November 29
EECS 483:
COMPILER CONSTRUCTION

LR GRAMMARS

Bottom-up Parsing (LR Parsers)

- LR(k) parser:
- Left-to-right scanning
- Rightmost derivation
- k lookahead symbols
- LR grammars are more expressive than LL
- Can handle left-recursive (and right recursive) grammars; virtually all programming languages
- Easier to express programming language syntax (no left factoring)
- Technique: "Shift-Reduce" parsers
- Work bottom up instead of top down
- Construct right-most derivation of a program in the grammar
- Used by many parser generators (e.g. yacc, ocamlyacc, lalrpop, etc.)
- Better error detection/recovery

Top-down vs. Bottom up

- Consider the leftrecursive grammar:

$$
\begin{aligned}
& S \mapsto S+E \mid E \\
& E \mapsto \text { number } \mid(S)
\end{aligned}
$$

- $(1+2+(3+4))+5$
- What part of the tree must we know after scanning just " $(1+2$ " ?
- In top-down, must be able to guess which productions to use...

Progress of Bottom-up Parsing

Reductions

Rightmost derivation

Scanned
(
$(1+2$
$(1+2$
$(1+2+(3$
$(1+2+(3$
$(1+2+(3+4$
$(1+2+(3+4$
$(1+2+(3+4)$
$(1+2+(3+4)$
$(1+2+(3+4))$
$(1+2+(3+4))$
$(1+2+(3+4))+5$

Input Remaining
$(1+2+(3+4))+5$
$1+2+(3+4))+5$
$+2+(3+4))+5$
$+(3+4))+5$
$+(3+4))+5$
$+4))+5$
$+4))+5$
)) +5
)) +5
) +5
) +5
$+5$
$+5$
$S \mapsto S+E \mid E$ $E \mapsto$ number $\mid(S)$

Shift/Reduce Parsing

- Parser state:
- Stack of terminals and nonterminals.
$S \mapsto S+E \mid E$
$E \mapsto$ number $\mid(S)$
- Unconsumed input is a string of terminals

$S \mapsto S+E \mid E$
 $\mathrm{E} \mapsto$ number \mid (S)

- Current derivation step is stack + input
- Parsing is a sequence of shift and reduce operations:
- Shift: move look-ahead token to the stack
- Reduce: Replace symbols γ at top of stack with nonterminal X such that X $\mapsto \gamma$ is a production. (pop γ, push X)

Stack	Input
	$(1+2+(3+4))+5$
$($	$1+2+(3+4))+5$
$(1$	$+2+(3+4))+5$
$(\mathrm{E}$	$+2+(3+4))+5$
$(\mathrm{~S}$	$+2+(3+4))+5$
$(\mathrm{~S}+$	$2+(3+4))+5$
$(\mathrm{~S}+2$	$+(3+4))+5$
$(\mathrm{~S}+\mathrm{E}$	$+(3+4))+5$
$(\mathrm{~S}$	$+(3+4))+5$

Action
shift (
shift 1
reduce: $\mathrm{E} \mapsto$ number
reduce: $S \mapsto E$
shift +
shift 2
reduce: $\mathrm{E} \mapsto$ number
reduce: $S \mapsto S+E$
shift +

Shift/Reduce Parsing

- Parser state:
- Stack of terminals and nonterminals.
- Unconsumed input is a string of terminals
- Current derivation step is stack + input
- Invariant: Stack plus input is a step in building the Rightmost derivation in reverse
Stack
1
$(1$
$(E$
$(S$
$(S+$
$(S+2$
$(S+E$
$(S$

$$
\begin{aligned}
\text { Input } & \text { Derivation steps } \\
(1+2+(3+4))+5 & (1+2+(3+4))+5 \\
1+2+(3+4))+5 & \\
+2+(3+4))+5 & \\
+2+(3+4))+5 & (\underline{E}+2+(3+4))+5 \\
+2+(3+4))+5 & (\underline{S}+2+(3+4))+5 \\
2+(3+4))+5 & \\
& +(3+4))+5 \\
& +(3+4))+5 \\
& +(3+4))+5
\end{aligned}
$$

Simple LR parsing with no look ahead.

