November 29

# EECS 483: COMPILER CONSTRUCTION

# **LR GRAMMARS**

#### **Bottom-up Parsing (LR Parsers)**

- LR(k) parser:
  - <u>L</u>eft-to-right scanning
  - <u>R</u>ightmost derivation
  - k lookahead symbols
- LR grammars are more expressive than LL
  - Can handle left-recursive (and right recursive) grammars; virtually all programming languages
  - Easier to express programming language syntax (no left factoring)
- Technique: "Shift-Reduce" parsers
  - Work bottom up instead of top down
  - Construct right-most derivation of a program in the grammar
  - Used by many parser generators (e.g. yacc, ocamlyacc, lalrpop, etc.)
  - Better error detection/recovery

#### **Top-down vs. Bottom up**

• Consider the leftrecursive grammar:

> $S \mapsto S + E \mid E$ E \low number | (S)

- (1 + 2 + (3 + 4)) + 5
- What part of the tree must we know after scanning just "(1 + 2" ?
- In top-down, must be able to guess which productions to use...



#### **Progress of Bottom-up Parsing**

|        | Reductions                                                           |
|--------|----------------------------------------------------------------------|
| 1      | $(1 + 2 + (3 + 4)) + 5 \longleftarrow$                               |
|        | $(\underline{\mathbf{E}} + 2 + (3 + 4)) + 5 \longleftrightarrow$     |
|        | $(\underline{\mathbf{S}} + 2 + (3 + 4)) + 5 \longleftarrow$          |
|        | $(\mathbf{S} + \mathbf{\underline{E}} + (3 + 4)) + 5 \longleftarrow$ |
| 2      | $(\underline{\mathbf{S}} + (3 + 4)) + 5 \longleftarrow$              |
|        | $(S + (\underline{E} + 4)) + 5 \longleftarrow$                       |
| 5      | $(S + (\underline{S} + 4)) + 5 \longleftarrow$                       |
|        | $(S + (S + \underline{E})) + 5 \longleftarrow$                       |
|        | $(S + (\underline{S})) + 5 \longleftarrow$                           |
| b<br>b | $(\mathbf{S} + \mathbf{\underline{E}}) + 5 \longleftarrow$           |
| -      | ( <u>S</u> ) + 5 ↔                                                   |
|        | <u><b>E</b></u> + 5 ↔                                                |
|        | <u><b>S</b></u> + 5 ↔                                                |
|        | S + <b>E</b> ←                                                       |
|        | S                                                                    |

| Scanned                                   |   |  |  |
|-------------------------------------------|---|--|--|
|                                           | ( |  |  |
| (                                         |   |  |  |
| (1                                        | - |  |  |
| (1 + 2                                    | - |  |  |
| (1 + 2                                    | - |  |  |
| (1 + 2 + (3 + (3 + (3 + (3 + (3 + (3 + (3 | - |  |  |
| (1 + 2 + (3 + (3 + (3 + (3 + (3 + (3 + (3 | - |  |  |
| (1 + 2 + (3 + 4))                         | ) |  |  |
| (1 + 2 + (3 + 4))                         |   |  |  |
| (1 + 2 + (3 + 4))                         | ) |  |  |
| (1 + 2 + (3 + 4))                         |   |  |  |
| (1 + 2 + (3 + 4))                         | - |  |  |
| (1 + 2 + (3 + 4))                         | - |  |  |
| (1 + 2 + (3 + 4)) + 5                     |   |  |  |
|                                           |   |  |  |

Input Remaining (1 + 2 + (3 + 4)) + 51 + 2 + (3 + 4)) + 5+2+(3+4))+5+(3+4))+5+(3+4))+5+ 4)) + 5(+ 4)) + 5)) + 5 )) + 5 ) + 5 ) + 5 + 5 + 5

 $S \mapsto S + E \mid E$ E \low number | (S)

