November 27

EECS 483: COMPILER CONSTRUCTION

Searching for derivations.

LL & LR PARSING

CFGs Mathematically

- A Context-free Grammar (CFG) consists of
 - A set of *terminals* (e.g., a token or ε)
 - A set of *nonterminals* (e.g., S and other syntactic variables)
 - A designated nonterminal called the *start symbol*
 - A set of productions: LHS \mapsto RHS
 - LHS is a nonterminal
 - RHS is a *string* of terminals and nonterminals
- Example: The balanced parentheses language:

$$S \mapsto (S)S$$

 $S \mapsto \varepsilon$

Derivations in CFGs

- Example: derive (1 + 2 + (3 + 4)) + 5
- $\mathbf{S} \mapsto \mathbf{E} + \mathbf{S}$ \mapsto (**S**) + S \mapsto (**E** + S) + S \mapsto (1 + **S**) + S \mapsto (1 + **E** + S) + S \mapsto (1 + 2 + **S**) + S \mapsto (1 + 2 + **E**) + S \mapsto (1 + 2 + (**S**)) + S \mapsto (1 + 2 + (**E** + S)) + S $\mapsto (1 + 2 + (3 + \mathbf{S})) + \mathbf{S}$ \mapsto (1 + 2 + (3 + **E**)) + S \mapsto (1 + 2 + (3 + 4)) + **S** \mapsto (1 + 2 + (3 + 4)) + **E** \mapsto (1 + 2 + (3 + 4)) + 5

 $S \mapsto E + S \mid E$ E \low number | (S)

For arbitrary strings α , β , γ and production rule $A \mapsto \beta$ a single step of the derivation is:

 $\alpha A \gamma \mapsto \alpha \beta \gamma$

(*substitute* β for an occurrence of A)

In general, there are many possible derivations for a given string

Note: Underline indicates symbol being expanded.

Example: Left- and rightmost derivations

- Leftmost derivation:
- $\mathbf{S} \mapsto \mathbf{E} + \mathbf{S}$ \mapsto (**S**) + S \mapsto (**E** + S) + S \mapsto (1 + **S**) + S \mapsto (1 + **E** + S) + S \mapsto (1 + 2 + **S**) + S \mapsto (1 + 2 + **E**) + S \mapsto (1 + 2 + (**S**)) + S \mapsto (1 + 2 + (**E** + S)) + S \mapsto (1 + 2 + (3 + **S**)) + S \mapsto (1 + 2 + (3 + **E**)) + S \mapsto (1 + 2 + (3 + 4)) + **S** \mapsto (1 + 2 + (3 + 4)) + **E** \mapsto (1 + 2 + (3 + 4)) + 5

Rightmost derivation:

 $\mathbf{S} \mapsto \mathbf{E} + \mathbf{S}$ $S \mapsto E + S \mid E$ → E + **E** $E \mapsto number \mid (S)$ \mapsto **E** + 5 \mapsto (**S**) + 5 \mapsto (E + **S**) + 5 \mapsto (E + E + **S**) + 5 \mapsto (E + E + E) + 5 \mapsto (E + E + (**S**)) + 5 $\mapsto (\mathsf{E} + \mathsf{E} + (\mathsf{E} + \mathsf{S})) + 5$ \mapsto (E + E + (E + E)) + 5 \mapsto (E + E + (E + 4)) + 5 \mapsto (E + E + (3 + 4)) + 5 \mapsto (**E** + 2 + (3 + 4)) + 5 \mapsto (1 + 2 + (3 + 4)) + 5

CFGs In Practice

- Context-free Grammars are elegant, *declarative* specifications, generalizing regular expressions
- A parser for a CFG amounts to a *search procedure* for derivations
- Unlike regular expressions, which are easily compiled to linear time recognizers, practical algorithms for parsing *general* CFGs are O(n^3) in input string length
 - Compromise: add restrictions to the CFGs
 - Benefit: Linear time
 - Drawback: have to rewrite the grammar to make it fit the restrictions

Classification of Grammars

LL(1) GRAMMARS

Consider finding left-most derivations

• Look at only one input symbol at a time.

