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LR GRAMMARS
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Bottom-up Parsing  (LR Parsers)
• LR(k) parser:  

– Left-to-right scanning
– Rightmost derivation
– k lookahead symbols

• LR grammars are more expressive than LL
– Can handle left-recursive (and right recursive) grammars; virtually all 

programming languages
– Easier to express programming language syntax (no left factoring)

• Technique:  “Shift-Reduce” parsers
– Work bottom up instead of top down
– Construct right-most derivation of a program in the grammar
– Used by many parser generators (e.g. yacc, ocamlyacc, lalrpop, etc.)
– Better error detection/recovery
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Top-down vs. Bottom up
• Consider the left-

recursive grammar:

• (1 + 2 + (3 + 4)) + 5

• What part of the
tree must we 
know after scanning
just “(1 + 2” ?

• In top-down, must
be able to guess
which productions
to use…
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Bottom-up

Note: ‘(‘ has 
been scanned 
but not 
consumed.  
Processing it is 
still pending.

S ⟼ S + E  |  E
E ⟼ number | ( S )



Progress of Bottom-up Parsing
Reductions     Scanned    Input Remaining
(1 + 2 + (3 + 4)) + 5 ⟻       (1 + 2 + (3 + 4)) + 5
(E + 2 + (3 + 4)) + 5 ⟻  (        1 + 2 + (3 + 4)) + 5
(S + 2 + (3 + 4)) + 5 ⟻  (1     + 2 + (3 + 4)) + 5
(S + E + (3 + 4)) + 5 ⟻  (1 + 2    + (3 + 4)) + 5
(S + (3 + 4)) + 5 ⟻   (1 + 2    + (3 + 4)) + 5
(S + (E + 4)) + 5 ⟻   (1 + 2 + (3   + 4)) + 5
(S + (S + 4)) + 5 ⟻   (1 + 2 + (3   + 4)) + 5
(S + (S + E)) + 5 ⟻   (1 + 2 + (3 + 4  )) + 5
(S + (S)) + 5 ⟻    (1 + 2 + (3 + 4  )) + 5
(S + E) + 5 ⟻    (1 + 2 + (3 + 4)  ) + 5
(S) + 5 ⟻     (1 + 2 + (3 + 4)  ) + 5
E + 5 ⟻      (1 + 2 + (3 + 4))  + 5 
S + 5 ⟻      (1 + 2 + (3 + 4))  + 5 
S + E ⟻      (1 + 2 + (3 + 4)) + 5          
S
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Shift/Reduce Parsing
• Parser state:

– Stack of terminals and nonterminals.
– Unconsumed input is a string of terminals
– Current derivation step is        stack + input

• Parsing is a sequence of shift and reduce operations:
• Shift: move look-ahead token to the stack
• Reduce: Replace symbols g at top of stack with nonterminal X such that X 

⟼ g is a production.  (pop g, push X)
Stack     Input    Action
         (1 + 2 + (3 + 4)) + 5      shift (
(          1 + 2 + (3 + 4)) + 5   shift 1
(1             + 2 + (3 + 4)) + 5   reduce: E ⟼ number
(E          + 2 + (3 + 4)) + 5   reduce: S ⟼ E
(S             + 2 + (3 + 4)) + 5   shift +
(S +               2 + (3 + 4)) + 5   shift 2
(S + 2                 + (3 + 4)) + 5   reduce: E ⟼ number
(S + E                 + (3 + 4)) + 5   reduce: S ⟼ S + E
(S                   + (3 + 4)) + 5   shift +
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Shift/Reduce Parsing
• Parser state:

– Stack of terminals and nonterminals.
– Unconsumed input is a string of terminals
– Current derivation step is        stack + input

• Invariant: Stack plus input is a step in building the Rightmost 
derivation in reverse
Stack     Input    Derivation steps
         (1 + 2 + (3 + 4)) + 5      (1 + 2 + (3 + 4)) + 5
(          1 + 2 + (3 + 4)) + 5   
(1             + 2 + (3 + 4)) + 5   
(E          + 2 + (3 + 4)) + 5   (E + 2 + (3 + 4)) + 5
(S             + 2 + (3 + 4)) + 5   (S + 2 + (3 + 4)) + 5
(S +               2 + (3 + 4)) + 5   
(S + 2                 + (3 + 4)) + 5   
(S + E                                  + (3 + 4)) + 5   (S + E + (3 + 4)) + 5
(S                                        + (3 + 4)) + 5   (S + (3 + 4)) + 5
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LR(0) GRAMMARS
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Simple LR parsing with no look ahead.



