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Mathematical theories arise for many different reasons,
sometimes in connection with specific applications and often
owing to accidental inspiration. From time to time we ought to
ask ourselves concerning our theories where should they have
come from; usually the answer will have little to do with the
exact historical development. The A-calculus is, I feel, a
case in point. In Scott (1980), in the Kleene Festschrift, I
made up a story of where the theory of type-free A-calculus
could have come from, Any number of people who heard my lec-

ture and read the manuscript were cross with me. They said

- "But it didn't develop that way! And besides we doubt it ever

would have." But this reaction misses the point of my story. I
shall not,however,repeat the earlier story here, for the point
of the present paper is different. For those people who do

not like to discuss philosophy - even Philosophy of Mathematics
— my remarks here can be taken as a suggestion of how to group
diverse models of A-calculus rather uniformly under a general
scheme. The scheme is by now rather well known and not at all
original with me. What I hope can be regarded as a useful con-
tribution is my putting of the ideas in a certain order. As I

consider the order to be a natural one, I feel there is philo-
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sophical significance to my activity; but I should not want to U:VxV->V, of union of sets does not directly apply to
M b

force this view on anyone. ,
y classes even though there is a connection. Do we . also want a

1. THEORIES OF FUNCTIONS. theory of class operations? Do we have to go to hyperclasses
Everyone agrees that A-calculus is a theory of functioms. - (classes of classes)? Is there any end to this expansion?
. 1"t : ?“ . "H ,
But we must ask What kind of a theory?" And also ave we [An Aside: The story of Scott (1980) was meant to suggest

7” 1+ -—
got the best theory? Personally, I think we should also in | one answer - the one known to Plotkin (1972). Namely, we con-

uire: '"How does it relate to other theories?" I certainly '
q I

sider only "continuous" class operations. These are objects F

find many discussions far too silent on this last issue. such that F(X) is defined for every class X C V and F(X) is a

Well, what other theories are there? Certainly set theory class, too. Moreover F should satisfy
s . :

comes to mind at once, and no set theory would be worth its
(1) X C Y always implies F(X) C F(Y);

salt if it did not provide a theory of functions. Let us not
(2) Whenever A € F(X) and A is a set,

try to catalogue the various known theories here but look at a

then A C F(B) £
theory in the style of Zermelo - and we do not have even to be € F(B) for some set B c X

too specific, since in any case such a theory is very standard. We do not have time to discuss the justification of the word
What is "unsatisfactory" about Zermelo's theory is the limiti- "continuous" here; suffice it to say that conditions (1) and (2)
zation-of-size view of sets: any one set A is extremely small are not as strict as they at first might seem. Every ordinary
compared to the size of V, the class or universe of all sets. map £ : V~ V determines a continuous class operator by the def-
Thus, functions f : A +~ B mapping one set A into another set B ' inition:

tell us very little about operations on all sets, maps on V in- F(X) = {f(x) ]x € X},

to V. We therefore have an urge to "improve" our set theory by
Furthermore, F determines f, for we have:

constructing a class theory. Sets are elements A € V; while

classes are subcollections B C V. As V is (by the usual assump- y = £(x) iff {y} = F({x}),

tions) so highly closed under so many operations, we have no ~ for all x,y € V. 1In a suitable sense, then, nothing has been
s b

difficulty in construing certain classes as maps F : V > V,

For example for all X € V we could have F(X) = {X} or F(X) =

losty but whét has been gained?

The reply is that continuous class operators can be identi-

A x X (where A is a fixed set). fied with classes, We could write, for instance:

The passage from sets to classes is a familiar and useful

move in the formalization of the theory: many things can be F={@B) [ABecvaa SFE),
done generally for classes and then specialized to sets.' And where, say:

having a notation for functions defined on all sets is in many (A,B) = {{A}, {A,B}}.

cases a great advantage. But wait. What about operations on .

classes? What should we say about them? Given any two classeé fore in harmony with Scott (1980) would be:

A and B, we can form their union, A U B. The operation, F={(a,B) |a,B € VAac F(B)}.
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Either trick reduces operator theory to class theory - in the
continuous case. And the same trick could be carried over to
other kinds of set theory (e.g. Quine's). What we know is that
operator theory gives a model for A-calculus; it is a quite
elementary model, too.