LR(0) GRAMMARS

LR Parser States

- Goal: know what set of reductions are legal at any given point.
- Idea: Summarize all possible stack prefixes α as a finite parser state.
- Parser state is computed by a DFA that reads the stack σ.
- Accept states of the DFA correspond to unique reductions that apply.
- Example: LR(0) parsing
- Left-to-right scanning, Right-most derivation, zero look-ahead tokens
- Too weak to handle many language grammars (e.g. the "sum" grammar)
- But, helpful for understanding how the shift-reduce parser works.

Example LR(0) Grammar: Tuples

- Example grammar for non-empty tuples and identifiers:

Shift/Reduce Parsing

- Parser state:
- Stack of terminals and nonterminals.

- Unconsumed input is a string of terminals
- Current derivation step is stack + input
- Parsing is a sequence of shift and reduce operations:
- Shift: move look-ahead token to the stack: e.g.

Stack	Input	Action
$(x,(y, z), w)$	shift $($	
$($	$x,(y, z), w)$	shift x

- Reduce: Replace symbols γ at top of stack with nonterminal X such that $X \mapsto \gamma$ is a production. (pop γ, push X): e.g.

Stack	Input	Action
$(x$	$,(y, z), w)$	reduce $S \mapsto$ id
$(S$	$,(y, z), w)$	reduce $L \mapsto S$

Example Run

Stack	Input $(x,(y, z), w)$	Action shift ($S \longmapsto(L) \mid \text { id }$
($x,(y, z), w)$	shift x	$L \longmapsto S$
(x	, (y, z), w)	reduce $S \mapsto$ id	
(S	, (y, z), w)	reduce $L \mapsto S$	
(L	, (y, z), w)	shift,	
(L,	$(y, z), w)$	shift (
(L, (y, z), w)	shift y	
(L, (y	, z), w)	reduce $S \mapsto$ id	
(L, (S	, z), w)	reduce $L \mapsto S$	
(L, (L)	, z), w)	shift,	
(L, (L,	z), w)	shift z	
(L, (L, z), w)	reduce $S \mapsto$ id	
(L, (L, S), w)	reduce $L \mapsto L$, S	
(L, (L)), w)	shift)	
(L, (L)	, w)	reduce $S \mapsto(L)$	
(L, S	, w)	reduce $L \mapsto L$, S	
(L	, w)	shift,	
(L,	w)	shift w	
(L, w)	reduce $S \mapsto$ id	
(L, S)	reduce $L \mapsto L$, S	
(L)	shift)	
(L)		reduce $S \mapsto(L)$	

Action Selection Problem

- Given a stack σ and a look-ahead symbol b, should the parser:
- Shift b onto the stack (new stack is ob)
- Reduce a production $\mathrm{X} \mapsto \gamma$, assuming that $\sigma=\alpha \gamma$ (new stack is $\alpha \mathrm{X}$)?
- Sometimes the parser can reduce but shouldn't
- For example, $\mathrm{X} \mapsto \varepsilon$ can always be reduced
- Sometimes the stack can be reduced in different ways
- Main idea: decide what to do based on a prefix α of the stack plus the look-ahead symbol.
- The prefix α is different for different possible reductions since in productions $\mathrm{X} \mapsto \gamma$ and $\mathrm{Y} \mapsto \beta, \gamma$ and β might have different lengths.
- Main goal: know what set of reductions are legal at any point.
- How do we keep track?

LR(0) States

- An $\operatorname{LR}(0)$ state is a set of items keeping track of progress on possible upcoming reductions.
- An $\operatorname{LR}(0)$ item is a production from the language with an extra separator "." somewhere in the right-hand-side

$$
\begin{aligned}
& S \mapsto(L) \mid \text { id } \\
& L \mapsto S \mid L, S
\end{aligned}
$$

- Example items: $S \mapsto .(\mathrm{L}) \quad$ or $\quad \mathrm{S} \mapsto(\mathrm{L}) \quad$ or $\mathrm{L} \mapsto \mathrm{S}$.
- Intuition:
- Stuff before the $\quad .!$ is already on the stack (beginnings of possible γ^{\prime} s to be reduced)
- Stuff after the '.' is what might be seen next
- The prefixes α are represented by the state itself

Constructing the DFA: Start state \& Closure

- First step: Add a new production $S^{\prime} \mapsto S \$$ to the grammar
- Start state of the DFA = empty stack, so it contains the item:

$S^{\prime} \mapsto . S \$$

- Closure of a state:
- Adds items for all productions whose LHS nonterminal occurs in an item in the state just after the '.
- The added items have the ' $!$ located at the beginning (no symbols for those items have been added to the stack yet)
- Note that newly added items may cause yet more items to be added to the state... keep iterating until a fixed point is reached.
- Example: CLOSURE $\left(\left\{S^{\prime} \longmapsto . S \$\right\}\right)=\left\{S^{\prime} \longmapsto . S \$, S \mapsto .(L), S \longmapsto . i d\right\}$
- Resulting "closed state" contains the set of all possible productions that might be reduced next.

