
EECS 483:
COMPILER CONSTRUCTION

November 27

LL & LR PARSING

2

Searching for derivations.

CFGs Mathematically
• A Context-free Grammar (CFG) consists of

– A set of terminals (e.g., a token or e)
– A set of nonterminals (e.g., S and other syntactic variables)
– A designated nonterminal called the start symbol
– A set of productions: LHS ⟼ RHS

• LHS is a nonterminal
• RHS is a string of terminals and nonterminals

• Example: The balanced parentheses language:

3

S ⟼ (S)S

S ⟼ e

Derivations in CFGs
• Example: derive (1 + 2 + (3 + 4)) + 5
• S ⟼ E + S

⟼ (S) + S
⟼ (E + S) + S
⟼ (1 + S) + S
⟼ (1 + E + S) + S
⟼ (1 + 2 + S) + S
⟼ (1 + 2 + E) + S
⟼ (1 + 2 + (S)) + S
⟼ (1 + 2 + (E + S)) + S
⟼ (1 + 2 + (3 + S)) + S
⟼ (1 + 2 + (3 + E)) + S
⟼ (1 + 2 + (3 + 4)) + S
⟼ (1 + 2 + (3 + 4)) + E
⟼ (1 + 2 + (3 + 4)) + 5

4

S ⟼ E + S | E
E ⟼ number | (S)

For arbitrary strings a, b, g and
production rule A ⟼ b
a single step of the derivation is:

 aAg ⟼ abg

(substitute b for an occurrence of A)

In general, there are many possible
derivations for a given string

Note: Underline indicates symbol
being expanded.

Example: Left- and rightmost derivations

• Leftmost derivation: Rightmost derivation:
• S ⟼ E + S S ⟼ E + S

⟼ (S) + S ⟼ E + E
⟼ (E + S) + S ⟼ E + 5
⟼ (1 + S) + S ⟼ (S) + 5
⟼ (1 + E + S) + S ⟼ (E + S) + 5
⟼ (1 + 2 + S) + S ⟼ (E + E + S) + 5
⟼ (1 + 2 + E) + S ⟼ (E + E + E) + 5
⟼ (1 + 2 + (S)) + S ⟼ (E + E + (S)) + 5
⟼ (1 + 2 + (E + S)) + S ⟼ (E + E + (E + S)) + 5
⟼ (1 + 2 + (3 + S)) + S ⟼ (E + E + (E + E)) + 5
⟼ (1 + 2 + (3 + E)) + S ⟼ (E + E + (E + 4)) + 5
⟼ (1 + 2 + (3 + 4)) + S ⟼ (E + E + (3 + 4)) + 5
⟼ (1 + 2 + (3 + 4)) + E ⟼ (E + 2 + (3 + 4)) + 5
⟼ (1 + 2 + (3 + 4)) + 5 ⟼ (1 + 2 + (3 + 4)) + 5

5

S ⟼ E + S | E
E ⟼ number | (S)

CFGs In Practice
• Context-free Grammars are elegant, declarative specifications,

generalizing regular expressions
• A parser for a CFG amounts to a search procedure for derivations
• Unlike regular expressions, which are easily compiled to linear time

recognizers, practical algorithms for parsing general CFGs are O(n^3)
in input string length
– Compromise: add restrictions to the CFGs

• Benefit: Linear time
• Drawback: have to rewrite the grammar to make it fit the restrictions

6

Classification of Grammars

7

LR(0)

SLR(1)

LALR(1)

LR(1)

LL(1)

LL(1) GRAMMARS

8

Consider finding left-most derivations
• Look at only one input symbol at a time.

9

S ⟼ E + S | E
E ⟼ number | (S)

Partly-derived String Look-ahead Parsed/Unparsed Input
 S ((1 + 2 + (3 + 4)) + 5
 ⟼ E + S ((1 + 2 + (3 + 4)) + 5
 ⟼ (S) + S 1 (1 + 2 + (3 + 4)) + 5
 ⟼ (E + S) + S 1 (1 + 2 + (3 + 4)) + 5
 ⟼ (1 + S) + S 2 (1 + 2 + (3 + 4)) + 5
 ⟼ (1 + E + S) + S 2 (1 + 2 + (3 + 4)) + 5
 ⟼ (1 + 2 + S) + S ((1 + 2 + (3 + 4)) + 5
 ⟼ (1 + 2 + E) + S ((1 + 2 + (3 + 4)) + 5
 ⟼ (1 + 2 + (S)) + S 3 (1 + 2 + (3 + 4)) + 5
 ⟼ (1 + 2 + (E + S)) + S 3 (1 + 2 + (3 + 4)) + 5
 ⟼ …

There is a problem
• We want to decide which production

to apply based on the look-ahead symbol.
• But, there is a choice:

(1) S ⟼ E ⟼ (S) ⟼ (E) ⟼ (1)
vs.

(1) + 2 S ⟼ E + S ⟼ (S) + S ⟼ (E) + S ⟼ (1) + S ⟼ (1) + E
 ⟼ (1) + 2

• Given the look-ahead symbol: ‘(‘ it isn’t clear whether to pick
S ⟼ E or S ⟼ E + S first.

