
Lexical Analysis 2:
Automata and Lexer Generators

Recognizing Regular Languages

• Finite Automata

• DFA (Deterministic Finite Automata)

• NFA (Non-deterministic Finite Automata)

How can we efficiently implement a recognizer for a
regular language?

" "start

A,B,C,...,Z

A Simple Automaton

" "start

A,B,C,...,Z

Each circle is a state of the

automaton. The automaton's

configuration is determined

by what state(s) it is in.

Each circle is a state of the

automaton. The automaton's

configuration is determined

by what state(s) it is in.

A Simple Automaton

" "start

A,B,C,...,Z

These arrows are called

transitions. The automaton

changes which state(s) it is in

by following transitions.

These arrows are called

transitions. The automaton

changes which state(s) it is in

by following transitions.

A Simple Automaton

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

Finite Automata: Takes an input string and determines
whether it’s a valid sentence of a language

accept or reject

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

" "start

A,B,C,...,Z

A Simple Automaton

" H E Y A "

The double circle indicates that this

state is an accepting state. The

automaton accepts the string if it

ends in an accepting state.

The double circle indicates that this

state is an accepting state. The

automaton accepts the string if it

ends in an accepting state.

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

These are called -transitionsε . These

transitions are followed automatically and

without consuming any input.

These are called -transitionsε . These

transitions are followed automatically and

without consuming any input.

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

An Even More Complex Automaton
a, b

a, c

b, c

start

 ε

ε

 ε

c

b

a

b c b a

Finite State Automata
•  Regular expressions = specification

•  Finite automata = implementation

•  A finite automaton consists of
–  An input alphabet Σ
–  A set of states S
–  A start state n
–  A set of accepting states F ⊆ S
–  A set of transitions δ

•  statek ----> statej

Finite State Automata
•  Transition

 s1 !a s2

•  A character is read

 In state s1 on input “a” go to state s2

•  If end of input and in accepting state

 Accept

•  Otherwise

 Reject

DFA vs. NFA

•  Deterministic Finite Automata (DFA)
–  One transition per input per state
–  No ε-moves

•  Nondeterministic Finite Automata (NFA)
–  Can have multiple transitions for one input in a given

state
–  Can have ε-moves

DFA vs. NFA
•  NFAs and DFAs recognize the same set of

languages (regular languages)
–  For a given NFA, there exists a DFA, and vice versa

•  DFAs are faster to execute
–  There are no choices to consider
–  Tradeoff: simplicity

•  For a given language DFA can be exponentially larger than
NFA.

Automating Lexical Analyzer (scanner)
Construction

To convert a specification into code:

1  Write down the RE for the input language

2  Build a big NFA

3  Build the DFA that simulates the NFA

4  Systematically shrink the DFA

5  Turn it into code

Scanner generators

•  Lex and Flex work along these lines

•  Algorithms are well-known and well-understood

• We'll go through the "classic" procedure above but
some scanners use different approaches:

• Brzozowski: use the "derivative" operation on
languages to directly produce a DFA from a
regexp

• Advantage: simple to implement, extends easily
to support regex conjunction, negation. Often
used for regex interpreters

• Disadvantage: computationally expensive to
generate minimal DFAs

Alternative Approaches

Automating Lexical Analyzer (scanner)
Construction

RE→ NFA (Thompson’s construction)

•  Build an NFA for each term

•  Combine them with ε-moves

NFA → DFA (subset construction)

•  Build the simulation

DFA → Minimal DFA

•  Hopcroft’s algorithm

DFA →RE (Not part of the scanner construction)

•  All pairs, all paths problem

•  Take the union of all paths from s0 to an accepting state

minimal
DFA

RE NFA DFA

The Cycle of Constructions

Lexical Spec Scanner

minimal
DFA

RE NFA DFA

The Cycle of Constructions

Lexical Spec Scanner

Key idea
•  NFA pattern for each symbol & each operator
•  Join them with ε moves in precedence order