Nice as this connection is, it is not the topic of the pre-
sent paper: we do not want to make A-calculus depend on set
theory, since then we have still to explain where set theory
comes from. But the connection should be borne in mind.]

Perhaps set theory brings in too many extraneous issues. V,
after all, is a massive object closed under all manner of
strange operations. What we are probably seeking is a '"purer"
view of functions: a theory of functions in themselves, not a
theory of functions derived from sets. What, then, is a pure
theory of functions? Answer: category theory.

General category theory is a very pure theory: it is the
milk-and-water theory of functions under composition. This
composition operation is associative and possesses neutral ele-
ments {(compositions of zero terms). That is about all you can
say about it except to stress that it is also a rather bland
theory of types. Every function f has a (unique) domain and

codomain, and we write:
f : dom f - cod £

Every possible domain is a codomain (and conversely), because

if A is such, then
dom lA = A = cod lA,

where 1A is the neutral element of type A,

[If we want to be especially parsimonious in entities, we
can even write lA = A, because each of 1A and A uniquely deter-—
mines the other, ]

The point of distinguishing domains and codomains is not

only do they specify the type of f, but a composition geof is
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defined if, and only if, dom g = cod f. And then dom(go f) =
dom f and cod (geof) = cod (g). We usually write this as a

"rule of inference":

with the understanding that the typing of f o g can only be ob-
tained by such an application of the rule. The types, then,
are invoked just to type functions, and the only theory involv-~
ed is that of the "transition" of types under composition.

Sets (and set-theoretical mappings) do of course form a cat-
egory; category theory is meant to be more general than set
theory. We should construe the function entities here as tri-

ples of sets (A,f,B) where
fCAXBAVX- €A Iy € B, (x,y) €. f.

The definition of composition is obvious. Sets, in this way,
give us only one special example of a category.

I beg forgiveness of the reader for boring him. All of this
is well known to the moderately awake undergraduate in mathe-
matics. Indeed, that is the point: there is plenty of evi-
dence now that category theory is a natural and useful theory
of functions. I do not have to rehearse the examples as they
can be found in any number of books (e.g. Mac Lane [1971]).
There is a rather important logical point to stress, however -
important for anyone who has thought about A-calculus models.
Category theory is very extensional. We assume as axioms the

equations:

lA°f=f°1B=f and

ho(gof) = (heg)of,

provided A = dom £ and B = cod f and the double compositions
are defined. These are functional equations, and they say that

two functions defined in different ways are in fact identical.
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Furthermore, identical things can everywhere replace one an-
other.

This point about extensionality may not seem exciting or im-
portant, but the logician should remember that, in certain
intensional theories of functions, "obvious" definitions will
not provide categories. We shall return to this point later.

But is category theory the long-sought answer? No, no, not
at all. Category theory pure provides nothing explicitly aside
from identity functions - and they occur only if we have some
possible domain. We do get compositions if we have the neces-
sary terms. Thus, as it stands, category theory has no exis=
tential import. (It was not meant to.) Set theory has "too
much'" existential import. (It was meant to.) What we seek is
the middle way — and an argument that the middle way is natural
and general.

There is no need to build up unnecessary suspense: the
middle way is the theory of the (so called) cartesian closed
categories. Fortunately Lambek . has written extensively about
the theory, and I can refer the reader to his papers for fur-
ther details; I also am happy to acknowledge his writings as
helping me understand what is going on. If we remark that his
paper in this volume is called "From A-calculus to cartesian
closed categories", we might say that my present paper ought to
be called "From cartesian closed categories to A-calculus." I
am trying to find out where A~calculus should come from, and
the fact that the notion of a cartesian closed category (c.c.c)
is a late developing one (Eilenberg & Kelly (1966)), is not
relevant to the argument: I shall try to explain in my own

words in the next section why we should look to it first.