LR Parser States
• Goal: know what set of reductions are legal at any given point.
• Idea: Summarize all possible stack prefixes a as a finite parser state.

– Parser state is computed by a DFA that reads the stack s.
– Accept states of the DFA correspond to unique reductions that apply.

• Example: LR(0) parsing
– Left-to-right scanning, Right-most derivation, zero look-ahead tokens
– Too weak to handle many language grammars (e.g. the “sum” grammar)
– But, helpful for understanding how the shift-reduce parser works.
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Example LR(0) Grammar: Tuples
• Example grammar for non-empty tuples and identifiers:

• Example strings:
– x   
– (x,y)   
– ((((x))))
– (x, (y, z), w)
– (x, (y, (z, w)))
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Shift/Reduce Parsing
• Parser state:

– Stack of terminals and nonterminals.
– Unconsumed input is a string of terminals
– Current derivation step is        stack + input

• Parsing is a sequence of shift and reduce operations:
• Shift: move look-ahead token to the stack: e.g.

Stack    Input      Action
         (x,  (y, z), w)         shift (
(           x,  (y, z), w)     shift x

• Reduce: Replace symbols g at top of stack with nonterminal X such 
that X ⟼ g is a production.  (pop g, push X): e.g.

   Stack      Input      Action
(x        ,  (y, z), w)      reduce S ⟼ id
(S             ,  (y, z), w)      reduce L ⟼ S
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S ⟼ ( L )  |  id
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Example Run
Stack   Input    Action
    (x,  (y, z), w)   shift (
(    x,  (y, z), w)   shift x
(x    ,  (y, z), w)   reduce S ⟼ id
(S    ,  (y, z), w)   reduce L ⟼ S
(L    ,  (y, z), w)   shift ,
(L,    (y, z), w)   shift (
(L, (   y, z), w)   shift y
(L, (y   , z), w)   reduce S ⟼ id
(L, (S   , z), w)   reduce L ⟼ S
(L, (L   , z), w)   shift ,
(L, (L,   z), w)    shift z
(L, (L, z  ), w)    reduce S ⟼ id
(L, (L, S  ), w)    reduce L ⟼ L, S
(L, (L   ), w)    shift )
(L, (L)   , w)    reduce S ⟼ ( L )
(L, S   , w)    reduce L ⟼ L, S
(L    , w)    shift ,
(L,    w)    shift w
(L, w   )    reduce S ⟼ id
(L, S   )    reduce L ⟼ L, S
(L    )    shift )
(L)        reduce S ⟼ ( L )
S
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Action Selection Problem
• Given a stack s and a look-ahead symbol b, should the parser:

– Shift b onto the stack (new stack is sb)
– Reduce a production X ⟼ g, assuming that s = ag  (new stack is aX)?

• Sometimes the parser can reduce but shouldn’t
– For example, X ⟼ e can always be reduced

• Sometimes the stack can be reduced in different ways

• Main idea:  decide what to do based on a prefix a of the stack plus the 
look-ahead symbol.
– The prefix a is different for different possible reductions since in 

productions X ⟼ g and Y ⟼ b, g and b might have different lengths.

• Main goal: know what set of reductions are legal at any point.
– How do we keep track?
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LR(0) States
• An LR(0) state is a set of items keeping track of progress on possible 

upcoming reductions.
• An LR(0) item is a production from the language with an extra 

separator “.” somewhere in the right-hand-side

• Example items:     S ⟼ .( L )     or   S ⟼ (. L)    or    L ⟼ S.
• Intuition:

– Stuff before the ‘.’ is already on the stack
(beginnings of possible g’s to be reduced)

– Stuff after the ‘.’ is what might be seen next

– The prefixes a are represented by the state itself
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Constructing the DFA: Start state & Closure

• First step:  Add a new production   
S’ ⟼ S$  to the grammar

• Start state of the DFA =  empty stack, 
so it contains the item:
    S’ ⟼ .S$

• Closure of a state:
– Adds items for all productions whose LHS nonterminal occurs in an item 

in the state just after the ‘.’
– The added items have the ‘.’ located at the beginning (no symbols for 

those items have been added to the stack yet)
– Note that newly added items may cause yet more items to be added to the 

state… keep iterating until a fixed point is reached.

