before a 
call, restore after the call

• Harder solution: add nodes to interference graph for 
volatile registers, add conflicts at every non-tail call



Volatile/Caller Save registers
volatile aka caller-save

let x = ... in

let y = f(z) in

x + y

if x is stored in a volatile register, its value may be 
overwritten by the call.

• Easy solution: save all live volatiles to the stack before a 
call, restore after the call

• Harder solution: add nodes to interference graph for 
volatile registers, add conflicts at every non-tail call



Non-volatile/Callee Save registers
def f(x): 
  ... 
  let y = ... in 
  let z = x + y in z 
if y is stored in a non-volatile register, its value must be 
restored when we return

• Easy solution: save all non-volatiles to the stack at the 
beginning of every global function def, restore them 
before every return/external tail call

• Harder solution: treat non-volatiles as "hidden args" of 
global fundefs, with ret/tail calls as uses. 



Non-volatile/Callee Save registers
def f(x): 
  ... 
  let y = ... in 
  let z = x + y in z 
if y is stored in a non-volatile register, its value must be 
restored when we return

• Easy solution: save all non-volatiles to the stack at the 
beginning of every global function def, restore them 
before every return/external tail call

• Harder solution: treat non-volatiles as "hidden args" of 
global fundefs, with ret/tail calls as uses. 



Non-volatile/Callee Save registers
def f(x): 
  ... 
  let y = ... in 
  let z = x + y in z 
if y is stored in a non-volatile register, its value must be 
restored when we return

• Easy solution: save all non-volatiles to the stack at the 
beginning of every global function def, restore them 
before every return/external tail call

• Harder solution: treat non-volatiles as "hidden args" of 
global fundefs, with ret/tail calls as uses. 


