
Graph Coloring

Register Allocation

October 20, 2021

Register Allocation
The compiler needs to decide which variables to store in
which registers, which registers to “spill” onto the stack

So far: all variables are stored on the stack

Easy, but slow, especially if we get cache misses.

Performance gains:

• 3-10x+ faster variable accesses

• Pervasive speedup: variables are ubiquitous

• Most useful optimization in the compiler, also the most
computationally expensive to perform

Register Allocation
4 Steps

1. Liveness analysis: identify which variables are needed at
every point in the program

2. Conflict analysis: based on liveness info, identify which
variables *cannot* be assigned the same register

3. Graph Coloring: based on conflict information, assign
registers to variables so that conflicting vars get different
registers

4. Spilling: if graph coloring fails, pick a variable to put on the
stack and retry

Register Allocation
4 Steps

1. Liveness analysis: identify which variables are needed at
every point in the program

2. Conflict analysis: based on liveness info, identify which
variables *cannot* be assigned the same register

3. Graph Coloring: based on conflict information, assign
registers to variables so that conflicting vars get different
registers

4. Spilling: if graph coloring fails, pick a variable to put on the
stack and retry

Register Allocation
4 Steps

1. Liveness analysis: identify which variables are needed at
every point in the program

2. Conflict analysis: based on liveness info, identify which
variables *cannot* be assigned the same register

3. Graph Coloring: based on conflict information, assign
registers to variables so that conflicting vars get different
registers

4. Spilling: if graph coloring fails, pick a variable to put on the
stack and retry

Register Allocation
4 Steps

1. Liveness analysis: identify which variables are needed at
every point in the program

2. Conflict analysis: based on liveness info, identify which
variables *cannot* be assigned the same register

3. Graph Coloring: based on conflict information, assign
registers to variables so that conflicting vars get different
registers

4. Spilling: if graph coloring fails, pick a variable to put on the
stack and retry

Register Allocation
4 Steps

1. Liveness analysis: identify which variables are needed at
every point in the program

2. Conflict analysis: based on liveness info, identify which
variables *cannot* be assigned the same register

3. Graph Coloring: based on conflict information, assign
registers to variables so that conflicting vars get different
registers

4. Spilling: if graph coloring fails, pick a variable to put on the
stack and retry

Example
def f(a, b):
 let x = a + b in
 let y = g(x) in
 let z = x * y in
 h(x, z)
end

x, y conflict
x, z conflict

Example
def f(a, b):
 let x = a + b in
 let y = g(x) in
 let z = x * y in
 h(x, z)
end

x

y z

x, y conflict
x, z conflict

Example
def f(a, b):
 let x = a + b in
 let y = g(x) in
 let z = x * y in
 h(x, z)
end

x

y z

x, y conflict
x, z conflict

Example
def f(a, b):
 let x = a + b in
 let y = g(x) in
 let z = x * y in
 h(x, z)
end

x

y z

rax rbx

Example
def f(a, b):
 let x = a + b in
 let y = g(x) in
 let z = x * y in
 h(x, z)
end

x

y z

rax rbx

Graph Coloring Register Allocation
Given our register conflict graph, want to assign a register
to each variable so that no adjacent variables are assigned
the same register.

Equivalent to graph coloring: think of each register as a
“color” and we want to paint each node so that no
adjacent nodes are the same color.

Limitation: Computational Complexity
Graph coloring is an NP-hard problem.

Limitation: Computational Complexity
Graph coloring is an NP-hard problem.

So no polynomial-time algorithm is known.

Concession: we’ll use heuristics and accept that we won’t
get an optimal solution

Even with heuristics, the algorithm is still n^2, and the
slowest part of the compiler.

Limitation: Computational Complexity
Graph coloring is an NP-hard problem.

So no polynomial-time algorithm is known.

Concession: we’ll use heuristics and accept that we won’t
always get an optimal solution

Even with heuristics, the algorithm is still n^2, and the
slowest part of the compiler.

Limitation: Computational Complexity
Graph coloring is an NP-hard problem.

So no polynomial-time algorithm is known.

Concession: we’ll use heuristics and accept that we won’t
always get an optimal solution

Even with heuristics, the algorithm is still n^2, and the
slowest part of the compiler.

Chaitin's Algorithm

● Intuition:

● Suppose we are trying to k-color a graph and find a node
with fewer than k edges.

● If we delete this node from the graph and color what
remains, we can find a color for this node if we add it back
in.

● Reason: With fewer than k neighbors, some color must be
left over.