RE →NFA using Thompson’s Construction

S0 S1
a

NFA for a

S0 S1
a

S3 S4
b

NFA for ab

ε

NFA for a | b

S0

S1 S2
a

S3 S4
b

S5
ε

ε ε

ε

S0 S1
ε S3 S4

ε

NFA for a*

a

ε

ε

Ken Thompson, CACM, 1968

Example of Thompson’s Construction

Let’s try a (b | c)*

1. a, b, & c

2. b | c

3. (b | c)*

S0 S1
a

S0 S1
b

S0 S1
c

S2 S3
b

S4 S5
c

S1 S6 S0 S7

ε

ε

ε ε

ε ε

ε ε

S1 S2
b

S3 S4
c

S0 S5
ε

ε

ε

ε

Example of Thompson’s Construction (con’t)

4.  a (b | c)*

Of course, a human would design something
simpler ...

S0 S1
a

b | c
But, we can automate production of
the more complex one ...

S0 S1
a ε

S4 S5
b

S6 S7
c

S3 S8 S2 S9

ε

ε

ε ε

ε ε

ε ε

minimal
DFA

RE NFA DFA

The Cycle of Constructions

Lexical Spec Scanner

NFA to DFA : Trick

•  Simulate the NFA

•  Each state of DFA

 = a non-empty subset of states of the NFA

•  Start state

 = the set of NFA states reachable through e-moves from
 NFA start state

•  Add a transition S !a S’ to DFA iff
–  S’ is the set of NFA states reachable from any state in S after

seeing the input a, considering ε-moves as well

NFA to DFA

•  Remove the non-determinism
–  States with multiple outgoing edges due to same input
–  ε transitions

2

4

a
c

start 1

3

b
ε

ε ε

ε
(a*| b*) c*

NFA to DFA (2)

•  Multiple transitions
–  Solve by subset construction
–  Build new DFA based upon the set of states each

representing a unique subset of states in NFA

1 2
a

a
b R= a+ b*

ε-closure(1) = {1} include state “1”
(1,a) ! {1,2} include state “1/2”
(1,b) ! ERROR
(1/2,a) !1/2
(1/2,b) ! 2 include state “2”

start 1 2

a

a
1/2 start b

b

(2,a) ! ERROR
(2,b) ! 2
Any state with “2” in name is a final state

NFA to DFA (3)

•  ε transitions
–  Any state reachable by an ε transition is “part of the state”
–  ε-closure - Any state reachable from S by ε transitions is in

the ε-closure; treat ε-closure as 1 big state, always include
ε-closure as part of the state

2 3

a b

start
1

ε ε

1.  ε-closure(1) = {1,2,3}; include1/2/3
2.  Move(1/2/3, a) = {2, 3} + ε-closure(2,3) = {2,3} ; include 2/3
3.  Move(1/2/3, b) = {3} + ε-closure(3) = {3} ; include state 3
4.  Move(2/3, a) = {2} + ε-closure(2) = {2,3}
5.  Move(2/3, b) = {3} + ε-closure(3) = {3}
6.  Move(3, b) = {3} + ε-closure(3) = {3}

a*b*

NFA to DFA (3)

•  ε transitions
–  Any state reachable by an ε transition is “part of the state”
–  ε-closure - Any state reachable from S by ε transitions is in

the ε-closure; treat ε-closure as 1 big state, always include
ε-closure as part of the state

2 3

a b

start
1

ε ε

1.  ε-closure(1) = {1,2,3}; include1/2/3
2.  Move(1/2/3, a) = {2, 3} + ε-closure(2,3) = {2,3} ; include 2/3
3.  Move(1/2/3, b) = {3} + ε-closure(3) = {3} ; include state 3
4.  Move(2/3, a) = {2} + ε-closure(2) = {2,3}
5.  Move(2/3, b) = {3} + ε-closure(3) = {3}
6.  Move(3, b) = {3} + ε-closure(3) = {3}

2/3 3

a b

start
1/2/3

a b

a*b*

b

NFA to DFA - Example

1

2

3 start

a

a
b

a

4

6 5

ε

ε

ε

B

NFA to DFA - Example

1

2

3 start

a

a
b

a

4

6 5

ε

ε

ε

a

b

b

A

4

6 a
a start

ε-closure(1) = {1, 2, 3, 5}

 Create a new state A = {1, 2, 3, 5}

move(A, a) = {3, 6} + ε-closure(3,6) = {3,6}

Create B = {3,6}

move(A, b) = {4} + ε-closure(4) = {4}

move(B, a) = {6} + ε-closure(6) = {6}

move(B, b) = {4} + ε-closure(4) = {4}

move(6, a) = {6} + ε-closure(6) = {6}

move(6, b) ! ERROR

move(4, a|b) ! ERROR

Class Problem

0 1

4

2

6

3

5

9 7 ε ε

ε

ε

ε
ε

ε

ε
a

a

b

8 b

Convert this NFA to a DFA

NFA to DFA : cont..