Example: Constructing the DFA

- First, we construct a state with the initial item $\mathrm{S}^{\prime} \mapsto . S \$$

Example: Constructing the DFA

```
\[
\begin{aligned}
& \quad \downarrow \\
& \mathrm{S}^{\prime} \mapsto . \mathrm{S} \$ \\
& \mathrm{~S} \mapsto .(\mathrm{L}) \\
& \mathrm{S} \mapsto . \mathrm{id}
\end{aligned}
\]
```

$$
\begin{aligned}
& S^{\prime} \mapsto S \$ \\
& S \mapsto(L) \mid \text { id } \\
& L \mapsto S \mid L, S
\end{aligned}
$$

- Next, we take the closure of that state: $\operatorname{CLOSURE}\left(\left\{S^{\prime} \mapsto . S \$\right\}\right)=\left\{S^{\prime} \mapsto . S \$, S \mapsto .(L), S \mapsto . i d\right\}$
- In the set of items, the nonterminal S appears after the ${ }^{\prime}$.
- So we add items for each S production in the grammar

Example: Constructing the DFA

$$
\begin{aligned}
& S^{\prime} \mapsto S \$ \\
& S \mapsto(L) \mid \text { id } \\
& L \mapsto S \mid L, S
\end{aligned}
$$

- Next we add the transitions:
- First, we see what terminals and nonterminals can appear after the ' $!$ in the source state.
- Outgoing edges have those label.
- The target state (initially) includes all items from the source state that have the edge-label symbol after the '!', but we advance the '.' (to simulate shifting the item onto the stack)

Example: Constructing the DFA

$$
\mathrm{S} \mapsto . \mathrm{id}
$$

$$
\begin{aligned}
& \mathrm{S} \mapsto(. \mathrm{L}) \\
& \mathrm{L} \mapsto . \mathrm{S} \\
& \mathrm{~L} \mapsto . \mathrm{L}, \mathrm{~S} \\
& \mathrm{~S} \mapsto .(\mathrm{L}) \\
& \mathrm{S} \mapsto . \mathrm{id}
\end{aligned}
$$

$$
\begin{aligned}
& S^{\prime} \mapsto S \$ \\
& S \mapsto(L) \mid \text { id } \\
& L \mapsto S \mid L, S
\end{aligned}
$$

- Finally, for each new state, we take the closure.
$S^{\prime} \mapsto S . \$$
- Note that we have to perform two iterations to compute $\operatorname{CLOSURE}(\{\mathrm{S} \mapsto(\mathrm{L})\})$
- First iteration adds $L \mapsto . S$ and $L \mapsto . L, S$
- Second iteration adds $S \mapsto$.(L) and $S \mapsto$.id

Full DFA for the Example

Using the DFA

- Run the parser stack through the DFA.
- The resulting state tells us which productions might be reduced next.
- If not in a reduce state, then shift the next symbol and transition according to DFA.
- If in a reduce state, $X \mapsto \gamma$ with stack $\alpha \gamma$, pop γ and push X.
- Optimization: No need to re-run the DFA from beginning every step
- Store the state with each symbol on the stack: e.g. ${ }_{1}\left({ }_{3}\left({ }_{3} L_{5}\right)_{6}\right.$
- On a reduction $\mathrm{X} \mapsto \gamma$, pop stack to reveal the state too: e.g. From stack $1_{1}\left({ }_{3} L_{5}\right)_{6}$ reduce $S \mapsto(L)$ to reach stack 1_{1}
- Next, push the reduction symbol: e.g. to reach stack $1_{1}{ }_{3} S$
- Then take just one step in the DFA to find next state: ${ }_{1}{ }_{3} \mathrm{~S}_{7}$

Implementing the Parsing Table

Represent the DFA as a table of shape:
state * (terminals + nonterminals)