 $S \mapsto E + S \mid E$ E \low number | (S)

Partly-derived String	Look-ahead	Parsed/Unparsed Input
<u>S</u>	((1 + 2 + (3 + 4)) + 5
$\mapsto \underline{\mathbf{E}} + \mathbf{S}$	((1 + 2 + (3 + 4)) + 5
$\mapsto (\underline{\mathbf{S}}) + \mathbf{S}$	1	(1 + 2 + (3 + 4)) + 5
$\longmapsto (\underline{\mathbf{E}} + S) + S$	1	(1 + 2 + (3 + 4)) + 5
$\mapsto (1 + \underline{\mathbf{S}}) + \mathbf{S}$	2	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + \underline{\mathbf{E}} + S) + S$	2	(1 + 2 + (3 + 4)) + 5
$\mapsto (1 + 2 + \underline{\mathbf{S}}) + \mathbf{S}$	((1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 + \underline{\mathbf{E}}) + S$	((1 + 2 + (3 + 4)) + 5
$\mapsto (1 + 2 + (\underline{\mathbf{S}})) + \mathbf{S}$	3	(1 + 2 + (3 + 4)) + 5
$\mapsto (1 + 2 + (\underline{\mathbf{E}} + S)) + $	S 3	(1 + 2 + (3 + 4)) + 5
\mapsto		

There is a problem

- We want to decide which production to apply based on the look-ahead symbol.
- But, there is a choice:

(1)
$$S \mapsto E \mapsto (S) \mapsto (E) \mapsto (1)$$

vs.
(1) + 2
$$S \mapsto E + S \mapsto (S) + S \mapsto (E) + S \mapsto (1) + S \mapsto (1) + E$$

 $\mapsto (1) + 2$

• Given the look-ahead symbol: '(' it isn't clear whether to pick $S \mapsto E$ or $S \mapsto E + S$ first.

 $S \mapsto E + S \mid E$ E \low number | (S)

Grammar is the problem

- Not all grammars can be parsed "top-down" with only a single lookahead symbol.
- *Top-down*: starting from the start symbol (root of the parse tree) and going down
- LL(1) means
 - Left-to-right scanning
 - <u>L</u>eft-most derivation,
 - <u>1</u> lookahead symbol
- This language isn't "LL(1)"
- Is it LL(k) for some k?

 $S \mapsto E + S \mid E$ $E \mapsto number \mid (S)$

• What can we do?

Making a grammar LL(1)

- *Problem:* We can't decide which S production to apply until we see the symbol after the first expression.
- *Solution: "*Left-factor" the grammar. There is a common S prefix for each choice, so add a new non-terminal S' at the decision point:

- Also need to eliminate left-recursion somehow. Why?
- Consider:

 $S \mapsto S + E \mid E$ E \longrightarrow number | (S)

LL(1) Parse of the input string

- Look at only one input symbol at a time.
- $S \mapsto ES'$ $S' \mapsto \varepsilon$ $S' \mapsto + S$ $E \mapsto number \mid (S)$

Partly-derived String	Look-ahead	Parsed/Unparsed Input
<u>S</u>	((1 + 2 + (3 + 4)) + 5
→ <u>E</u> S′	((1 + 2 + (3 + 4)) + 5
$\mapsto (\underline{\mathbf{S}}) \ \mathbf{S'}$	1	(1 + 2 + (3 + 4)) + 5
$\longmapsto (\underline{\mathbf{E}} S') S'$	1	(1 + 2 + (3 + 4)) + 5
→ (1 <u>S'</u>) S'	+	(1 + 2 + (3 + 4)) + 5
$\mapsto (1 + \underline{\mathbf{S}}) \mathbf{S'}$	2	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + \underline{\mathbf{E}} S') S'$	2	(1 + 2 + (3 + 4)) + 5
$\mapsto (1 + 2 \mathbf{\underline{S'}}) \mathbf{S'}$	+	(1 + 2 + (3 + 4)) + 5
$\mapsto (1 + 2 + \underline{\mathbf{S}}) S'$	((1 + 2 + (3 + 4)) + 5
$\mapsto (1 + 2 + \underline{\mathbf{E}} S') S'$	((1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 + (\underline{\mathbf{S}})S') S'$	3	(1 + 2 + (3 + 4)) + 5

