
EECS 483 Lecture 3
Let-bindings and simple stack allocations

Eric Giovannini
September 14, 2022

Based on notes available at:
https://maxsnew.com/teaching/eecs-483-fa22/lec_let-and-stack_notes.html

https://maxsnew.com/teaching/eecs-483-fa22/lec_let-and-stack_notes.html

Recap

So far, our language was pretty simple:

‹expr›: NUMBER

…with abstract syntax

type expr = int64

… and the compiler simply generated a mov instruction to place the integer
into RAX

Refactoring the Compiler

When given a number, say 483, we generate the following assembly:

section .text
global start_here
start_here:
 mov RAX, 483
 ret

Only this line corresponds to our
input program! The others are
scaffolding.

Refactoring (continued)

Split the compiler into multiple parts, as follows:

fn instrs_to_string(is: &[Instr]) -> String {
 /* do something to get a string of assembly */
}

/* compile_to_instrs is responsible for compiling just a single
expression, and does not care about the surrounding scaffolding */
fn compile_to_instrs(e: &Exp) -> Vec<Instr> {
 vec![Instr::Mov(Reg::Rax, *e)]
}

Refactoring (continued)

/* compile_to_string surrounds a compiled program by whatever
scaffolding is needed */
fn compile_to_string(e: &Exp) -> String {
 Ok(format!("\
 section .text
 global start_here

 start_here:
 {}",
instrs_to_string(&compile_to_instrs(e))))

}

Refactoring (continued)

Now compile_to_string will remain the same, while compile_to_instrs
will grow to accommodate more expression forms.

Growing the language

Things to consider when we add a new feature:

1. Its impact on the concrete syntax of the language

2. Examples using the new enhancements, so we build intuition of them

3. Its impact on the abstract syntax and semantics of the language

4. Any new or changed transformations needed to process the new forms

5. Executable tests to confirm the enhancement works as intended

New feature: Adding and Subtracting 1

Let’s add support for instructions that add and subtract 1 from their argument.

We will consider each of the five items from the previous slide in the context
of these new instructions.

Concrete Syntax

‹expr›:

 | NUMBER

 | add1 (‹expr›)

 | sub1 (‹expr›)

https://maxsnew.com/teaching/eecs-483-fa22/lec_let-and-stack_notes.html#%28elem._incr._%28bnf-prod._%28add1._expr%29%29%29
https://maxsnew.com/teaching/eecs-483-fa22/lec_let-and-stack_notes.html#%28elem._incr._%28bnf-prod._%28add1._expr%29%29%29

Examples

Concrete Syntax Answer

42 42

add1(42) 43

sub1(42) 41

sub1(add1(add1(42))) 43

Abstract Syntax

pub enum Exp {

 Num(i64),

 Add1(Box<Exp>),

 Sub1(Box<Exp>),

}

Semantics: evaluate argument to a number, then add or subtract one from it

Transformations

New assembly instruction:

add <dest>, <val>

Increment the destination by the right-side value

Transformations (continued)

New definition of Instr:

enum Instr {

 ...

 Add(Reg, i32) /* Increment the left-hand reg by the
value of the right-hand immediate */

 // In x86 only 32-bit literals can be on the right side
of an add instruction

}

Example: compiling add1(42)
Two steps:

1. Load 42 into RAX
2. Add 1 to RAX

Resulting assembly:

mov RAX, 42
add RAX, 1

Another example

Compile sub1(add1(add1(42)))

How to handle subtraction? Just add -1.

mov RAX, 42
add RAX, 1
add RAX, 1
add RAX, -1

Notice that each piece of the program corresponds to a related piece of the
assembly!

Important Observation: Compositionality

Our translations are compositional: a translation of a composite expression is
just a function of the translations of its constituent parts!

This makes writing the compilation function easy; we can use recursion

Testing the Feature

After implementing the code for the feature, we should now test that it works
as expected: we should get the handwritten assembly we expect.

