November 27

EECS 483:
COMPILER CONSTRUCTION

Searching for derivations.

LL & LR PARSING

CFGs Mathematically

A Context-free Grammar (CFG) consists of
— A set of terminals (e.g., a token or g)
— A et of nonterminals (e.g., S and other syntactic variables)
— A designated nonterminal called the start symbol
— A set of productions: ~ LHS +— RHS

* LHS is a nonterminal
* RHS is a string of terminals and nonterminals

Example: The balanced parentheses language:
S +— (§)S

S— ¢

« Example: derive (1 +2 + (3 +4)) +

Derivations in CFGs

e S—E+S

+S)+S
+S)+S
T+E+S)+S
1T+2+S)+S
1+2+E+S
1T+2+()+S
1+2+(E+Y))
1T+2+3+Y9)
1+2+3+E)
1+2+(3+4))
1+2+3+4))
1+2+3+4))

+ + + + + +
Ul Im L LN L DN

5 S—E+S | E
E +— number | (S)

For arbitrary strings a, B, y and
production rule A+
a single step of the derivation is:

00 aAy — afy

(substitute B for an occurrence of A)

In general, there are many possible
derivations for a given string

Note: Underline indicates symbol
being expanded.

Example: Left- and rightmost derivations

* Leftmost derivation: Rightmost derivation:

. S|—>E+S S—E+S
() |—>E+E S|—>E+S|E
(E+S)+S —E+5 E +— number | (S)
— (T+S)+S — (S)+5
— (T+E+9S)+S — (E+S)+5
— (1+2+9S5 +S — (E+E+S)+5
— (1+2+E+S — (E+E+E) +5
— (T+2+(5)+S — (E+E+(S)+5
— (1T+2+E+S)) + — (E+E+(E+YS)) +
— (1T+2+3+95)+S — (E+E+(E+FE) +
— (1+2+3+E)+S — (E+E+(E+4) +
— (1T+2+3+4)+S — (E+E+ (3 +4)) +
— (1T+2+3+4)+E — (E+2+3+4)+
— (1T+2+3+4)+5 — (1T+2+3+4)+

CFGs In Practice

» Context-free Grammars are elegant, declarative specifications,
generalizing regular expressions

« A parser for a CFG amounts to a search procedure for derivations

« Unlike regular expressions, which are easily compiled to linear time
recognizers, practical algorithms for parsing general CFGs are O(n/\3)
in input string length

— Compromise: add restrictions to the CFGs
* Benefit: Linear time

« Drawback: have to rewrite the grammar to make it fit the restrictions

Classification of Grammars

LALR(]
(Ln| sLrR)
1}«05::::>

LL(1T) GRAMMARS

Consider finding left-most derivations

Look at only one input symbol at a time. S—E+S | E
E +— number | (S)

Partly-derived String Look-ahead Parsed/Unparsed Input
S (1T+2+C3+4)+5

(

— E+ S ((1T+2+3+4)+5
— (S) + 1 1T+2+3+4)+5
(E+S)+S 1 M1T+2+Q3+4)+5
— (T+S)+S 2 (1T+2+Q3+4)+5
— (1+E+S)+S 2 (1T+2+3+4)+
— (1 +2+S5 +S ((1T+2+3+4)+5
— (1T+2+E+S ((1T+2+3+4)+5
—(1T+2+()+S 3 (T+2+3+4)+5
— (1+2+E+S)+S 3 (T+2+3+4)+5

H o o o

There is a problem

* We want to decide which production S—E+S | E
to apply based on the look-ahead symbol. E +— number | (S)

* But, there is a choice:

(1) S E— S = (B)— (1)

M+2 IS—LE+5S—S)+S—E+S—(1)+S—(1)+E
— (1) + 2

* Given the look-ahead symbol: ‘(" it isn’t clear whether to pick
S—E or S—E+S first.

10

Grammar is the problem

Not all grammars can be parsed “top-down” with only a single
lookahead symbol.

lop-down: starting from the start symbol (root of the parse tree) and
going down

LL(T) means

— Left-to-right scanning
— Left-most derivation,
— 1 lookahead symbol

This language isn't “LL(1)” S—E+S | E
s it LL(k) for some k? E +— number | (S)

What can we do?