#### **Shift/Reduce Parsing**

- Parser state:
  - Stack of terminals and nonterminals.
  - Unconsumed input is a string of terminals
  - Current derivation step is stack + input
- Parsing is a sequence of *shift* and *reduce* operations:
- Shift: move look-ahead token to the stack
- Reduce: Replace symbols  $\gamma$  at top of stack with nonterminal X such that X  $\mapsto \gamma$  is a production. (pop  $\gamma$ , push X)

| Stack  | Input                 | Action                     |
|--------|-----------------------|----------------------------|
|        | (1 + 2 + (3 + 4)) + 5 | shift (                    |
| (      | 1 + 2 + (3 + 4)) + 5  | shift 1                    |
| (1     | +2+(3+4))+5           | reduce: $E \mapsto number$ |
| (E     | +2+(3+4))+5           | reduce: $S \mapsto E$      |
| (S     | +2+(3+4))+5           | shift +                    |
| (S +   | 2 + (3 + 4)) + 5      | shift 2                    |
| (S + 2 | +(3+4))+5             | reduce: $E \mapsto number$ |
| (S + E | +(3+4))+5             | reduce: $S \mapsto S + E$  |
| (S     | +(3+4))+5             | shift +                    |

 $S \mapsto S + E \mid E$ E \low number | (S)

#### **Shift/Reduce Parsing**

- Parser state:
  - Stack of terminals and nonterminals.
  - Unconsumed input is a string of terminals
  - Current derivation step is stack + input
- Invariant: Stack plus input is a step in building the Rightmost derivation in reverse

| Stack   | Input                 | Derivation steps                                                                  |
|---------|-----------------------|-----------------------------------------------------------------------------------|
|         | (1 + 2 + (3 + 4)) + 5 | (1 + 2 + (3 + 4)) + 5                                                             |
| (       | 1 + 2 + (3 + 4)) + 5  |                                                                                   |
| (1      | +2+(3+4))+5           |                                                                                   |
| (E      | +2+(3+4))+5           | $(\underline{E} + 2 + (3 + 4)) + 5$                                               |
| (S      | +2+(3+4))+5           | $(\underline{E} + 2 + (3 + 4)) + 5$<br>$(\underline{S} + 2 + (3 + 4)) + 5$ Vation |
| (S +    | 2 + (3 + 4)) + 5      | tion                                                                              |
| (S + 2) | +(3+4))+5             |                                                                                   |
| (S + E  | +(3+4))+5             | $(S + \underline{E} + (3 + 4)) + 5$                                               |
| (S      | +(3+4))+5             | $(\underline{S} + (3 + 4)) + 5$                                                   |

#### $S \mapsto S + E \mid E$ E \low number | (S)

ightmos

Simple LR parsing with no look ahead.

# LR(0) GRAMMARS

#### **LR Parser States**

- Goal: know what set of reductions are legal at any given point.
- Idea: Summarize all possible stack prefixes  $\alpha$  as a finite parser state.
  - Parser state is computed by a DFA that reads the stack  $\sigma$ .
  - Accept states of the DFA correspond to unique reductions that apply.
- Example: LR(0) parsing
  - <u>L</u>eft-to-right scanning, <u>R</u>ight-most derivation, <u>zero</u> look-ahead tokens
  - Too weak to handle many language grammars (e.g. the "sum" grammar)
  - But, helpful for understanding how the shift-reduce parser works.

#### **Example LR(0) Grammar: Tuples**

• Example grammar for non-empty tuples and identifiers:

 $S \mapsto (L) | id$  $L \mapsto S | L, S$ 

- Example strings:
  - x
  - (x,y)
  - ((((x))))
  - (x, (y, z), w)
  - (x, (y, (z, w)))

Parse tree for: (x, (y, z), w)



#### **Shift/Reduce Parsing**

- Parser state:
  - Stack of terminals and nonterminals.
  - Unconsumed input is a string of terminals
  - Current derivation step is stack + input
- Parsing is a sequence of *shift* and *reduce* operations:
- Shift: move look-ahead token to the stack: e.g.

| Stack | Input          | Action  |
|-------|----------------|---------|
|       | (x, (y, z), w) | shift ( |
| (     | x, (y, z), w)  | shift x |

• Reduce: Replace symbols  $\gamma$  at top of stack with nonterminal X such that X  $\mapsto \gamma$  is a production. (pop  $\gamma$ , push X): e.g.

| Stack | Input        | Action                |
|-------|--------------|-----------------------|
| (x    | , (y, z), w) | reduce $S \mapsto id$ |
| (S    | , (y, z), w) | reduce $L \mapsto S$  |

