
Lexical Analysis 2:  
Automata and Lexer Generators



Recognizing Regular Languages

• Finite Automata

• DFA (Deterministic Finite Automata)

• NFA (Non-deterministic Finite Automata)

How can we efficiently implement a recognizer for a 
regular language?
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Finite Automata:  Takes an input string and determines 
whether it’s a valid sentence of a language

accept or reject
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Finite State Automata
•  Regular expressions = specification 

•  Finite automata = implementation 

•  A finite automaton consists of 
–  An input alphabet Σ
–  A set of states S 
–  A start state n 
–  A set of accepting states F ⊆ S 
–  A set of transitions δ 

•   statek ---->  statej 



Finite State Automata
•  Transition 

    s1 !a s2 

•  A character is read 

  In state s1 on input “a” go to state s2 

•  If end of input and in accepting state  

  Accept 

•  Otherwise 

  Reject 



DFA vs. NFA

•  Deterministic Finite Automata (DFA) 
–  One transition per input per state 
–  No ε-moves 

•  Nondeterministic Finite Automata (NFA) 
–  Can have multiple transitions for one input in a given 

state 
–  Can have ε-moves 



DFA vs. NFA
•  NFAs and DFAs recognize the same set of 

languages (regular languages) 
–  For a given NFA, there exists a DFA, and vice versa 

•  DFAs are faster to execute 
–  There are no choices to consider 
–  Tradeoff: simplicity 

•  For a given language DFA can be exponentially larger than 
NFA. 



Automating Lexical Analyzer (scanner) 
Construction

To convert a specification into code: 

1  Write down the RE for the input language 

2  Build a big NFA 

3  Build the DFA that simulates the NFA 

4  Systematically shrink the DFA 

5  Turn it into code 

Scanner generators 

•  Lex and Flex work along these lines 

•  Algorithms are well-known and well-understood 



• We'll go through the "classic" procedure above but 
some scanners use different approaches:

• Brzozowski: use the "derivative" operation on 
languages to directly produce a DFA from a 
regexp

• Advantage: simple to implement, extends easily 
to support regex conjunction, negation. Often 
used for regex interpreters

• Disadvantage: computationally expensive to 
generate minimal DFAs

Alternative Approaches



Automating Lexical Analyzer (scanner) 
Construction

 
RE→ NFA  (Thompson’s construction) 

•  Build an NFA for each term 

•  Combine them with ε-moves 

NFA → DFA (subset construction) 

•  Build the simulation 

DFA → Minimal DFA 

•  Hopcroft’s algorithm                          

DFA →RE (Not part of the scanner construction)  

•  All pairs, all paths problem 

•  Take the union of all paths from s0 to an accepting state 

minimal 
DFA 

RE NFA DFA 

The Cycle of  Constructions 

Lexical Spec Scanner 
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Key idea 
•  NFA pattern for each symbol & each operator 
•  Join them with ε moves in precedence order 

RE →NFA using Thompson’s Construction 

S0  S1  
a

NFA for a 

S0  S1  
a

S3  S4  
b

NFA for ab 

ε 

NFA for a | b 

S0  

S1  S2  
a

S3  S4  
b

S5  
ε 

ε ε 

ε 

S0  S1  
ε S3  S4  

ε 

NFA for a* 

a

ε 

ε 

Ken Thompson, CACM, 1968 



Example of Thompson’s Construction 

Let’s try a ( b | c )*  

1.  a, b, & c 

2.  b | c 

3.  ( b | c )*   

S0  S1  
a

S0  S1  
b

S0  S1  
c

S2  S3  
b

S4  S5  
c

S1 S6  S0  S7  
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Example of Thompson’s Construction     (con’t) 

4.  a ( b | c )*  

 

Of course, a human would design something 
simpler ... 

S0  S1  
a

b | c 
But, we can automate production of  
the more complex one ... 

S0  S1  
a ε 

S4  S5  
b

S6  S7  
c

S3 S8  S2  S9  

ε 

ε 

ε ε 

ε ε 

ε ε 
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NFA to DFA : Trick 

•  Simulate the NFA 

•  Each state of DFA 

  = a non-empty subset of states of the NFA 

•  Start state 

  = the set of NFA states reachable through e-moves from 
    NFA start state 

•  Add a transition S !a S’ to DFA iff 
–  S’ is the set of NFA states reachable from any state in S after 

seeing the input a, considering ε-moves as well 



NFA to DFA  

•  Remove the non-determinism 
–  States with multiple outgoing edges due to same input 
–  ε transitions 

2 

4 

a 
c 

start 1 

3 

b 
ε 

ε ε 

ε 
(a*| b*) c* 



NFA to DFA (2) 

•  Multiple transitions 
–  Solve by subset construction 
–  Build new DFA based upon the set of states each 

representing a unique subset of states in NFA 

1 2 
a 

a 
b R= a+ b* 

ε-closure(1) = {1} include state “1” 
(1,a) ! {1,2} include state “1/2” 
(1,b) ! ERROR 
(1/2,a) !1/2 
(1/2,b) ! 2 include state “2” 

start 1 2 

a 

a 
1/2 start b 

b 

(2,a) ! ERROR 
(2,b) ! 2 
Any state with “2” in name is a final state 



NFA to DFA (3)  