2. A THEORY OF TYPES
I say "a theory", because there are many possible theories;
indeed pure category theory is one of the theories. Its weak-

ness lies in the fact that we are given no construction princi-
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ples, no way of making new types from old. From the point of
view of logic what should we expect? What more do we want to
say beyond relations between types which hold when a mapping
statement £ : A - B obtains.

An immediate question that must come to anyone's mind con-
cerns the arity of functions. The usual way of reading a map-
ping statement is to take it as a statement about one-place
functions, and the o of composition is the composition of one-
place functions. This seems very restricted.

People have suggested generalizing categories to multi-place
functions with concomitant compositions (cf. e.g. the book
Szabo (1978)), but it does not seem the neatest solution. Much
easier is to assume that the category has cartesian products -
and more specifically particular representatives of the product
domains are chosen. As a special case we will know what the
cartesian power A" is for each n=0,1,2,..., and n-ary functions
are then maps f : A" > B. Not much of a surprise.

We have to take care, however. In the first place, a given
category may not have cartesian products (it fails to have
enough types). Even if it does, the maps allowed may be toco
restricted - for logical purposes. Take the category of groups
and homomorphisms, for example. The required products exist.

A map f : A2 -+ B in this category has to be a group homomor-
phism, naturally. Suppose two maps u,v : A >~ B were given.
Intuitively we think in terms of elements and that we are map-
ping x & u(x) and y = v(y). The pointwise group product of the
maps, namely, x,y b u(x) - v(y) is a very nice map g : A2 -+ B

in the ordinary sense - but unless the group B is abelian, g is
not a homomorphism. It is a "logical" map but not an "algebra-
ic" map. Pure category theory applies to many algebraic situa-
tions (as everyone knows that is why it is a good theory), but
not all categories are "logical" even if they have products.

In the example of groups, what was "missing" was the group
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multiplication u : B2 + B as a map in the category. (Inverse
is missing as well, since it reverses order.) There is an in-
teresting theory of algebraic theories that address the ques-—
tion of the proper categerial construction of categories of al-
gebras, but I do not think we should invoke that theory here.
The precise description of products is as follows. We as—
sume our category has a special domain 1 (the empty product, so
A% =38° = 1), and for each domain A a special map 0A : A~ 1.
(The domain 1, intuitively, has just one "element".) Moreover

the rule aboutmaps is that 0A is unique; that is whenever

f : A>1, then we have the equation
f = OA.

Concerning binary products, we have for any two domains A
. +1 n
and B a special choice of a domain A x B (and so A" = A x A),

and special maps

: Ax B+ A
: AXxB->B

Pap
958

' does not characterize

But the mere existence of "projections’
A x B as a product.. We have to assume that there is a chosen
pairing operation <f,g> on maps such that types are assigned

by the rule:

f:C->A g : C~-B

<f,g>: C > A X B

Moreover, provided f and g are as above and h : C - A x B we

have to assume

Ppp ° <fs8> = £
dpg ° <f,g> =g
<pAB e h, qAB o h> = h.

that is to say, there is an explicit one-one correspondence be-
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tween the pairs of maps f,g and the maps h into the product.
This all now makes A X B well behaved within the category.

So much for a theory of tuples and multiary maps. But we
still want a theory of functions: a category allows us to talk
of selected functions, while we would want various equations to
have a force relating to arbitrary functions. The answer to
this desire is function spaces as explicit domains in the cate-
gory. Given A and B we want to form (A - B) as a domain in its
own right; if so, there are many maps that have to be set down
to make the function space behave. (And here we must defi-
nitely leave the category of groups.)