Predictive Parsing

- Given an LL(1) grammar:
 - For a given nonterminal, the lookahead symbol uniquely determines the production to apply.
 - Top-down parsing = predictive parsing
 - Driven by a predictive parsing table: nonterminal * input token \rightarrow production

 $T \mapsto S\$$ $S \mapsto ES'$ $S' \mapsto \varepsilon$ $S' \mapsto + S$ $E \mapsto number \mid (S)$

	number	+	()	\$ (EOF)
Т	\mapsto S\$		⊷S\$		
S	$\mapsto E S'$		⊷E S′		
S'		\mapsto + S		$\mapsto \epsilon$	$\mapsto \epsilon$
E	⊢ num		\mapsto (S)		

• Note: it is convenient to add a special *end-of-file* token \$ and a start symbol T (top-level) that requires \$.

How do we construct the parse table?

- Consider a given production: $A \rightarrow \gamma$
- Construct the set of all input tokens that may appear *first* in strings that can be derived from γ
 - Add the production $\rightarrow \gamma$ to the entry (A,token) for each such token.
- If γ can derive ε (the empty string), then we construct the set of all input tokens that may *follow* the nonterminal A in the grammar.
 - Add the production $\rightarrow \gamma$ to the entry (A, token) for each such token.

• Note: The grammar is LL(1) *if and only if* all entries have at most one production

Example

- First(T) = First(S)٠
- First(S) = First(E)•
- $First(S') = \{ + \}$ •
- First(E) = { number, '(' } •
- Follow(S') = Follow(S)•
- Follow(S) = { \$, ')' } U Follow(S') ٠

 $T \mapsto S$ $S \mapsto ES'$ $S' \mapsto \varepsilon$ $S' \mapsto + S$ $E \mapsto number \mid (S)$ **Note:** we want the *least*

solution to this system of set equations... a fixpoint computation. Just like in program analysis!

	number	+	()	\$ (EOF)
Т	\mapsto S\$		⊢→S\$		
S	$\mapsto E S'$		⊷E S′		
S'		\mapsto + S		$\mapsto \epsilon$	$\mapsto \epsilon$
E	⊢ num.		$\mapsto (S)$		

Converting the table to code

- Define n mutually recursive functions
 - one for each nonterminal A: parse_A
 - The type of parse_A is () -> ast if A is not an auxiliary nonterminal
 - Parse functions for auxiliary nonterminals (e.g., S') take extra ast's as inputs, one for each nonterminal in the "factored" prefix.
- Each function "peeks" at the lookahead token and then follows the production rule in the corresponding entry.
 - Consume terminal tokens from the input stream
 - Call parse_X to create sub-tree for nonterminal X
 - If the rule ends in an auxiliary nonterminal, call it with appropriate ast's. (The auxiliary rule is responsible for creating the ast after looking at more input.)
 - Otherwise, this function builds the ast tree itself and returns it.

	number	+	()	\$ (EOF)
Т	\mapsto S\$		⊷S\$		
S	$\mapsto E S'$		$\mapsto E S'$		
S'		\mapsto + S		$\mapsto \epsilon$	$\mapsto \epsilon$
E	⊢ num.		$\mapsto (S)$		

Hand-generated LL(1) code for the table above.

DEMO: HANDPARSER.RS

LL(1) Summary

- Top-down parsing that finds the leftmost derivation.
- Language Grammar ⇒ LL(1) grammar ⇒ prediction table ⇒ recursivedescent parser
- Problems:
 - Grammar must be LL(1)
 - Can extend to LL(k) (it just makes the table bigger)
 - Grammar cannot be left recursive (parser functions will loop!)

• Is there a better way?

Next time **LR GRAMMARS**