10

S ⟼ E + S | E
E ⟼ number | (S)

Grammar is the problem
• Not all grammars can be parsed “top-down” with only a single

lookahead symbol.
• Top-down: starting from the start symbol (root of the parse tree) and

going down

• LL(1) means
– Left-to-right scanning
– Left-most derivation,
– 1 lookahead symbol

• This language isn’t “LL(1)”
• Is it LL(k) for some k?

• What can we do?

11

S ⟼ E + S | E
E ⟼ number | (S)

Making a grammar LL(1)
• Problem: We can’t decide which S production to apply until we see

the symbol after the first expression.
• Solution: “Left-factor” the grammar. There is a common S prefix for

each choice, so add a new non-terminal S’ at the decision point:

• Also need to eliminate left-recursion somehow. Why?
• Consider:

12

S ⟼ E + S | E
E ⟼ number | (S)

S ⟼ S + E | E
E ⟼ number | (S)

S ⟼ ES’
S’ ⟼ e
S’ ⟼ + S
E ⟼ number | (S)

LL(1) Parse of the input string
• Look at only one input symbol at a time.

Partly-derived String Look-ahead Parsed/Unparsed Input
 S ((1 + 2 + (3 + 4)) + 5
 ⟼ E S’ ((1 + 2 + (3 + 4)) + 5
 ⟼ (S) S’ 1 (1 + 2 + (3 + 4)) + 5
 ⟼ (E S’) S’ 1 (1 + 2 + (3 + 4)) + 5
 ⟼ (1 S’) S’ + (1 + 2 + (3 + 4)) + 5
 ⟼ (1 + S) S’ 2 (1 + 2 + (3 + 4)) + 5
 ⟼ (1 + E S’) S’ 2 (1 + 2 + (3 + 4)) + 5
 ⟼ (1 + 2 S’) S’ + (1 + 2 + (3 + 4)) + 5
 ⟼ (1 + 2 + S) S’ ((1 + 2 + (3 + 4)) + 5
 ⟼ (1 + 2 + E S’) S’ ((1 + 2 + (3 + 4)) + 5
 ⟼ (1 + 2 + (S)S’) S’ 3 (1 + 2 + (3 + 4)) + 5

13

S ⟼ ES’
S’ ⟼ e
S’ ⟼ + S
E ⟼ number | (S)

Predictive Parsing
• Given an LL(1) grammar:

– For a given nonterminal, the lookahead symbol uniquely determines the
production to apply.

– Top-down parsing = predictive parsing
– Driven by a predictive parsing table:

 nonterminal * input token → production

• Note: it is convenient to add a special end-of-file token $ and a start
symbol T (top-level) that requires $.

14

number + () $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ e ⟼ e

E ⟼ num ⟼ (S)

T ⟼ S$
S ⟼ ES’
S’ ⟼ e
S’ ⟼ + S
E ⟼ number | (S)

How do we construct the parse table?
• Consider a given production: A à g
• Construct the set of all input tokens that may appear first in strings

that can be derived from g
– Add the production à g to the entry (A,token) for each such token.

• If g can derive e (the empty string), then we construct the set of all
input tokens that may follow the nonterminal A in the grammar.
– Add the production à g to the entry (A, token) for each such token.

• Note: The grammar is LL(1) if and only if all entries have at most one
production

15

Example
• First(T) = First(S)
• First(S) = First(E)
• First(S’) = { + }
• First(E) = { number, ‘(‘ }

• Follow(S’) = Follow(S)
• Follow(S) = { $, ‘)’ } ∪ Follow(S’)

16

number + () $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ e ⟼ e

E ⟼ num. ⟼ (S)

T ⟼ S$
S ⟼ ES’
S’ ⟼ e
S’ ⟼ + S
E ⟼ number | (S)

Note: we want the least
solution to this system of set
equations… a fixpoint
computation. Just like in
program analysis!

Converting the table to code
• Define n mutually recursive functions

– one for each nonterminal A: parse_A
– The type of parse_A is () -> ast if A is not an auxiliary nonterminal

– Parse functions for auxiliary nonterminals (e.g., S’) take extra ast’s as
inputs, one for each nonterminal in the “factored” prefix.

• Each function “peeks” at the lookahead token and then follows the
production rule in the corresponding entry.
– Consume terminal tokens from the input stream
– Call parse_X to create sub-tree for nonterminal X
– If the rule ends in an auxiliary nonterminal, call it with appropriate ast’s.

(The auxiliary rule is responsible for creating the ast after looking at more
input.)

– Otherwise, this function builds the ast tree itself and returns it.

17

DEMO: HANDPARSER.RS

18

Hand-generated LL(1) code for the table above.

number + () $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ e ⟼ e

E ⟼ num. ⟼ (S)

LL(1) Summary
• Top-down parsing that finds the leftmost derivation.
• Language Grammar ⇒ LL(1) grammar ⇒ prediction table ⇒ recursive-

descent parser

• Problems:
– Grammar must be LL(1)
– Can extend to LL(k) (it just makes the table bigger)
– Grammar cannot be left recursive (parser functions will loop!)

• Is there a better way?

19

LR GRAMMARS

20

Next time

