November 27
EECS 483:
COMPILER CONSTRUCTION

Searching for derivations.

LL \& LR PARSING

CFGs Mathematically

- A Context-free Grammar (CFG) consists of
- A set of terminals (e.g., a token or ε)
- A set of nonterminals (e.g., S and other syntactic variables)
- A designated nonterminal called the start symbol
- A set of productions: LHS \mapsto RHS
- LHS is a nonterminal
- RHS is a string of terminals and nonterminals
- Example: The balanced parentheses language:

$$
S \mapsto(S) S
$$

$S \mapsto \varepsilon$

Derivations in CFGs

- Example: derive $(1+2+(3+4))+5$
- $\underline{\mathbf{S}} \mapsto \underline{\mathbf{E}}+\mathrm{S}$
$\mapsto(\underline{\mathbf{S}})+\mathrm{S}$
$\mapsto(\underline{E}+S)+S$
$\mapsto(1+\underline{\mathbf{S}})+\mathrm{S}$
$\mapsto(1+\underline{\mathbf{E}}+\mathrm{S})+\mathrm{S}$
$\mapsto(1+2+\underline{\mathbf{S}})+\mathrm{S}$
$\mapsto(1+2+\underline{\mathbf{E}})+\mathbf{S}$
$\mapsto(1+2+(\underline{\mathbf{S}})+\mathbf{S}$
$\mapsto(1+2+(\underline{E}+\mathbf{S}))+S$
$\mapsto(1+2+(3+\underline{\mathbf{S}}))+\mathrm{S}$
$\mapsto(1+2+(3+\underline{\mathbf{E}}))+\mathbf{S}$
$\mapsto(1+2+(3+4))+\underline{\mathbf{S}}$
$\mapsto(1+2+(3+4))+\underline{\mathbf{E}}$
$\mapsto(1+2+(3+4))+5$

$$
\begin{aligned}
& S \mapsto E+S \mid E \\
& E \mapsto \text { number } \mid(S)
\end{aligned}
$$

For arbitrary strings α, β, γ and production rule $A \mapsto \beta$
a single step of the derivation is:
$\square \quad \square \quad \alpha \mathrm{A} \gamma \mapsto \alpha \beta \gamma$
(substitute β for an occurrence of A)

In general, there are many possible derivations for a given string

Note: Underline indicates symbol being expanded.

Example: Left- and rightmost derivations

- Leftmost derivation:
- $\underline{\mathbf{S}} \mapsto \underline{\mathbf{E}}+\mathrm{S}$

$$
\mapsto(\underline{\mathbf{S}})+\mathrm{S}
$$

$$
\mapsto(\underline{\mathbf{E}}+\mathrm{S})+\mathrm{S}
$$

$$
\mapsto(1+\underline{\mathbf{S}})+\mathrm{S}
$$

$$
\mapsto(1+\underline{\mathbf{E}}+S)+S
$$

$$
\mapsto(1+2+\underline{\mathbf{S}})+\mathrm{S}
$$

$$
\mapsto(1+2+\underline{\mathbf{E}})+\mathrm{S}
$$

$$
\mapsto(1+2+(\underline{\mathbf{S}}))+\mathrm{S}
$$

$$
\mapsto(1+2+(\underline{\mathbf{E}}+\mathrm{S}))+\mathrm{S}
$$

$$
\mapsto(1+2+(3+\underline{\mathbf{S}}))+\mathrm{S}
$$

$$
\mapsto(1+2+(3+\underline{\mathbf{E}}))+S
$$

$$
\mapsto(1+2+(3+4))+\underline{\mathbf{S}}
$$

$$
\mapsto(1+2+(3+4))+\underline{\mathbf{E}}
$$

$$
\mapsto(1+2+(3+4))+5
$$

Rightmost derivation:

$$
\begin{array}{rl}
\underline{\mathbf{S}} \mapsto E+\underline{\mathbf{S}} & \mathrm{S} \mapsto \mathrm{E} \\
& \mapsto \mathrm{E}+\underline{\mathbf{E}} \\
& \mapsto \underline{\mathbf{E}}+5 \\
& \mapsto(\underline{\mathbf{S}})+5 \\
& \mapsto(\mathrm{E}+\underline{\mathbf{S}})+5 \\
& \mapsto(\mathrm{E}+\mathrm{E}+\underline{\mathbf{S}})+5 \\
\mapsto(\mathrm{E}+\mathrm{E}+\underline{\mathbf{E}})+5 \\
& \mapsto(\mathrm{E}+\mathrm{E}+(\underline{\mathbf{S}}))+5 \\
& \mapsto(\mathrm{E}+\mathrm{E}+(\mathrm{E}+\underline{\mathbf{S}}))+5 \\
& \mapsto(\mathrm{E}+\mathrm{E}+(\mathrm{E}+\underline{\mathbf{E}}))+5 \\
\mapsto(\mathrm{E}+\mathrm{E}+(\underline{\mathbf{E}}+4))+5 \\
& \mapsto(\mathrm{E}+\underline{\mathbf{E}}+(3+4))+5 \\
\mapsto(\underline{\mathbf{E}}+2+(3+4))+5 \\
& \mapsto(1+2+(3+4))+5
\end{array}
$$

CFGs In Practice

- Context-free Grammars are elegant, declarative specifications, generalizing regular expressions
- A parser for a CFG amounts to a search procedure for derivations
- Unlike regular expressions, which are easily compiled to linear time recognizers, practical algorithms for parsing general CFGs are $\mathrm{O}(\mathrm{n} \wedge 3)$ in input string length
- Compromise: add restrictions to the CFGs
- Benefit: Linear time
- Drawback: have to rewrite the grammar to make it fit the restrictions

Classification of Grammars

LL(1) GRAMMARS

Consider finding left-most derivations

- Look at only one input symbol at a time.

$$
\begin{aligned}
& S \mapsto E+S \mid E \\
& E \mapsto \text { number } \mid(S)
\end{aligned}
$$

Partly-derived String S
$\mapsto \underline{\mathbf{E}}+\mathrm{S}$
$\mapsto(\underline{\mathbf{S}})+\mathrm{S}$
$\mapsto(\underline{\mathbf{E}}+\mathrm{S})+\mathrm{S}$
$\mapsto(1+\underline{\mathbf{S}})+\mathrm{S}$
$\mapsto(1+\underline{\mathbf{E}}+\mathrm{S})+\mathrm{S}$
$\mapsto(1+2+\underline{\mathbf{S}})+\mathrm{S}$
$\mapsto(1+2+\underline{\mathbf{E}})+\mathbf{S}$
$\mapsto(1+2+(\underline{\mathbf{S}}))+\mathbf{S}$
$\mapsto(1+2+(\underline{E}+S))+S$
$\longmapsto \ldots$

Look-ahead Parsed/Unparsed Input

$$
(1+2+(3+4))+5
$$

$$
(1+2+(3+4))+5
$$

$$
(1+2+(3+4))+5
$$

$$
(1+2+(3+4))+5
$$

$$
(1+2+(3+4))+5
$$

$$
(1+2+(3+4))+5
$$

$$
(1+2+(3+4))+5
$$

$$
(1+2+(3+4))+5
$$

$$
(1+2+(3+4))+5
$$

$$
(1+2+(3+4))+5
$$

There is a problem

- We want to decide which production to apply based on the look-ahead symbol.

$$
\begin{aligned}
& S \mapsto E+S \mid E \\
& E \mapsto \text { number } \mid(S)
\end{aligned}
$$

- But, there is a choice:
(1) $\quad \mathrm{S} \mapsto \mathrm{E} \mapsto(\mathrm{S}) \mapsto(\mathrm{E}) \mapsto(1)$

VS.

$$
\begin{gathered}
(1)+2 \underset{\mapsto(1)+2}{ } \mathrm{~S} \mapsto \mathrm{E}+\mathrm{S} \mapsto(\mathrm{~S})+\mathrm{S} \mapsto(\mathrm{E})+\mathrm{S} \mapsto(1)+\mathrm{S} \mapsto(1)+\mathrm{E} \\
\mapsto\left(\begin{array}{l}
\text { (1) }
\end{array}\right)
\end{gathered}
$$

- Given the look-ahead symbol: '(' it isn't clear whether to pick $S \mapsto E \quad$ or $\quad S \mapsto E+S$ first.