In the first place there has to be an evaluation map
€pe ¢ (B> C) x B~ C with the intuitive interpretation that it
is the map f,x P f(x). In the second place there has to be a
map for shifting around variables; more precisely, suppose
h ¢ Ax B> C is a map with two arguments. In an evaluation
h(x,y), we can think of holding x constant and regarding h(x,y)
as a function of y, We need a name for this function - and for

the correspondence with possible values of x. We write

AABC h: A>(B > C)

so that the function we were thinking of - given x - was

(AABC h)(x). But all this function-value notation is not cate-
gorical notation; what we have to say is that there is a one-
one correspondence via A between maps h : AxB - C and maps

k : A> (B~ C). This comes down to these two equations:

e © <(Ah)ep, g> = h, and

A(e o < kep, q>) k.

(It is necessary to have subscripts here: AABC’ PaR? qAB’ and
EBC; but we leave them off when there is no ambiguity.)

The notation is now wholly categorical (and mostly unread-
able). Category theorists put the whole thing (that is, the

definition of a c.c.c., which is what we have just given) into



412 D.S. SCOTT

the language of functors, which has a lot of sense. But if you
have never seen any abstract category theory before, it is
really rather too abstract. The idea of a c.c.c. as a system
of types is, I think, reasonably simple. Each c.c.c. repre-
sents a theory of functions. The maps in the category are cer-
tain special functions that are used to express the relations
between the types (the domains of the category). In order to
be able to deal with multiary functions, we assume we can form
(and analyze) products. In order to be able to work with trans—
formations of arbitrary functions ("arbitrary'" within the the-
ory), we assume we can form function spaces: this is where

"higher" types enter the theory, as in the sequence of domains:
A, (A= A), ((A->A) > A, (((A->A) - A) >4A),...

To be able really to view.these domains as function spaces, cer—
tain operations, ¢ and A, with characteristic equations have to
be laid down.

If a c.c.c. is a theory of functions (and we include here
higher-type functions), then the theory of c.c.c's is the the-
ory of types of the title of this section. It is only one such
theory., '"Bigger" theories could be obtained by demanding more
types: for example we could axiomatize coproducts (disjoint
sums), O, and A + B. We could demand infinite products and co-
products. We could throw in a type R of "propositions" so that
higher types like (An->9) correspond to n-ary predicates. This
gets into topos theory (as in Johnstone (1977) or Goldblatt
(1979) - just to name two recent texts)., But the bigger the
theory, the more involved, and full definitions at this point
would not help this discussion very much.

We could also look for "smaller" theories. Some examples -
of a rather highly formal nature - can be found in Szabo (1978)
with an indication of the algebraic interest of these other
type theories. However, a c.c.c. is rather more "logical" and

good as a middle ground; further Lambek has explained the logi-
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cal interest; there is a perfect correspondence between c.c.c.s
and (extensional) typed A-calculi. The reader can turn to Lam-—
bek's paper for details and references,

Roughly put, when we formally define the typed A-language
(with types in the given c.c.c.), then if T is a typed A-expres-
sion with free variables of types AO’ Al""’ An—l’ we can de-

fine the "meaning" of T as a map

=] : Ag * Ap x L.l x A_;~ B
where B is the type of T. For example if u is a variable of
type (B -~ C) and v a variable of type B, then

[[u(v)]] : B8~>0¢C) x B>,

and in fact [[u(v)]] = ¢ Also if x is the variable in T of

BC®
type An—l’ then

[x .« ] : Ay X .ees ><A_n_2 9-(Ah—l - B),
and in fact [[MAx . t]] = Allt]l. (Warning: for other of the vari-

ables that are not the last mentioned, it is not so easy to
write down the answer: some permutations of the products have
to be introduced.)