- Entries for the "action table" specify two kinds of actions:
- Shift and goto state n
- Reduce using reduction $\mathrm{X} \mapsto \gamma$
- First pop γ off the stack to reveal the state
- Look up X in the "goto table" and goto that state

	Terminal Symbols	Nonterminal Symbols
	Action	Goto
	table	table

Example Parse Table

	()	id		\$	S	L
1	s 3		s 2			g 4	
2	$\mathrm{~S} \mapsto \mathrm{id}$	$\mathrm{S} \mapsto \mathrm{id}$	$\mathrm{S} \mapsto \mathrm{id}$	$\mathrm{S} \mapsto \mathrm{id}$	$\mathrm{S} \mapsto \mathrm{id}$		
3	s 3		s 2			g 7	g 5
4					DONE		
5		s 6		s 8			
6	$\mathrm{~S} \mapsto(\mathrm{~L})$	$\mathrm{S} \mapsto \mathrm{L})$	$\mathrm{S} \mapsto(\mathrm{L})$	$\mathrm{S} \mapsto(\mathrm{L})$	$\mathrm{S} \mapsto(\mathrm{L})$		
7	$\mathrm{~L} \mapsto \mathrm{~S}$						
8	s 3		s 2			g 9	
9	$\mathrm{~L} \mapsto \mathrm{~L}, \mathrm{~S}$						

$\mathrm{sx}=$ shift and goto state x
$\mathrm{gx}=$ goto state x

Example

- Parse the token stream: $(x,(y, z), w) \$$

Stack	Stream	Action (according to table)
ε	($x,(y, z), w) \$$	s3
$\varepsilon \square$	$x,(y, z), w) \$$	s2
$\varepsilon \square{ }_{\square} \mathrm{x}_{2}$	$,(y, z), w) \$$	Reduce: $\mathrm{S} \longmapsto \mathrm{id}$
$\varepsilon \square \square_{3} S$	$,(y, z), w) \$$	g7 (from state 3 follow S)
$\varepsilon \square_{3} S_{7}$, (y, z), w)\$	Reduce: L \longmapsto S
$\varepsilon \square \square^{L}$, (y, z), w)\$	g5 (from state 3 follow L)
$\varepsilon \square \square_{3} L_{5}$, (y, z), w)\$	s8
$\varepsilon-3 L_{5 / 8}$	$(y, z), w) \$$	s3
$\varepsilon \square \square_{3} \mathrm{~L}_{5,8}{ }_{3}$	$y, z), w) \$$	s2

LR(0) Limitations

- An $L R(0)$ machine only works if states with reduce actions have a single reduce action.
- In such states, the machine always reduces (ignoring lookahead)
- With more complex grammars, the DFA construction will yield states with shift/reduce and reduce/reduce conflicts:

- Such conflicts can often be resolved by using a look-ahead symbol: SLR(1) or LR(1)

Examples

- Consider the left associative and right associative "sum" grammars:
left
$S \mapsto S+E \mid E$
$E \mapsto$ number $\mid(S)$
right

$\mathrm{S} \mapsto \mathrm{E}+\mathrm{S} \mid \mathrm{E}$
$\mathrm{E} \mapsto$ number $\mid(S)$

- One is $\operatorname{LR}(0)$ the other isn't... which is which and why?
- What kind of conflict do you get? Shift/reduce or Reduce/reduce?
- Ambiguities in associativity/precedence usually lead to shift/reduce conflicts.

SLR(1) ("simple" LR) Parsers

- What conflicts are there in $\operatorname{LR}(0)$ parsing?
- reduce/reduce conflict: an $\operatorname{LR}(0)$ state has two reduce actions
- shift/reduce conflict: an LR(0) state mixes reduce and shift actions
- Can we use lookahead to disambiguate?
- $\operatorname{SLR}(1)$ - uses the same DFA construction as $\operatorname{LR}(0)$
- modifies the actions based on lookahead
- Suppose reducing an A nonterminal is possible in some state:
- compute Follow(A) for the given grammar
- if the lookahead symbol is in Follow(A), then reduce, otherwise shift
- can disambiguate between reduce/reduce conflicts if the follow sets are disjoint