Grammar is the problem

- Not all grammars can be parsed "top-down" with only a single lookahead symbol.
- Top-down: starting from the start symbol (root of the parse tree) and going down
- LL(1) means
- Left-to-right scanning
- Left-most derivation,
- 1 lookahead symbol
- This language isn't "LL(1)"
- Is it LL(k) for some k?

```
S\mapstoE+S | E
E\mapsto number| | S )
```

- What can we do?

Making a grammar LL(1)

- Problem: We can't decide which S production to apply until we see the symbol after the first expression.
- Solution: "Left-factor" the grammar. There is a common S prefix for each choice, so add a new non-terminal S^{\prime} at the decision point:

- Also need to eliminate left-recursion somehow. Why?
- Consider:

$$
\begin{aligned}
& S \mapsto S+E \mid E \\
& E \mapsto \text { number } \mid(S)
\end{aligned}
$$

LL(1) Parse of the input string

- Look at only one input symbol at a time.

$$
\begin{aligned}
& S \mapsto S^{\prime} \\
& S^{\prime} \mapsto \varepsilon \\
& S^{\prime} \mapsto+S \\
& E \mapsto \text { number } \mid(S)
\end{aligned}
$$

Partly-derived String
\underline{S}
$\mapsto \underline{\mathbf{E}} \mathrm{S}^{\prime}$
$\mapsto(\underline{\mathbf{S}}) S^{\prime}$
$\mapsto\left(\underline{E} S^{\prime}\right) S^{\prime}$
$\mapsto\left(\underline{\mathbf{S}^{\prime}}\right) \mathrm{S}^{\prime}$
$\mapsto(1+\underline{\mathbf{S}}) \mathrm{S}^{\prime}$
$\mapsto\left(1+\underline{\mathbf{E}} \mathrm{S}^{\prime}\right) \mathrm{S}^{\prime}$
$\mapsto\left(1+2 \underline{\mathbf{S}^{\prime}}\right) \mathrm{S}^{\prime}$
$\mapsto(1+2+\underline{\mathbf{S}}) S^{\prime}$
$\mapsto\left(1+2+\underline{\mathbf{E}} S^{\prime}\right) S^{\prime}$
$\mapsto\left(1+2+(\mathbf{S}) S^{\prime}\right) S^{\prime}$

Look-ahead
(
(
1
1
$+$
2
2
$+$
(
(
3

Parsed/Unparsed Input

$$
\begin{aligned}
& (1+2+(3+4))+5 \\
& (1+2+(3+4))+5 \\
& (1+2+(3+4))+5 \\
& (1+2+(3+4))+5 \\
& (1+2+(3+4))+5 \\
& (1+2+(3+4))+5 \\
& (1+2+(3+4))+5 \\
& (1+2+(3+4))+5 \\
& (1+2+(3+4))+5 \\
& (1+2+(3+4))+5 \\
& (1+2+(3+4))+5
\end{aligned}
$$

Predictive Parsing

- Given an LL(1) grammar:
- For a given nonterminal, the lookahead symbol uniquely determines the production to apply.
- Top-down parsing = predictive parsing
- Driven by a predictive parsing table: nonterminal * input token \rightarrow production

$$
\begin{aligned}
& \mathrm{T} \mapsto \mathrm{~S} \$ \\
& \mathrm{~S} \mapsto \mathrm{ES}^{\prime} \\
& \mathrm{S}^{\prime} \mapsto \varepsilon \\
& \mathrm{S}^{\prime} \mapsto+\mathrm{S} \\
& \mathrm{E} \mapsto \text { number }^{\prime}(\mathrm{S})
\end{aligned}
$$

	number	+	$($	$)$	\$ (EOF)
T	$\mapsto \mathrm{S} \$$		$\mapsto \mathrm{~S} \$$		
S	$\mapsto \mathrm{ES} \mathrm{S}^{\prime}$		$\mapsto \mathrm{S}^{\prime}$		
S^{\prime}		$\mapsto+\mathrm{S}$		$\mapsto \varepsilon$	$\mapsto \varepsilon$
E	\mapsto num		$\mapsto(\mathrm{S})$		

- Note: it is convenient to add a special end-of-file token \$ and a start symbol T (top-level) that requires $\$$.