 $S \mapsto (L) \mid id$ 

 $L \mapsto S \mid L, S$ 

#### **Example Run**

| Stack     | Input          | Action                   |
|-----------|----------------|--------------------------|
|           | (x, (y, z), w) | shift (                  |
| (         | x, (y, z), w)  | shift x                  |
| (x        | , (y, z), w)   | reduce $S \mapsto id$    |
| (S        | , (y, z), w)   | reduce $L \mapsto S$     |
| (L        | , (y, z), w)   | shift ,                  |
| (L,       | (y, z), w)     | shift (                  |
| (L, (     | y, z), w)      | shift y                  |
| (L, (y    | , z), w)       | reduce S $\mapsto$ id    |
| (L, (S    | , z), w)       | reduce $L \mapsto S$     |
| (L, (L    | , z), w)       | shift ,                  |
| (L, (L,   | z), w)         | shift z                  |
| (L, (L, z | ), w)          | $reduce \ S \mapsto id$  |
| (L, (L, S | ), w)          | reduce $L \mapsto L$ , S |
| (L, (L    | ), w)          | shift )                  |
| (L, (L)   | , w)           | reduce $S \mapsto (L)$   |
| (L, S     | , w)           | reduce $L \mapsto L$ , S |
| (L        | , w)           | shift ,                  |
| (L,       | w)             | shift w                  |
| (L, w     | )              | reduce $S \mapsto id$    |
| (L, S     | )              | reduce $L \mapsto L$ , S |
| (L        | )              | shift )                  |
| (L)       |                | reduce $S \mapsto (L)$   |
| S         |                |                          |



#### **Action Selection Problem**

- Given a stack  $\sigma$  and a look-ahead symbol b, should the parser:
  - Shift b onto the stack (new stack is  $\sigma b$ )
  - Reduce a production  $X \mapsto \gamma$ , assuming that  $\sigma = \alpha \gamma$  (new stack is  $\alpha X$ )?
- Sometimes the parser can reduce but shouldn't
  - For example,  $X \mapsto \varepsilon$  can *always* be reduced
- Sometimes the stack can be reduced in different ways
- Main idea: decide what to do based on a *prefix*  $\alpha$  of the stack plus the look-ahead symbol.
  - The prefix  $\alpha$  is different for different possible reductions since in productions  $X \mapsto \gamma$  and  $Y \mapsto \beta$ ,  $\gamma$  and  $\beta$  might have different lengths.
- Main goal: know what set of reductions are legal at any point.
  - How do we keep track?

#### LR(0) States

- An LR(0) *state* is a *set* of *items* keeping track of progress on possible upcoming reductions.
- An LR(0) *item* is a production from the language with an extra separator "." somewhere in the right-hand-side

$$S \mapsto (L) \mid id$$
$$L \mapsto S \mid L, S$$

- Example items:  $S \mapsto .(L)$  or  $S \mapsto (.L)$  or  $L \mapsto S$ .
- Intuition:
  - Stuff before the '.' is already on the stack (beginnings of possible γ's to be reduced)
  - Stuff after the '.' is what might be seen next
  - The prefixes  $\alpha$  are represented by the state itself

#### **Constructing the DFA: Start state & Closure**

- First step: Add a new production  $S' \mapsto S$  to the grammar
- Start state of the DFA = empty stack, so it contains the item:
  - $S' \mapsto .S\$$
- Closure of a state:

- $\begin{array}{c} \mathsf{S'} \longmapsto \mathsf{S} \mathsf{\$} \\ \mathsf{S} \longmapsto (\mathsf{L}) & | \quad \mathsf{id} \\ \mathsf{L} \longmapsto \mathsf{S} & | \quad \mathsf{L}, \mathsf{S} \end{array}$
- Adds items for all productions whose LHS nonterminal occurs in an item in the state just after the '.'
- The added items have the '.' located at the beginning (no symbols for those items have been added to the stack yet)
- Note that newly added items may cause yet more items to be added to the state... keep iterating until a *fixed point* is reached.
- Example:  $CLOSURE({S' \mapsto .S}) = {S' \mapsto .S}, S \mapsto .(L), S \mapsto .id$
- Resulting "closed state" contains the set of all possible productions that might be reduced next.