The two characteristic equations for ¢ and A in the axioms

for a c.c.c. have very familiar translations:
Oy « h(x,y))(y") = h(x,y’) and
Ay - k(@) () = k(x),

where the type of x is A, the type of y and of y” is B. (That
is to say, the[[:]]-meaning of the two sides of the equation is
the same map in the category.) Of course this all has to be
defined more rigorously, but I hope I have conveyed the main
part of the idea of Lambek's correspondence. A typed A-calcu-
lus (with pairs, products, and function spaces) is just another

notation for a c.c.c.
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No, we have to be more specitic than that. Take a c.c.c.
How does it correspond to a theory (of functions)? The domains
of the category are the types of the theory, and they are struc-
tured by the 1, (AxB), (A - B) operations on types. Things
like o, 0,P,q, <*,*>, &, A stand for logical constants (or op-
erators) - with type subscripts as needed. Maps £ : A > B of
the category stand for the non-logical constants of the theory.
The equations f = g between maps are the assertions of the the-
ory. The logical axioms are those special equations common to
all c.c.c.'s — the other equations are those that just happen
to work out in the category. From this point of view the the~-
ory has no free variables: all assertions are written with
constant terms. FEquations with free variables can be construed
as functional equations (by a heavy use of A).

Conversely, a more conventional typed A-calculus is an equa-
tional theory with both the familiar logical axioms as well as
with non-logical axioms as desired. The equations can involve
free variables. Aside from the usual deduction rules for equa-
lity, we must employ the extensionality rule

T =20
AX . T = AX .0

A category is formed from the types (which are given as closed
under 1, (AxB), (A - B)). The terms all have unambiguous
types, and they are divided into equivalence classes by the
theory. As the maps of the category we take the equivalence
classes [Ax . T] where the term © of type B has at most the
variable x of type A free, and we write [Ax . 7] : A~> B, Of

course

1A =[x . x]}, and

Ay . 0]l o [ x » T] = [Xx . o(t/y)]

where T is substituted for y in o. We must verify that a cate-

gory is obtained - using the laws of A-calculus. And we must
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see that if we go back again to a A-calculus from the category
we have essentially the same theory.

A c.c.c. (or typed A-calculus -~ with non-logical axioms) is
a satisfactory (extensional) theory of functions because all we
have built into the theory is the idea of the product and the
function space. The axioms set down are just those needed to
make this structuring explicit.

The reason that category theory is a convenient way to for-
malize this definition is that starting from the especially el-
ementary concept of maps under composition, we can see that we
have done nothing more than close up under products and func-
tion spaces. A-calculus, then, becomes mostly a notational de-
vice for setting down our functional equations. At least for
typed A-calculus, we can see in this way that it is harmless.

The typed A-calculus is even more harmless than these last
remarks suggested. By the well-known Yoneda embedding, one can
prove that an arbitrary (small) category has a full and faith-
ful embedding into a c.c.c. This means that starting with a
given category and its maps, there is a precise sense in which
it is consistent to close up under products and function
spaces., No new maps are added co the given category; no new
equations between the given maps are imposed by the adjunction
of higher types. One can say even more than this about rela-
tive consistency, but the remark is best deferred to Sectiom 4,
where references to the proof are provided.

A final remark must be added to this section to clear up a
possible confusion between theories and models.

Up to this point we have been talking about theories. In
many systems of logic models can be described by theories:
every model has a "diagram" involving constants for all the

"elements" of the model and taking as axioms all statements in
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the language "true" about the model. It depends on the nature
of the logic how hard it is to show that every "consistent"
theory has a model.

In the case of a c.c.c., a domain A could be said to have an
"element" if there is a map a : 1 - A. The question is: are
there enough elements? Suppose f,g : A > B are two maps. If
a: 1> A, then f o a : { + B; so in a certain sense maps in
the category behave as functions on elements, (This is not an
original suggestion but is one well known in category theory.)
It is natural to ask whether, if f o a = g o a for all
a: 11— A, then £f = g. If this is true in a c.c.c., then it is
said to have''enough' elements or to be concrete. 1In case it is
concrete, domains can be identified with sets, maps with func-—
tions, products A x B in the category with the corresponding
cartesian product of the sets (ask: which ¢ 1+ A x B?), and
function spaces (A - B) with spaces of actual functions (be-
cause there 1s a one-one correspondence between maps £ : A -~ B
1t - (A~ B)).