Adding let

Growing the language

Things to consider when we add a new feature:

1. Its impact on the concrete syntax of the language

2. Examples using the new enhancements, so we build intuition of them

3. Its impact on the abstract syntax and semantics of the language

4. Any new or changed transformations needed to process the new forms

5. Executable tests to confirm the enhancement works as intended

Concrete Syntax for Let

‹expr›: ...

 | IDENTIFIER

 | let IDENTIFIER = ‹expr› in ‹expr›

https://maxsnew.com/teaching/eecs-483-fa22/lec_let-and-stack_notes.html#%28elem._let._%28bnf-prod._%28let-lang._expr%29%29%29
https://maxsnew.com/teaching/eecs-483-fa22/lec_let-and-stack_notes.html#%28elem._let._%28bnf-prod._%28let-lang._expr%29%29%29

Abstract Syntax for Let

enum Exp {
 ...
 Id(String),
 Let(String, Box<Exp>, Box<Exp>)
}

Examples

let x = 5 in add1(x)

=> 6

let x = 483 in (let y = add1(x) in add1(y))

=> 485

let x = (let y = add1(5) in add1(y)) in add1(x)

=> 8

Semantics: Writing an Interpreter for the New Language

Same as before:

● Numbers evaluate to themselves
● Adding or subtracting one should evaluate the expression and then

add/subtract one from the result

But what about identifiers and let-bindings?

Environments

We need to track the meaning of each identifier. We will do so using an
environment.

Possible choices for the type of the environment:

● Match each identifier to the expression it was bound to
○ Environment type: [(&str, Exp)]
○ Lazy behavior

● Match each identifier to the result of evaluating that expression
○ Environment type: [(&str, i64)]
○ Eager behavior

Lazy vs Eager Evaluation

In lazy evaluation, an identifier is evaluated to a result on an as-needed basis.

In eager evaluation, an expression is fully evaluated before it is bounded to an
identifier, and is subsequently never evaluated again.

In this language, the choice of eager versus lazy makes no difference in terms
of the result or the performance.

But in more complicated languages, the choice can make a difference in
terms of performance or even the result!

Scope

Scope tells us which names are available for use within a given expression.

Our convention for scope: the program let x = e1 in e2 means that x can
be used in e2, but not in e1.

Is this code valid?

let x = add1(x) in x

No, because x is not in scope in add1(x)!

(If the language supported recursion, this kind of definition could be sensible, but
even if it did, in this particular example, there would be no solution, i.e., no x such
that x = x + 1.)

Important Convention

What is the result of the following code:

let x = 1 in let x = 2 in x

Choices: 1, 2, or error

Our convention: answer = 2

“Inner bindings shadow outer ones.”

Interpreter Demo

(Look at example Rust code)

The Stack

Compiling the New Language

How can we compile programs in our updated language?

● No notion of identifier names or environments in the assembly language
● One register is not enough, since we may need to track multiple names at

once. (In fact, no fixed number of registers would be enough.)

Solution

Insight #1: Broaden our notion of a name

In the interpreter, a name was used to map to a value or expression.

In reality, any unique identifier will suffice, and all values will need to exist in
memory at runtime.

So now, instead of “a name is a string”, we should think “a name is a memory
address”.

Insight #2

While compiling, we can maintain an environment of type Vec<&str, Address>.

● When we compile a let-binding, we can extend this environment with
new addresses for new identifiers.

● When we compile an identifier, we look up the relevant address.

This environment is not needed at runtime!

New question: how do we assign addresses to identifiers?

Memory Layout

Conceptually, memory is an array of bytes, addressed from 0 to 2^64
(assuming a 64-bit machine).

There are restrictions on what addresses can be used.

The typical memory layout for a program is shown on the next slide.

Memory Layout (continued)

Sections of Program Memory

● Code/text segment: includes the program machine code
● Global segment: global data available throughout the program’s execution
● Heap: memory that is dynamically allocated as the program runs
● Stack: used as the program calls and returns from functions

Stack Layout

Stack Layout (continued)

● The stack is divided into stack frames, with each function in progress
gettings its own frame.

● Each stack frame can be used freely by its corresponding function.
● When the function returns, its stack frame is freed for use by future calls.
● The RSP register contains the address where the current stack frame

begins.