• Example:  CLOSURE({S’ ⟼ .S$})  =  {S’ ⟼ .S$, S ⟼ .(L), S⟼.id}

• Resulting “closed state” contains the set of all possible productions 
that might be reduced next.
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Example: Constructing the DFA

• First, we construct a state with the initial item S’ ⟼ .S$
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S’ ⟼ S$
S ⟼ ( L )  |  id
L ⟼ S   |   L , S

S’ ⟼ .S$



Example: Constructing the DFA

• Next, we take the closure of that state:
CLOSURE({S’ ⟼ .S$}) = {S’ ⟼ .S$, S ⟼ .( L ), S ⟼ .id}

• In the set of items, the nonterminal S appears after the ‘.’
• So we add items for each S production in the grammar
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Example: Constructing the DFA

• Next we add the transitions:
• First, we see what terminals and 

nonterminals can appear after the 
‘.’ in the source state.
– Outgoing edges have those label.

• The target state (initially) includes 
all items from the source state that 
have the edge-label symbol after 
the ‘.’, but we advance the ‘.’  (to 
simulate shifting the item onto the 
stack)
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Example: Constructing the DFA

• Finally, for each new state, we take the closure.
• Note that we have to perform two iterations to compute 

CLOSURE({S ⟼ ( . L )})
– First iteration adds L ⟼ .S and L ⟼ .L, S
– Second iteration adds S ⟼ .(L) and S ⟼ .id
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Full DFA for the Example
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S’ ⟼ .S$
S ⟼ .( L ) 
S ⟼ .id

S ⟼ (. L )
L ⟼ .S 
L ⟼ .L, S
S ⟼ .(L)
S ⟼ .id

S ⟼ id. L ⟼ L, . S
S ⟼ .( L )
S ⟼ .id

L ⟼ L, S.

S ⟼ ( L .)
L ⟼ L . , S

S ⟼ ( L ).L ⟼ S.S’ ⟼ S.$

Done!
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end of the production

• Current state: run the
   DFA on the stack.

• If a reduce state is 
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• Otherwise, if the next
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  outgoing edge, shift.

• If no such transition,
  it is a parse error. 
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Using the DFA
• Run the parser stack through the DFA.
• The resulting state tells us which productions might be 

reduced next.
– If not in a reduce state, then shift the next symbol and transition 

according to DFA.
– If in a reduce state, X ⟼ g with stack ag, pop g and push X.

• Optimization: No need to re-run the DFA from beginning 
every step
– Store the state  with each symbol on the stack:  e.g. 1(3(3L5)6
– On a reduction X ⟼ g, pop stack to reveal the state too:

e.g.    From stack 1(3(3L5)6 reduce S ⟼ ( L ) to reach stack 1(3
– Next, push the reduction symbol: e.g. to reach stack 1(3S
– Then take just one step in the DFA to find next state: 1(3S7 
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Implementing the Parsing Table
Represent the DFA as a table of shape: 

                      state * (terminals + nonterminals)
• Entries for the “action table” specify two kinds of actions:

– Shift and goto state n
– Reduce using reduction X ⟼ g

• First pop g off the stack to reveal the state
• Look up X in the “goto table” and goto that state

22
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Example Parse Table
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( ) id , $ S L

1 s3 s2 g4

2 S⟼id S⟼id S⟼id S⟼id S⟼id

3 s3 s2 g7 g5

4 DONE

5 s6 s8

6 S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L)

7 L ⟼ S L ⟼ S L ⟼ S L ⟼ S L ⟼ S

8 s3 s2 g9

9 L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S

sx  = shift and goto state x
gx  = goto state x



Example
• Parse the token stream:  (x, (y, z), w)$

Stack   Stream   Action (according to table)
e1     (x, (y, z), w)$ s3
e1(3    x, (y, z), w)$  s2
e1(3x2   , (y, z), w)$  Reduce: S⟼id
e1(3S   , (y, z), w)$  g7   (from state 3 follow S) 
e1(3S7   , (y, z), w)$  Reduce: L⟼S
e1(3L   , (y, z), w)$  g5   (from state 3 follow L)
e1(3L5   , (y, z), w)$  s8
e1(3L5,8   (y, z), w)$  s3
e1(3L5,8(3  y, z), w)$  s2
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LR(0) Limitations
• An LR(0) machine only works if states with reduce actions 

have a single reduce action.
– In such states, the machine always reduces (ignoring lookahead)

• With more complex grammars, the DFA construction will 
yield states with shift/reduce and reduce/reduce conflicts:
    OK      shift/reduce        reduce/reduce

• Such conflicts can often be resolved by using a look-ahead 
symbol: SLR(1) or LR(1)
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Examples
• Consider the left associative and right associative “sum” grammars: 

    
    left       right

• One is LR(0) the other isn’t…  which is which and why?
• What kind of conflict do you get?  Shift/reduce or Reduce/reduce?