How do we construct the parse table?

- Consider a given production: A $\rightarrow \gamma$
- Construct the set of all input tokens that may appear first in strings that can be derived from γ
- Add the production $\rightarrow \gamma$ to the entry (A,token) for each such token.
- If γ can derive ε (the empty string), then we construct the set of all input tokens that may follow the nonterminal A in the grammar.
- Add the production $\rightarrow \gamma$ to the entry (A, token) for each such token.
- Note: The grammar is LL(1) if and only if all entries have at most one production

Example

- $\operatorname{First}(\mathrm{T})=\operatorname{First}(\mathrm{S})$
- $\operatorname{First}(\mathrm{S})=\operatorname{First}(\mathrm{E})$
- $\operatorname{First}\left(S^{\prime}\right)=\{+\}$
- $\operatorname{First}(\mathrm{E})=\{$ number, '(' $\}$

$$
\begin{aligned}
& \mathrm{T} \mapsto \mathrm{~S} \$ \\
& \mathrm{~S} \mapsto \mathrm{ES}^{\prime} \\
& \mathrm{S}^{\prime} \mapsto \varepsilon \\
& \mathrm{S}^{\prime} \mapsto+\mathrm{S} \\
& \mathrm{E} \mapsto \text { number }^{\prime}(\mathrm{S})
\end{aligned}
$$

- Follow $\left(\mathrm{S}^{\prime}\right)=$ Follow(S)
- Follow $\left.(\mathrm{S})=\left\{\$,{ }^{\prime}\right)^{\prime}\right\} \cup$ Follow(${ }^{\prime}$)

Note: we want the least solution to this system of set equations... a fixpoint computation. Just like in program analysis!

	number	+		$($	$)$
T	$\mapsto \mathrm{S} \$$		$\mapsto \mathrm{~S} \$$		\$ (EOF)
S	$\mapsto \mathrm{E} \mathrm{S}^{\prime}$		$\mapsto \mathrm{ES}^{\prime}$		
S		$\mapsto+\mathrm{S}$			$\mapsto \varepsilon$
E	\mapsto num.		$\mapsto(\mathrm{S})$		$\mapsto \varepsilon$

Converting the table to code

- Define n mutually recursive functions
- one for each nonterminal A: parse_A
- The type of parse_A is () -> ast if A is not an auxiliary nonterminal
- Parse functions for auxiliary nonterminals (e.g., S^{\prime}) take extra ast's as inputs, one for each nonterminal in the "factored" prefix.
- Each function "peeks" at the lookahead token and then follows the production rule in the corresponding entry.
- Consume terminal tokens from the input stream
- Call parse_X to create sub-tree for nonterminal X
- If the rule ends in an auxiliary nonterminal, call it with appropriate ast's. (The auxiliary rule is responsible for creating the ast after looking at more input.)
- Otherwise, this function builds the ast tree itself and returns it.

	number	+	()	\$ (EOF)
T	$\mapsto \mathrm{S}$ \$		$\mapsto \mathrm{S}$ \$		
S	$\mapsto \mathrm{E} \mathrm{S}^{\prime}$		$\mapsto \mathrm{E} \mathrm{S}^{\prime}$		
S^{\prime}		$\mapsto+$ S		$\mapsto \varepsilon$	$\mapsto \varepsilon$
E	\mapsto num.		$\mapsto(S)$		

Hand-generated LL(1) code for the table above.

DEMO: HANDPARSER.RS

LL(1) Summary

- Top-down parsing that finds the leftmost derivation.
- Language Grammar $\Rightarrow \mathrm{LL}(1)$ grammar \Rightarrow prediction table \Rightarrow recursivedescent parser
- Problems:
- Grammar must be LL(1)
- Can extend to $\operatorname{LL}(\mathrm{k})$ (it just makes the table bigger)
- Grammar cannot be left recursive (parser functions will loop!)
- Is there a better way?

Next time
LR GRAMMARS

