
Register Allocation I

Oct 13, 2021

Memory Hierarchy

faster, smaller

slower, bigger

Memory Hierarchy

Systems
view of

memory:

Program
view of
memory

variables, arrays, structs

Register Allocation
The compiler needs to decide which variables to store in
which registers, which registers to “spill” onto the stack

So far: all variables are stored on the stack

Easy, but slow, especially if we get cache misses.

Performance gains:

• 3-10x+ faster variable accesses

• Pervasive speedup: variables are ubiquitous

• Most useful optimization in the compiler, also the most
computationally expensive to perform

Register Allocation
The compiler needs to decide which variables to store in
which registers, which registers to “spill” onto the stack

So far: all variables are stored on the stack

Easy, but slow, especially if we get cache misses.

Performance gains:

• 3-10x+ faster variable accesses

• Pervasive speedup: variables are ubiquitous

• Most useful optimization in the compiler, also the most
computationally expensive to perform

Register Allocation
The compiler needs to decide which variables to store in
which registers, which registers to “spill” onto the stack

So far: all variables are stored on the stack

Easy, but slow, especially if we get cache misses.

Performance gains:

• 3-10x+ faster variable accesses

• Pervasive speedup: variables are ubiquitous

• Most useful optimization in the compiler, also the most
computationally expensive to perform

Examples
def f(a):
 let x = a * 2 in
 let y = x + 7 in
 y
end

Examples
def f(a):
 let x = a * 2 in
 let y = x + 7 in
 y
end

Currently:
a: stack
x: stack (rbp - 8)
y: stack (rbp - 16)

Examples
def f(a):
 let x = a * 2 in
 let y = x + 7 in
 y
end

With register
alloc:
a: stack
x: rax
y: rax

Examples
def f(a):
 let x = a * 2 in
 let y = x + 7 in
 y
end

mov rax, [rbp + ..]
sar rax, 1
imul rax, 4
add rax, 14

With register
alloc:
a: stack
x: rax
y: rax

Examples
def f(a):
 let x = a * 2 in
 let y = x + 7 in
 g(x, y)
end

Examples
def f(a):
 let x = a * 2 in
 let y = x + 7 in
 g(x, y)
end

With register
alloc:
a: stack
x: rax
y: rbx

Examples
def f(a):
 let x = a * 2 in
 let y = x + 7 in
 g(x, y)
end

With register
alloc:
a: stack
x: rax
y: rbx

Can’t put x and y in the same register
because they need to hold different values

at the same time

Register Allocation
4 Steps

1. Liveness analysis: identify which variables are needed at
every point in the program

2. Conflict analysis: based on liveness info, identify which
variables *cannot* be assigned the same register

3. Graph Coloring: based on conflict information, assign
registers to variables so that conflicting vars get different
registers

4. Spilling: if graph coloring fails, pick a variable to put on the
stack and retry

Register Allocation
4 Steps

1. Liveness analysis: identify which variables are needed at
every point in the program

2. Conflict analysis: based on liveness info, identify which
variables *cannot* be assigned the same register

3. Graph Coloring: based on conflict information, assign
registers to variables so that conflicting vars get different
registers

4. Spilling: if graph coloring fails, pick a variable to put on the
stack and retry

Register Allocation
4 Steps

1. Liveness analysis: identify which variables are needed at
every point in the program

2. Conflict analysis: based on liveness info, identify which
variables *cannot* be assigned the same register

3. Graph Coloring: based on conflict information, assign
registers to variables so that conflicting vars get different
registers

4. Spilling: if graph coloring fails, pick a variable to put on the
stack and retry

Register Allocation
4 Steps

1. Liveness analysis: identify which variables are needed at
every point in the program

2. Conflict analysis: based on liveness info, identify which
variables *cannot* be assigned the same register

3. Graph Coloring: based on conflict information, assign
registers to variables so that conflicting vars get different
registers

4. Spilling: if graph coloring fails, pick a variable to put on the
stack and retry

Register Allocation
4 Steps

1. Liveness analysis: identify which variables are needed at
every point in the program

2. Conflict analysis: based on liveness info, identify which
variables *cannot* be assigned the same register

3. Graph Coloring: based on conflict information, assign
registers to variables so that conflicting vars get different
registers

4. Spilling: if graph coloring fails, pick a variable to put on the
stack and retry

Shadowing
def f(a):
 let x = a * 2 in
 let y = let x = 14 in x + 7 in
 f(x, y)
end

Shadowing
def f(a):
 let x = a * 2 in
 let y = let x = 14 in x + 7 in
 f(x, y)
end

two different “x” are in conflict here

Shadowing
def f(a):
 let x0 = a * 2 in
 let y = let x1 = 14 in x1 + 7 in
 f(x0, y)
end

Before reg allocation:
make all variable names unique.