For a theory in the form of a c.c.c., to ask whether it has

and elements e :

a (non-trivial) model is to ask whether it can be expanded to a
concrete c.c.c. by the adjunction of elements (and other maps
and additional equations, but no new domains) which is non-
trivial in the sense of not making all domains isomorphic to 1.
An answer - though perhaps a rather formal one - is supplied
by the method of adjunction of indeterminates x : 1 — A pre-—
sented in Lambek's paper (this volume). We just have to adjoin
infinitely many for each domain, one after the other. Each
polynomial involves only finitely many indeterminates. But the
results stated by Lambek (esp. Corollary to Theorem 2) show us
at once that this expanded category is concrete. The idea is
really just like the idea of having "free algebras" for any
equational theory. (In A-calculus an algebraic equation that

is regarded as universally quantified, say x + y =y + x, is
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replaced by the functional equation
A Ay « x+y = Ax\y . ¥ + x.)

More thoughts on concretness will be brought out in Section 4.
That is the (easy) passage from theories to (certain) models.

But remember, a theory is not a model: the maps in a given
C.C.C. are not concrete maps, they are just the definable maps
in the language of the theory, and the equations between them
are the 'theorems" of the theory. It is no surprise that a
given theory may not have enough definable elements: we may
need to expand the stock of elements in order to have a model.
For a c.c.c. we find we can. So far, so good; and this is the

(known) story of typed A-calculus.

3. "TYPE-FREE" DOMAINS

In the paper of Lambek, the analogy between typed and type-
free is illustrated (in the obvious way), but no real connec-
tion or relation is established. This we shall now do, and the
relationship will be deepened in the next section.

In the first place, we shall only consider the A-calculus
(or AK-calculus) and not the M-calculus; the latter can be re—
garded as a special case. What is needed is a notion of do-
main appropridte to the interpretation of the "type-free" cal-
culus,

In a category, a retraction between two domains A and B is a
pair of maps i : A > B and j B > A where j o i = lA' Regard
A as the "smaller" domain; it is injected into B, and B is sur-—
jectively mapped onto A. The notion shares qualities, then, of
A being both a subspace of B and at the same time a quotient.,

But the injection and surjection have to be related.
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Now, suppose that in a cartesian closed category a domain U
satisfies the condition that the function space (U > U) is a
retract of the domain U itself. (This is always so for U =1,
but we seek non-trivial examples.) Let the retraction maps be
i: (U~U)—>UVUand j : U~ (U—+U). Then U (as it sits in
its category) gives us an interpretation of the type-free cal-
culus, which we now explain.

Let the type—-free terms be constructed in the usual way from
variables X,¥,Z,... by means of application and A-abstraction.
Think of all variables as being of type U and define a transla-

%
tion T from untyped terms to typed terms so that

*
X = X,

* % *
(t(o)) = j(t )(o),
Ox . =i0x. ).

We intend this in such a way that T* is always of type U. The
type—free theory (determined by the category, the domain U, and
by the choice of i and j) has as its assertions exactly those
equations T = o where T* = o* in the category. The theory
satisfies (a), (B)-conversion, all the rules of equality, and
the rule (¥): from T = o to deduce \Xx . T = Ax . 0. This much
is surely obvious to anyone reading Lambek's paper.

What I would like to point out here is the converse: given
any type-free theory, there is a c.c.c. and a domain U (with a
suitable retraction pair i,j) so that the above interpretation
gives exactly the same type-free theory. Consequently, nothing
is lost in considering type~free theories just as special parts
of typed theories. I do not find this result mentioned by Lam-
bek.

The proof is elementary. Let the domains for the category

be the A-terms A, without free variables, for which we can

prove in the theory:

A=1xx . A(A(x)).
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The maps £ : A > B are terms f without free variables for which

we can prove
f =xx. B(f(A(X))),

The equations between maps are the equations we can prove in
the theory. [Actually, it might be better to construe maps as
triples (A,f,B), but never mind.] It is not hard to show that

this is a category where

lA = A, and

fog=ntx. f(gx).
[More properly spoken, the maps should be equivalence classes

of terms based on the equations of theory, but never mind.]