•  ε transitions 
–  Any state reachable by an ε transition is “part of the state” 
–  ε-closure - Any state reachable from S by ε transitions is in 

the ε-closure; treat ε-closure as 1 big state, always include 
ε-closure as part of the state 

2 3 

a b 

start 
1 

ε ε 

1.  ε-closure(1)     = {1,2,3};                                      include1/2/3 
2.  Move(1/2/3, a) = {2, 3} + ε-closure(2,3) = {2,3} ; include 2/3 
3.  Move(1/2/3, b) = {3} + ε-closure(3)  = {3}          ; include state 3 
4.  Move(2/3, a)   = {2} + ε-closure(2)  = {2,3} 
5.  Move(2/3, b)   = {3} + ε-closure(3)  = {3}  
6.  Move(3, b)   = {3} + ε-closure(3)  = {3}  

a*b* 
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2/3 3 

a b 

start 
1/2/3 

a b 

a*b* 

b 



NFA to DFA - Example 
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NFA to DFA - Example 
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3 start 
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a 
b 
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6 5 

ε 

ε 

ε 

a 

b 

b 

A 

4 

6 a 
a start 

ε-closure(1) = {1, 2, 3, 5} 

 Create a new state  A = {1, 2, 3, 5} 

move(A, a) = {3, 6}  + ε-closure(3,6) = {3,6} 

Create B = {3,6} 

move(A, b) = {4} + ε-closure(4)  = {4} 

move(B, a) = {6} + ε-closure(6)  = {6} 

move(B, b) = {4} + ε-closure(4)  = {4} 

 

move(6, a) = {6} + ε-closure(6) = {6} 

move(6, b) ! ERROR 
 

move(4, a|b) ! ERROR 



Class Problem 

0 1 

4 

2 

6 

3 

5 

9 7 ε ε 

ε 

ε 

ε
ε 

ε 

ε 
a 

a 

b 

8 b 

Convert this NFA to a DFA 



NFA to DFA : cont.. 

•  An NFA may be in many states at any time 
 

•  How many different states ? 
 

•  If there are N states, the NFA must be in some 
subset of those N states 
 

•  How many subsets are there? 

   2^N - 1 = finitely many 
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State Minimization 

•  Resulting DFA can be quite large 
–  Contains redundant or equivalent states 

2 

5 

b 

start 
1 

3 

b 

a 
b 

a 
a 

4 

b 

a 

1 2 3 
start 

a a 

b b 

Both DFAs accept 
b*ab*a 



State Minimization (2) 

•  Idea – find groups of equivalent states and 
merge them 
–  All transitions from states in group G1 go to states in 

another group G2 
–  Construct minimized DFA such that there is 1 state for 

each group of states 

2 

5 

b 

start 
1 

3 

b 

a 
b 

a 
a 

4 

b 

a 

Basic strategy: identify 
distinguishing transitions 
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DFA Implementation 

•  A DFA can be implemented by a 2D table T 
–  One dimension is “states” 
–  Other dimension is “input symbol” 
–  For every transition Si !a Sk define T[i,a] = k 

•   DFA “execution” 
–  If in state Si and input a, read T[i,a] = k and skip to 

state Sk 
–  Very efficient 



DFA Table Implementation : Example 



Implementation Cont .. 

•  NFA -> DFA conversion is at the heart of tools 
such as flex 

•  But, DFAs can be huge 

•  In practice, flex-like tools trade off speed for 
space in the choice of NFA and DFA 
representations 



Lexer Generator

• Given regular expressions to describe the 
language (token types),  

•  Step 1: Generates NFA that can recognize the  
regular language defined 

• existing algorithms 

• Step 2: Transforms NFA to DFA  

• existing algorithms

• Tools: lex, flex for C



Challenges for Lexical Analyzer

• How do we determine which lexemes are 
associated with each token?

• Regular expression to describe token type

• When there are multiple ways we could scan 
the input, how do we know which one to 
pick?

• How do we address these concerns 
efficiently?
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Conflict Resolution

● Assume all tokens are specified as 
regular expressions.

● Algorithm: Left-to-right scan.

● Tiebreaking rule one: Maximal munch.

● Always match the longest possible prefix of 
the remaining text.
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T_Identifier [A-Za-z_][A-Za-z0-9_]*

f o tr

f o tr



  

Implementing Maximal Munch

● Given a set of regular expressions, how 
can we use them to implement maximum 
munch?

● Idea:

● Convert expressions to NFAs.

● Run all NFAs in parallel, keeping track of the 
last match.

● When all automata get stuck, report the last 
match and restart the search at that point.



• Example
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Other Conflicts

T_Do do
T_Double double
T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o bu el



  

More Tiebreaking

● When two regular expressions apply, 
choose the one with the greater 
“priority.”

● Simple priority system: pick the rule 
that was defined first.



  

Other Conflicts

T_Do do
T_Double double
T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o bu el

d o bu el

d o bu el



  

Other Conflicts

T_Do do
T_Double double
T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o bu el

d o bu el



Lexer Generators as 
Compilers for Regexes

Source Language: Regexes + associated Token-
construction code

Target Language: C or the lang the rest of your 
compiler is written in

Intermediate Representations: DFAs, NFAs
Passes: NFA -> DFA determinization
Optimization: DFA minimization
Can be mathematically proven to be correct, "optimal"