Limitation: Computability
Rice’s Theorem

 Any non-trivial semantic property of programs in a Turing-
complete language is undecidable.

Our takeaway: any interesting program analyses must be an
approximation

Limitation: Computability
Rice’s Theorem

 Any non-trivial semantic property of programs in a Turing-
complete language is undecidable.

Our takeaway: any interesting program analyses must be an
approximation

Liveness Analysis
Goal: determine at each point in the program which
variables are “alive”

• i.e., their values will be needed later in the program

• overapproximate on the side of too many variables are
alive

Liveness Analysis
Goal: determine at each point in the program which
variables are “alive”

• i.e., their values will be needed later in the program

• overapproximate on the side of too many variables are

Basic idea: start at the end (no variables are alive) and work
backwards

Liveness Analysis
Goal: determine at each point in the program which
variables are “alive”

• i.e., their values will be needed later in the program

• overapproximate on the side of too many variables are

Basic idea: start at the end and work backwards

Liveness Analysis
1.At the end of a function, no variables are live
2. If a variable is used in an expression, it is alive
immediately preceding that expression

3. If a variable is assigned to, it is dead
immediately preceding the let

4.In an if, we run the analysis on both branches
and take the union of the results

Liveness Analysis
def f(a, b):
 let x = a + b in
 let y = g(x) in
 let z = x * y in
 h(x, z)
end

Liveness Analysis
def f(a, b):
 let x = a + b in
 let y = g(b) in
 let z = if b:
 x + 1
 else:
 y
 in h(z)
end

Conflict Analysis
Once we know when we need the value of each variable,
we determine which variables cannot be assigned the same
register

2 variables truly conflict when

• They are live at the same time

• with different values

Err on the side of *too many* conflicts.

Conflict Analysis
Once we know when we need the value of each variable,
we determine which variables cannot be assigned the same
register

2 variables truly conflict when

• They are live at the same time

• with different values

Err on the side of *too many* conflicts.

Conflict Analysis
Once we know when we need the value of each variable,
we determine which variables cannot be assigned the same
register

2 variables truly conflict when

• They are live at the same time

• with different values

Err on the side of *too many* conflicts.

Conflict Analysis
Once we know when we need the value of each variable,
we determine which variables cannot be assigned the same
register

2 variables truly conflict when

• They are live at the same time

• with different values

Algorithm overview: look at every let and add an
associated conflict

Conflict Analysis
For each let in the program, check the variables that are live
before the body of the let.

For each variable in that set, add a conflict with the let
bound variable unless

1. It’s the same variable

2. The two variables must have the same value

Conflict Analysis
def f(a, b):
 let x = a + b in
 let y = g(x) in
 let z = x * y in
 h(x, z)
end

Conflict Analysis
def f(a, b):
 let x = a + b in
 let y = x in
 h(x, y)
end

Conflict Analysis
def f(a, b):
 let x = a + b in
 let y = let z = print(10) in x in
 h(x, y)
end

Conflict Analysis
def f(a, b):
 let x = a + b in
 let y = print(x) in
 h(x, y)
end

Conflict Analysis
def f(a, b):
 let x = a + b in
 let y = if b: print(x) else: x in
 h(x, y)
end

Conflict Analysis
def f(a, b):
 let x = a + b in
 let y = if b: print(x) else: x in
 h(x, y)
end

Start with something simple and iterate from there

Summary so Far
For each function in the program

1. Liveness Analysis annotates each expression with which
variables are live immediately before the expression
runs.

2. Conflict Analysis produces a conflict graph whose
nodes are variables and edges are conflicts (the variables
cannot share a register)

3. Next time: Use this conflict graph to assign registers to
variables