Allocating Identifiers on the Stack

With the above knowledge, the task of assigning addresses is more concrete.

We are given addresses on the stack at RSP - 8 * 1, RSP - 8 * 2, ... RSP - 8 * i

We need to allocate a number to each identifier so that identifiers needed
simultaneously are mapped to different numbers.

Naive Allocation Algorithm

Give every unique binding its own unique integer, i.e., every binder gets its
own stack slot.

Implementation: keep a global mutable counter of the number of variables we
have seen, and a global table mapping names to counterns.

Naive Allocation: Examples

 let x = 10 /* [] */

in add1(x) /* [x --> 1] */

 let x = 10 /* [] */

in let y = add1(x) /* [x --> 1] */

in let z = add1(y) /* [y --> 2, x --> 1] */

in add1(z) /* [z --> 3, y --> 2, x --> 1] */

Naive Allocation: Examples

 let a = 10 /* [] */

in let c = let b = add1(a) /* [a --> 1] */

 in let d = add1(b) /* [b --> 2, a --> 1] */

 in add1(b) /* [d --> 3, b --> 2, a --> 1] */

in add1(c) /* [c --> 4, d --> 3, b --> 2, a --> 1] */

Problems with this Approach

Wastes space (see last line of last example where neither b nor d are in scope,
but their stack slots are still reserved).

Difficult to test because of the use of mutable state!

Another Attempt

Observation: as we enter the bodies of let-expressions, only the bindings of
those particular let-expressions are in scope; everything else is unavailable.

We can trace a straight-line path from any given let-body out through its
parents to the outermost expression of a given program.

So, we only need to maintain uniqueness among the variables on those
paths!

Example

The first two examples shown earlier are the same under this new strategy.
Here is the last example:

 let a = 10 /* [] */

in let c = let b = add1(a) /* [a --> 1] */

 in let d = add1(b) /* [b --> 2, a --> 1] */

 in add1(b) /* [d --> 3, b --> 2, a --> 1] */

in add1(c) /* [c --> 2, a --> 1] */

Resulting Assembly Code

let a = 10

in let c = let b = add1(a)

 in let d = add1(b)

 in add1(b)

in add1(c)

mov RAX, 10
mov [RSP - 8*1], RAX
mov RAX, [RSP - 8*1]
add RAX, 1
mov [RSP - 8*2], RAX
mov RAX, [RSP - 8*2]
add RAX, 1
mov [RSP - 8*3], RAX
mov RAX, [RSP - 8*2]
add RAX, 1
mov [RSP - 8*2], RAX
mov RAX, [RSP - 8*2]
add RAX, 1

Allocating Identifiers on the Stack

Extending our Transformations

enum Reg {
 Rax,
 Rsp,
}

// Represents the address [reg + 8 * offset]
struct MemRef {
 reg: Reg,
 offset: i32,
}

enum Arg64 {
 Reg(Reg),
 Imm(i64),
 Mem(MemRef)
}

Extending our Transformations

enum MovArgs {
 ToReg(Reg, Arg64),
 ToMem(MemRef, Reg32),
}

enum Instr {
 Mov(MovArgs),
 Add(Reg, i32),
}

Looking up an Identifier in an Environment

fn get(env: &[(String, i32)], x: &str) -> Option<i32> {
 for (y,n) in env.iter().rev() {
 if &x == y {
 return Some(*n);
 }
 }
 None
}

Notice that we search in reverse, because we push pairs on as we descend into
the expression.

Compiling Let-bindings

fn compile(e: &Exp mut env: Vec<(String, i32)>) -> Result<Vec<Instr>, String>
{
 match e {
 Let(x, e1, e2) => {
 let mut is = compile(e1, env.clone())?;
 let offset = ... // Calculate the offset from env
 env.push((String::from(x), offset));
 is.push(Instr::Mov(MovArgs::ToMem(MemRef { reg: Reg::Rsp, offset:
offset }), Reg::Rax));
 is.extend(compile(e2, env))?;
 Ok(is)
 }
 }
}

Thank you!