11

Making a grammar LL(1)

Problem: We can’t decide which S production to apply until we see
the symbol after the first expression.

Solution: “Left-factor” the grammar. There is a common S prefix for
each choice, so add a new non-terminal S’ at the decision point:

S E+S | E S > ES’
E+— number | (S) > § e
S"+— +S

E +— number | (S)

Also need to eliminate left-recursion somehow. Why?
Consider:

S—S+E | E
E +— number | (S)

12

LL(1) Parse of the input string

 Look at only one input symbol at a time. S — EY
S"— ¢
S"+— + S
E +— number | (S)
Partly-derived String Look-ahead Parsed/Unparsed Input
S (1T+2+03+4)+5
— E S (1T+2+03+4)+5
— (§) S’ 1 1T+2+03+4)+5
— (ES") S’ 1 1T+2+03+4)+5
— (185 + (1T+2+3+4)+5
— (1 +95) 5 2 (1T+2+3+4)+5
— (1 +ES) S 2 (1T+2+3+4)+5
—(1+28)5 + (1T+2+3+4)+5
—(1T+2+95 Y ((1T+2+3+4)+5
—(1+2+ES)SY ((1T+2+@3+4)+5
— (1 +2 +(5)S) S 3 (1T+2+3+4)+5

Predictive Parsing

* Given an LL(1) grammar:

— For a given nonterminal, the lookahead symbol uniquely determines the
production to apply.

— Top-down parsing = predictive parsing T — S$
— Driven by a predictive parsing table: S — EY

nonterminal * input token — production Sl
S"— + S

E +— number | (S)

—m---

— S$
— E S’ —E S’

— + S — g — g
— num — (S)

* Note: it is convenient to add a special end-of-file token $ and a start
symbol T (top-level) that requires $.

14

How do we construct the parse table?

Consider a given production: A 2>y
Construct the set of all input tokens that may appear first in strings
that can be derived from y

— Add the production = 7 to the entry (A, token) for each such token.

If y can derive ¢ (the empty string), then we construct the set of all
input tokens that may fo/low the nonterminal A in the grammar.

— Add the production = 7 to the entry (A, token) for each such token.

Note: The grammar is LL(1) if and only if all entries have at most one
production

15

Example

First(T) = First(S)
First(S) = First(E) =58
S — EY
First(S") ={ + } S s ¢
First(E) = { number, ‘(" } S’ — + S
E +— number | (S
FO”OW(S) - FO”OW(S) /\ Note: we want the Ieast
FO”OW(S) = { $, /), } U FO“OW(S’) solution to this system of set

equations... a fixpoint
computation. Just like in
program analysis!

—m---

— S$
— E S —E S’

— + S — € — €
— num. — (S)

16

Converting the table to code

* Define n mutually recursive functions
— one for each nonterminal A: parse_A
— The type of parse_Ais () -> ast if A is not an auxiliary nonterminal

— Parse functions for auxiliary nonterminals (e.g., S’) take extra ast’s as

inputs, one for each nonterminal in the “factored” prefix.

« Each function “peeks” at the lookahead token and then follows the
production rule in the corresponding entry.

Consume terminal tokens from the input stream
Call parse_X to create sub-tree for nonterminal X

If the rule ends in an auxiliary nonterminal, call it with appropriate ast’s.

(The auxiliary rule is responsible for creating the ast after looking at more

Input.)

Otherwise, this function builds the ast tree itself and returns it.

17

—m---

— S$ —S$
— E S’ —E S’

— + S — € — €
— num. — (S)

Hand-generated LL(1) code for the table above.

DEMO: HANDPARSER.RS

18

LL(1) Summary

Top-down parsing that finds the leftmost derivation.

Language Grammar = LL(1) grammar = prediction table = recursive-
descent parser

Problems:

— Grammar must be LL(1)

— Can extend to LL(k) (it just makes the table bigger)

— Grammar cannot be left recursive (parser functions will loop!)

s there a better way?

19

Next time

LR GRAMMARS