● Algorithm:

● Find a node with fewer than k outgoing edges.

● Remove it from the graph.

● Recursively color the rest of the graph.

● Add the node back in.

● Assign it a valid color.

Chaitin's Algorithm

Chaitin's Algorithm

a

b c

d e

g f

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e

a

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e

a

g

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e

a

g

f

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e

a

g

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e

a

g

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e

a

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e

a

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

One Problem

● What if we can't find a node with fewer
than k neighbors?

● Choose and remove an arbitrary node,
marking it “troublesome.”

● Use heuristics to choose which one.

● When adding node back in, it may be
possible to find a valid color.

● Otherwise, we have to spill that node.

Chaitin's Algorithm Reloaded

a

b c

d

e

f

g

R
0

R
1

R
2

R
0

R
1

R
2

Registers

Chaitin's Algorithm Reloaded

a

b c

d

e

f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g

f

Chaitin's Algorithm Reloaded

a

b c

d

e

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

f

Chaitin's Algorithm Reloaded

a

b c

d

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

e

f

Chaitin's Algorithm Reloaded

a

b c

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c

c

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c

b

c

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c

b

a

c

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c

b

c

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c

b

c

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c

c

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

c

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

c

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c

(spilled)

d

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

d

c

e

(spilled)

d

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

d

c

e

(spilled)

d

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g

d

c

e

(spilled)

d

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g

d

c

e

(spilled)

d

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

d

c

e

(spilled)

d

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

d

c

e

(spilled)

Another Example

Another Example

a

b c

d

ef

Another Example

a

b c

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

Another Example

b c

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e

f

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e

f

d

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e

f

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e

f

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

c

a

Another Example

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

c

a

Another Example

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

c

a

Another Example

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

b

c

a

Another Example

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

b

c

a

Another Example

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

b

c

a

Another Example

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

b

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e

f

d

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e

f

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e

f

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e

c

a

Another Example

b

d

ef

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e

c

a

Another Example

b

d

f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e

c

a

Another Example

b

d

f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c

b

e

c

a

Another Example

b

d

f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c
e

c

a

Another Example

b

d

f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a

c
e

c

a

Another Example

b

d

f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a
e

c

a

Another Example

b

d

f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

a
e

(spilled)

c

a

Another Example

b

d

f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

e

(spilled)

c

a

Another Example

b

d

f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

e

(spilled)

(spilled)

Improvements on Spilling
1. Use heuristics to decide which variables to spill

• least frequently used variable

2. Instead of always keeping the spilled variable on the stack,
break the live range of the variable up by introducing new
temporaries and reconstruct the conflict graph.

• more nodes but fewer edges

• easier when using an intermediate representation called
3-address code

Improvements on Spilling
1. Use heuristics to decide which variables to spill

• least frequently used variable

2. Instead of always keeping the spilled variable on the stack,
break the live range of the variable up by introducing new
temporaries and reconstruct the conflict graph.

• more nodes but fewer edges

• easier when using an intermediate representation called
3-address code

Improvements on Spilling
1. Use heuristics to decide which variables to spill

• least frequently used variable

2. Instead of always keeping the spilled variable on the stack,
break the live range of the variable up by introducing new
temporaries and reconstruct the conflict graph.

• more nodes but fewer edges

• easier when using an intermediate representation called
3-address code

Implementing Reg Allocation
1. For each function definition, we’ll run liveness, conflict
analysis and register allocation, producing a mapping from
variable names to registers/stack offsets.

2. How does your code generation change?

• Variables

• Function prelude/epilogue

• Function calls

Implementing Reg Allocation
1. For each function definition, we’ll run liveness, conflict
analysis and register allocation, producing a mapping from
variable names to registers/stack offsets.

2. How does your code generation change?

• Variables

• Function prelude/epilogue

• Function calls

Implementing Reg Allocation
1. For each function definition, we’ll run liveness, conflict
analysis and register allocation, producing a mapping from
variable names to registers/stack offsets.

2. How does your code generation change?

• Variables

• Function prelude/epilogue

• Function calls

Implementing Reg Allocation
1. For each function definition, we’ll run liveness, conflict
analysis and register allocation, producing a mapping from
variable names to registers/stack offsets.

2. How does your code generation change?

• Variables

• Function prelude/epilogue

• Function calls

Implementing Reg Allocation
1. For each function definition, we’ll run liveness, conflict
analysis and register allocation, producing a mapping from
variable names to registers/stack offsets.

2. How does your code generation change?

• Variables

• Function prelude/epilogue

• Function calls