# Example: Constructing the DFA $$' \mapsto S$$ $$' \mapsto S$$ $$' \mapsto S$$ $$' \mapsto S$ $$ \mapsto (L) | id$ $L \mapsto S | L, S$

• First, we construct a state with the initial item  $S' \mapsto .S$ 

#### **Example: Constructing the DFA**





- Next, we take the closure of that state:  $CLOSURE({S' \mapsto .S}) = {S' \mapsto .S}, S \mapsto .(L), S \mapsto .id$
- In the set of items, the nonterminal S appears after the '.'
- So we add items for each S production in the grammar

#### **Example: Constructing the DFA**



- $\begin{array}{l} S'\longmapsto S\$\\ S\longmapsto (L) & \mid id\\ L\longmapsto S & \mid L,S \end{array}$
- Next we add the transitions:
- First, we see what terminals and nonterminals can appear after the '.' in the source state.
  - Outgoing edges have those label.
- The target state (initially) includes all items from the source state that have the edge-label symbol after the '.', but we advance the '.' (to simulate shifting the item onto the stack)

### **Example: Constructing the DFA**



 $\begin{array}{l} \mathsf{S'} \longmapsto \mathsf{S} \mathsf{\$} \\ \mathsf{S} \longmapsto (\mathsf{L}) & | \quad \mathsf{id} \\ \mathsf{L} \longmapsto \mathsf{S} & | \quad \mathsf{L}, \mathsf{S} \end{array}$ 

- Finally, for each new state, we take the closure.
- Note that we have to perform two iterations to compute  $CLOSURE({S \mapsto (.L)})$ 
  - First iteration adds  $L \mapsto .S$  and  $L \mapsto .L$ , S
  - Second iteration adds  $S\mapsto.(L)$  and  $S\mapsto.id$

#### **Full DFA for the Example**



# Using the DFA

- Run the parser stack through the DFA.
- The resulting state tells us which productions might be reduced next.
  - If not in a reduce state, then shift the next symbol and transition according to DFA.
  - If in a reduce state,  $X \mapsto \gamma$  with stack  $\alpha \gamma$ , pop  $\gamma$  and push X.
- Optimization: No need to re-run the DFA from beginning every step
  - Store the state with each symbol on the stack: e.g.  $_1(_3(_3L_5)_6$
  - On a reduction  $X \mapsto \gamma$ , pop stack to reveal the state too: e.g. From stack  $_1(_3(_3L_5)_6$  reduce  $S \mapsto (L)$  to reach stack  $_1(_3$
  - Next, push the reduction symbol: e.g. to reach stack  $_1(_3S)$
  - Then take just one step in the DFA to find next state:  $_{1}(_{3}S_{7})$

#### **Implementing the Parsing Table**

Represent the DFA as a table of shape:

state \* (terminals + nonterminals)

- Entries for the "action table" specify two kinds of actions:
  - Shift and goto state n
  - Reduce using reduction  $X \mapsto \gamma$ 
    - First pop  $\gamma$  off the stack to reveal the state
    - Look up X in the "goto table" and goto that state

|       | Terminal Symbols | Nonterminal Symbols |
|-------|------------------|---------------------|
| State | Action<br>table  | Goto<br>table       |

#### **Example Parse Table**

|   | (               | )               | id              | ,               | \$              | S  | L  |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|----|----|
| 1 | s3              |                 | s2              |                 |                 | g4 |    |
| 2 | S⊷id            | S⊷id            | S⊷id            | S⊷id            | S⊷id            |    |    |
| 3 | s3              |                 | s2              |                 |                 | g7 | g5 |
| 4 |                 |                 |                 |                 | DONE            |    |    |
| 5 |                 | s6              |                 | s8              |                 |    |    |
| 6 | $S \mapsto (L)$ |    |    |
| 7 | $L \mapsto S$   |    |    |
| 8 | s3              |                 | s2              |                 |                 | g9 |    |
| 9 | $L \mapsto L,S$ |    |    |

sx = shift and go to state x

gx = goto state x

#### Example

• Parse the token stream: (x, (y, z), w)\$

| Stack                           | Stream           | Action (according to table) |
|---------------------------------|------------------|-----------------------------|
| ε <sub>1</sub>                  | (x, (y, z), w)\$ | s3                          |
| ε <sub>1</sub> ( <sub>3</sub>   | x, (y, z), w)\$  | s2                          |
| $\varepsilon_1(_3X_2$           | , (y, z), w)\$   | Reduce: S⊷id                |
| $\varepsilon_1(_3S)$            | , (y, z), w)\$   | g7 (from state 3 follow S)  |
| $\epsilon_1(_3S_7)$             | , (y, z), w)\$   | Reduce: L→S                 |
| ε <sub>1</sub> ( <sub>3</sub> L | , (y, z), w)\$   | g5 (from state 3 follow L)  |
| $\epsilon_1(_3L_5)$             | , (y, z), w)\$   | s8                          |
| $\varepsilon_1(_3L_{5,8})$      | (y, z), w)\$     | s3                          |
| $\epsilon_1(_3L_{5,8}(_3$       | y, z), w)\$      | s2                          |