To show this construction gives a c.c.c. we need to define:

AxB=2tz . z(A(LOxy « x)))BUOAY . ¥))),

where
pAB = A » (AXB)(u) Oxhy . x),
Qup = M - (AXB) () Okry . ¥,

and if £ : C > A and g : C -+ B, then
<f,g> = Athz « z(£(t)) (g(tv)).

All of this is based on the familiar pairing functions of )-
calculus.

For function spaces, we define:
(A>B) =AX. Bo foA
where
€pc = Au. Cluxhy.x) Bu(Axry.y)))),
and

AABC h = AxAy.h(hz.z(x) (¥)),

provided h : (AxB) - C.
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There are a jolly lot of equations to verify, but the work
is all straight-forward conversion. The method of retracts as
a c.c.c. has in any case been exposed before with respect to
the Pw model in Scott (1976). Note here, however, we are to
verify the required equations in a theory (not a model) making
use of nothing but the "logical" axioms of \-calculus.

It remains to identify the domain U in the constructed cate-

gory. We define:
U= Ax. x
Clearly
U= M. U(UK)) =09 U,

Note that every A in the category is a retract of U; indeed,

for retractions define:

A:A->U and A : U~ A and

We thus speak of these A's also as retractions. We can write:
U~ 1U) = Mrxx. £(x),

and it is thus easy to verify now that (U > U) is a retraction
of U. As U is in fact the identity function, the reinterpre-
tation via U of the type-free calculus will obviously translate
every term into itself.

I just note in writing down the definition of the c.c.c., I
forgot to define § -~ because it is so dull, I suppose! For this

we have to map everything onto a constant:

1
0=1.

Au Ax.x, and

T think the calculations suggested provide an argument that
type-free A—calculus takes second place to typed A-calculus -
foundationally speaking. Type-free domains are special kinds

of types. As I have said before in other writings, to get
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(U + U) inside U, we have to pass to an infinite type, I
thought this was made very clear in the so-called D _-construc-—
tion. The category of continuous lattices and continuous func-

tions is a c.c.c., Starting with any domain D in that cate-—

0’

gory the sequence of types Dn where D (Dn %-Dn) has a cer-

+
tain limit D_ with D0 (and all the Dn?s§ as retracts, and with
(D, > D) not only a retract but an isomorph of D_. That is
one choice of an U, and I showed many variations aré possible
for other type-free domains U in this one category.

We hasten to note that in the c.c.c. of sets and arbitrary
functions, a non-trivial domain U with (U - U) a retract is im-
possible (by cardinality considerations). This means that not
all c.c.c. lead directly to interpretations of the type-free
theory. Hence, we must conclude, the typed theory is the more
general one, and the prior one.

Such a conclusion will not be welcome, however. The type-
free theory from our experience seems general enough. Even
though we have shown two good ways of relating the two kinds of
theories, we would like something more. We do not want just
some c.c.c. related to a given ;ype-free theory, but we would
like to find a relation that achieved any desired c.c.c., pro-
vided we cook up the type-free one properly. This problem is
the topic of the next section.

Before we turn fo this new relationship, a word about models
of the type-free calculus would be to the point. There is con-
siderable discussion of the notion of a model in Hindley and
Longo (1980) and Barendregt (1980) (where other references are
given). We should state how this all fits in with the present
view,

When presenting a theory in the usual A-notation, free vari-
ables are permitted as well as full use of the rule (£). But,
when thinking of elements (relative to a theory) only terms

(better: equivalence classes of terms) without free variables



422 D.S. SCOTT

should be considered. As is known from many examples, there
may not be enough of them. This can of course be so even if we
allow in our language many non-logical constants. What does
"enough' mean? Well, if f and g are closed terms, it may be
that f(a) = g(a) is provable for all closed a, but £ = g is not
provable. The fact that this happens for some theories should
come as no surprise. (For the explicit examples consult Baren-
dregt (1980).)