LR(1) Parsing

- Algorithm is similar to LR(0) DFA construction:
- $\operatorname{LR}(1)$ state $=$ set of $\operatorname{LR}(1)$ items
- An $\operatorname{LR}(1)$ item is an $\operatorname{LR}(0)$ item + a set of look-ahead symbols:

$$
A \mapsto \alpha \beta, \mathcal{L}
$$

- $\operatorname{LR}(1)$ closure is a little more complex:
- Form the set of items just as for $\operatorname{LR}(0)$ algorithm.
- Whenever a new item $C \mapsto . \gamma$ is added because $A \mapsto \beta . C \delta, \mathcal{L}$ is already in the set, we need to compute its look-ahead set \mathcal{M} :

1. The look-ahead set \mathscr{M} includes FIRST(δ) (the set of terminals that may start strings derived from δ)
2. If δ is itself ε ©r can derive ε (i.e. it is nullable), then the look-ahead \mathscr{M} also contains \mathcal{L}

Example Closure

$$
\begin{aligned}
& S^{\prime} \mapsto S \$ \\
& S \mapsto E+S \mid E \\
& E \mapsto \text { number } \mid(S)
\end{aligned}
$$

- Start item: $\mathrm{S}^{\prime} \mapsto . S \$$, $\}$
- Since S is to the right of a '.\prime, add:

$$
\begin{array}{lll}
S \mapsto . E+S & , & \{\$\} \\
S \mapsto . E & , & \{\$\}
\end{array} \quad \text { Note: }\{\$\} \text { is FIRST(\$) }
$$

- Need to keep closing, since E appears to the right of a '.' in

$$
\begin{array}{rlr}
\text { '. } \mathrm{E}+\mathrm{S}^{\prime}: & & \\
\mathrm{E} \mapsto . \text { number , } & \{+\} \\
\mathrm{E} \mapsto .(\mathrm{S}) & \{+\}
\end{array}
$$

$$
\mathrm{E} \mapsto . \text { number }, \quad\{+\} \quad \text { Note: + added for reason } 1
$$

Note: + added for reason 1 $\operatorname{FIRST}(+S)=\{+\}$

- Because E also appears to the right of '.' in '.E' we get:
$\mathrm{E} \mapsto$.number, $\{\$\} \quad$ Note: $\$$ added for reason 2
$\mathrm{E} \mapsto .(\mathrm{S}) \quad, \quad\{\$\}$
δ is ε
- All items are distinct, so we're done

Using the DFA

- The behavior is determined if:

Fragment of the Action \& Goto tables

- There is no overlap among the look-ahead sets for each reduce item, and
- None of the look-ahead symbols appear to the right of a '.'

LR variants

- LR(1) gives maximal power out of a 1 look-ahead symbol parsing table
- DFA + stack is a push-down automaton
- In practice, LR(1) tables are big.
- Modern implementations (e.g., menhir) directly generate code
- $\operatorname{LALR}(1)=$ "Look-ahead LR"
- Merge any two LR(1) states whose items are identical except for the lookahead sets:

$\mathrm{S}^{\prime} \mapsto . \mathrm{S} \$$	$\}$
$\mathrm{S} \mapsto . \mathrm{E}+\mathrm{S}$	$\{\$\}$
$\mathrm{S} \mapsto . \mathrm{E}$	$\{\$\}$
$\mathrm{E} \mapsto . \mathrm{num}$	$\{+\}$
$\mathrm{E} \mapsto . \mathrm{S})$	$\{+\}$
$\mathrm{E} \mapsto . \mathrm{num}$	$\{\$\}$
$\mathrm{E} \mapsto . \mathrm{S})$	$\{\$\}$

$\mathrm{S}^{\prime} \mapsto . S \$$	$\}$
$\mathrm{S} \mapsto . \mathrm{E}+\mathrm{S}$	$\{\$\}$
$\mathrm{S} \mapsto . \mathrm{E}$	$\{\$\}$
$\mathrm{E} \mapsto$. num	$\{+, \$\}$
$\mathrm{E} \mapsto .(\mathrm{S})$	$\{+, \$\}$

- Such merging can lead to nondeterminism (e.g., reduce/reduce conflicts), but
- Results in a much smaller parse table and works well in practice
- This is the usual technology for automatic parser generators: yacc, ocamlyacc
- GLR = "Generalized $L R^{\prime \prime}$ parsing
- Efficiently compute the set of all parses for a given input
- Later passes should disambiguate based on other context

Classification of Grammars

Debugging parser conflicts.
Disambiguating grammars.

LALRPOP DEMO