### LR(0) Limitations

- An LR(0) machine only works if states with reduce actions have a *single* reduce action.
  - In such states, the machine *always* reduces (ignoring lookahead)
- With more complex grammars, the DFA construction will yield states with shift/reduce and reduce/reduce conflicts:

OKshift/reducereduce/reduce
$$S \mapsto (L).$$
 $S \mapsto (L).$  $S \mapsto L, S.$  $L \mapsto .L, S$  $S \mapsto ,S.$ 

• Such conflicts can often be resolved by using a look-ahead symbol: SLR(1) or LR(1)

#### **Examples**

• Consider the left associative and right associative "sum" grammars:



- One is LR(0) the other isn't... which is which and why?
- What kind of conflict do you get? Shift/reduce or Reduce/reduce?
- Ambiguities in associativity/precedence usually lead to shift/reduce conflicts.

#### SLR(1) ("simple" LR) Parsers

- What conflicts are there in LR(0) parsing?
  - reduce/reduce conflict: an LR(0) state has two reduce actions
  - shift/reduce conflict: an LR(0) state mixes reduce and shift actions
- Can we use lookahead to disambiguate?
- SLR(1) uses the same DFA construction as LR(0)
  - modifies the actions based on lookahead
- Suppose reducing an A nonterminal is possible in some state:
  - compute Follow(A) for the given grammar
  - if the lookahead symbol is in Follow(A), then reduce, otherwise shift
  - can disambiguate between reduce/reduce conflicts if the follow sets are disjoint

# LR(1) Parsing

- Algorithm is similar to LR(0) DFA construction:
  - LR(1) state = set of LR(1) items
  - An LR(1) item is an LR(0) item + a set of look-ahead symbols:  $A \mapsto \alpha.\beta$  ,  $\mathcal{L}$
- LR(1) closure is a little more complex:
- Form the set of items just as for LR(0) algorithm.
- Whenever a new item  $C \mapsto .\gamma$  is added because  $A \mapsto \beta.C\delta$ ,  $\mathcal{L}$  is already in the set, we need to compute its look-ahead set  $\mathcal{M}$ :
  - 1. The look-ahead set  $\mathcal{M}$  includes FIRST( $\delta$ ) (the set of terminals that may start strings derived from  $\delta$ )
  - 2. If  $\delta$  is itself  $\epsilon$  or can derive  $\epsilon$  (i.e. it is nullable), then the look-ahead  $\mathcal{M}$  also contains  $\mathcal{L}$

#### **Example Closure**

```
S' \mapsto S

S \mapsto E + S \mid E

E \mapsto number \mid (S)
```

• Start item:  $S' \mapsto .S$ , {}

•

- Since S is to the right of a '.', add:  $S \mapsto .E + S$  , {\$}  $S \mapsto .E$  , {\$}  $S \mapsto .E$  , {\$}
- Need to keep closing, since E appears to the right of a '.' in '.E + S':
  - $E \mapsto .number$ , {+}Note: + added for reason 1 $E \mapsto .(S)$ , {+} $FIRST(+S) = \{+\}$
- Because E also appears to the right of '.' in '.E' we get:  $E \mapsto .number$ , {\$}  $E \mapsto .(S)$ , {\$}  $\delta is \epsilon$
- All items are distinct, so we're done

# Using the DFA





Í

2

+

**s**3

- The behavior is determined if:
  - There is no overlap among the look-ahead sets for each reduce item, and
  - None of the look-ahead symbols appear to the right of a '.'

Fragment of the Action & Goto tables

\$

 $S \mapsto E$ 

E

g2

#### **LR variants**

- LR(1) gives maximal power out of a 1 look-ahead symbol parsing table
  - DFA + stack is a push-down automaton
- In practice, LR(1) tables are big.
  - Modern implementations (e.g., menhir) directly generate code
- LALR(1) = "Look-ahead LR"
  - Merge any two LR(1) states whose items are identical except for the look
    - ahead sets:



- Such merging can lead to nondeterminism (e.g., reduce/reduce conflicts), but
- Results in a much smaller parse table and works well in practice
- This is the usual technology for automatic parser generators: yacc, ocamlyacc
- GLR = "Generalized LR" parsing
  - Efficiently compute the set of *all* parses for a given input
  - Later passes should disambiguate based on other context

#### **Classification of Grammars**



Debugging parser conflicts. Disambiguating grammars.

# LALRPOP DEMO