• Ambiguities in associativity/precedence usually lead to shift/reduce 
conflicts. 
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S ⟼ S + E  |  E
E ⟼ number | ( S )

S ⟼ E + S  |  E
E ⟼ number | ( S )



SLR(1) (“simple” LR) Parsers
• What conflicts are there in LR(0) parsing?

– reduce/reduce conflict:  an LR(0) state has two reduce actions 
– shift/reduce conflict: an LR(0) state mixes reduce and shift actions

• Can we use lookahead to disambiguate?

• SLR(1) – uses the same DFA construction as LR(0) 
– modifies the actions based on lookahead

• Suppose reducing an A nonterminal is possible in some state:
– compute Follow(A) for the given grammar
– if the lookahead symbol is in Follow(A), then reduce, otherwise shift
– can disambiguate between reduce/reduce conflicts if the follow sets are 

disjoint
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LR(1) Parsing
• Algorithm is similar to LR(0) DFA construction:

– LR(1) state = set of LR(1) items
– An LR(1) item is an LR(0) item + a set of look-ahead symbols:

        A ⟼  a.b  ,  L

• LR(1) closure is a little more complex:
• Form the set of items just as for LR(0) algorithm.
• Whenever a new item C ⟼ .g is added because A ⟼ b.Cd , L    is 

already in the set, we need to compute its look-ahead set M:
1. The look-ahead set M includes FIRST(d) 

(the set of terminals that may start strings derived from d)
2. If d is itself e or can derive e (i.e. it is nullable), then the look-ahead M also 

contains L
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Example Closure

• Start item:     S’ ⟼ .S$    ,   {}  
• Since S is to the right of a ‘.’, add:   

       S ⟼ .E + S    ,   {$}      Note: {$} is FIRST($)
       S ⟼ .E          ,   {$}

• Need to keep closing, since E appears to the right of a ‘.’ in
‘.E + S’:
  E ⟼ .number ,   {+}    Note: + added for reason 1
     E ⟼ .( S )       ,   {+}               FIRST(+ S) = {+}

• Because E also appears to the right of ‘.’ in ‘.E’ we get:
  E ⟼ .number ,   {$}    Note: $ added for reason 2
     E ⟼ .( S )       ,   {$}                          d is e

• All items are distinct, so we’re done
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S’ ⟼ S$
S ⟼ E + S  |  E
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Using the DFA

• The behavior is determined if:
– There is no overlap among the

look-ahead sets for each reduce 
item, and

– None of the look-ahead symbols
appear to the right of a ‘.’
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S’ ⟼ .S$ {}
S ⟼ .E + S {$}
S ⟼ .E  {$}
E ⟼ .num {+}
E ⟼ .( S ) {+}
E ⟼ .num {$}
E ⟼ .( S ) {$}

S ⟼ E .+ S {$}
S ⟼ E.  {$}

E

1

+ $ E

1 g2

2 s3 S ⟼ E

2
+

Fragment of the Action & Goto tables

Choice between shift 
and reduce is resolved.



LR variants
• LR(1) gives maximal power out of a 1 look-ahead symbol parsing table

– DFA + stack is a push-down automaton
• In practice, LR(1) tables are big.

– Modern implementations (e.g., menhir) directly generate code

• LALR(1)  = “Look-ahead LR”
– Merge any two LR(1) states whose items are identical except for the look-

ahead sets:

– Such merging can lead to nondeterminism (e.g., reduce/reduce conflicts), but
– Results in a much smaller parse table and works well in practice
– This is the usual technology for automatic parser generators: yacc, ocamlyacc

• GLR = “Generalized LR” parsing
– Efficiently compute the set of all parses for a given input
– Later passes should disambiguate based on other context
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S’ ⟼ .S$ {}
S ⟼ .E + S {$}
S ⟼ .E {$}
E ⟼ .num {+}
E ⟼ .( S ) {+}
E ⟼ .num {$}
E ⟼ .( S ) {$}

S’ ⟼ .S$ {}
S ⟼ .E + S {$}
S ⟼ .E {$}
E ⟼ .num {+,$}
E ⟼ .( S ) {+,$}



Classification of Grammars
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LR(0)

SLR(1)

LALR(1)

LR(1)

LL(1)



LALRPOP DEMO
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Debugging parser conflicts.
Disambiguating grammars.