•  An NFA may be in many states at any time

•  How many different states ?

•  If there are N states, the NFA must be in some
subset of those N states

•  How many subsets are there?

 2^N - 1 = finitely many

minimal
DFA

RE NFA DFA

The Cycle of Constructions

Lexical Spec Scanner

State Minimization

•  Resulting DFA can be quite large
–  Contains redundant or equivalent states

2

5

b

start
1

3

b

a
b

a
a

4

b

a

1 2 3
start

a a

b b

Both DFAs accept
b*ab*a

State Minimization (2)

•  Idea – find groups of equivalent states and
merge them
–  All transitions from states in group G1 go to states in

another group G2
–  Construct minimized DFA such that there is 1 state for

each group of states

2

5

b

start
1

3

b

a
b

a
a

4

b

a

Basic strategy: identify
distinguishing transitions

minimal
DFA

RE NFA DFA

The Cycle of Constructions

Lexical Spec Scanner

DFA Implementation

•  A DFA can be implemented by a 2D table T
–  One dimension is “states”
–  Other dimension is “input symbol”
–  For every transition Si !a Sk define T[i,a] = k

•  DFA “execution”
–  If in state Si and input a, read T[i,a] = k and skip to

state Sk
–  Very efficient

DFA Table Implementation : Example

Implementation Cont ..

•  NFA -> DFA conversion is at the heart of tools
such as flex

•  But, DFAs can be huge

•  In practice, flex-like tools trade off speed for
space in the choice of NFA and DFA
representations

Lexer Generator

• Given regular expressions to describe the
language (token types),

• Step 1: Generates NFA that can recognize the
regular language defined

• existing algorithms

• Step 2: Transforms NFA to DFA

• existing algorithms

• Tools: lex, flex for C

Challenges for Lexical Analyzer

• How do we determine which lexemes are
associated with each token?

• Regular expression to describe token type

• When there are multiple ways we could scan
the input, how do we know which one to
pick?

• How do we address these concerns
efficiently?

Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*

Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*

f o tr

Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

f o tr

Conflict Resolution

● Assume all tokens are specified as
regular expressions.

● Algorithm: Left-to-right scan.

● Tiebreaking rule one: Maximal munch.

● Always match the longest possible prefix of
the remaining text.

Lexing Ambiguities

T_For for
T_Identifier [A-Za-z_][A-Za-z0-9_]*

f o tr

f o tr

Implementing Maximal Munch

● Given a set of regular expressions, how
can we use them to implement maximum
munch?

● Idea:

● Convert expressions to NFAs.

● Run all NFAs in parallel, keeping track of the
last match.

● When all automata get stuck, report the last
match and restart the search at that point.

• Example

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

T_Do do
T_Double double
T_Mystery [A-Za-z]

Implementing Maximal Munch

start d o

start d o u b l e

start Σ

D O U B L ED O U B

Other Conflicts

T_Do do
T_Double double
T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o bu el

More Tiebreaking

● When two regular expressions apply,
choose the one with the greater
“priority.”

● Simple priority system: pick the rule
that was defined first.

Other Conflicts

T_Do do
T_Double double
T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o bu el

d o bu el

d o bu el

Other Conflicts

T_Do do
T_Double double
T_Identifier [A-Za-z_][A-Za-z0-9_]*

d o bu el

d o bu el

Lexer Generators as
Compilers for Regexes

Source Language: Regexes + associated Token-
construction code

Target Language: C or the lang the rest of your
compiler is written in

Intermediate Representations: DFAs, NFAs
Passes: NFA -> DFA determinization
Optimization: DFA minimization
Can be mathematically proven to be correct, "optimal"