The remedy is to adjoin indeterminates (constants without
new axioms) until "enoug " i{s reached. (A proof is also found
in Barendregt (1980).) As with the typed calculus, every the-
ory has a model which satisfies exactly the same equations as
are provable in the theory (one might call it a conservative
model).

The notion of a A-model has not struck people as quite sat-
isfactory because the extensionality principle in the "enough"
clause is not very algebraic. A suggestion of mine is mention-
ed in the cited references, but I think it would be useful to
recast the idea in the light of the present discussion.

In typed A-calculus, the categorical formulation is one way
of eliminating all use of variables. In type-free h-calculus,
the usual plan is to use the combinators — and the plan leads
to awfully long formulae. Let us not try to give a variable-
free formulation, but talk in terms of first—order models.

What is unalgebraic in the model definition is the A-operator,
since a bound variable is of the essence of the use of A. So
let us replace A\ by the combinators in the usual way. We take
S and K as primitive, and a *-model is (at least), a structure
of the form <U, +(+), S, K>, with a domain, a binary operation,
and two distinguished constants. The problem is: what are the

axioms? Clearly we want:
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K(x)(y) = x, and

(*)
S(u) (V) (x) = u(x) (v(x)),

as usual. But these are not sufficient to express extensional-

ity, which in A-notation reads:
YV%.1T =0 > AX.T = AX.0

If we convert out the variable x, we are tempted to write:
Vx. £(x) = g(x) > £ = g.

But this is too strong. (It corresponds to U = (U - U) rather

than the weaker: (U - U) is a retract of U.) If we wrote:
¥x. £(x) = g(x) > A& f(x) = Ax.g(x),

the statement would at least be correct - even if containing
the unwanted A. Well, we just have to define this X in terms

of S and K. Introduce the standard definitions:

I

[

S (K) (K)

B

S(K(8)) (K),
Then (with A-notation)

Ax. £(x) = B(I)(£).

. So the desired axiom now reads

(x%) V¥x. f(x) = g(x) » B(I)(f) = B(I)(g)

We are not quite done, however. We want S and K to corre—
s _ .
pond to A-expressions (eventually), so we need an axiom which

makes them suitably unique. Now we note intuitively that

Ax Ay e e AR g E(x) () e (x = BN(1) (D).

n—l)

Thus, what we need to say is:

S

B(B(B(I)))(S), and
(k%)

=~
]

B(B(I)) (K)
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To see that (%), (#x), and (%*%x) are adequate, we note first

that
B(I) (£)(x} = £(x)

by (#). From (#%) it then follows that
B(I) (B(I) (£)) = B(I)(f).

This means we can reformulate (x%) as:

(o)) £= B(D(E) A g=BD)(e) AVYxf(x) = g ~ f=g.

[This does not seem to be equivalent to (%*) unless we have the
equation about B(I) (B(I)(f)) just noted — the retraction equa-

tion.] We now generalize (**l) to n variables:

Gx ) { £ = BN D) A g = B (D (g)
VxO,xl,...,xn_l.f(xo)(xl)...(xn_l) = g(xo)(xl)...(xn_l)
- f=g.

If we prove this, then by (#%%) we see that the original axioms

(*) uniquely determine S and K; further we have the uniqueness

required to define Ax.T for any term (cf. the references cited).
To establish (**n), we need some lemmas. From (%) and (%#%%)

and the definitions, we can easily prove:

S(u) = B2(I)(S(w))
S(u) (v) = B(I)(S(u) (v))
B(u) = S(K(u)).

We then establish for n = 1:
B(I) (B™(I) (£)) = B (1) (£),

because B"(I)(f) has the form S(u)(v). Suppose then that, e.g.
Vx,y,2z. £(x)(y)(2) = g(x)(y)(2).

By (%) we find:

¥x,y. B(I)(£x)(y)) = B(I)(g(x) ().
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This can be rewritten as

Vx,y. BE(D(£(x)) () = BX(D) (g(x)) (¥)
But again by (*%) we find:

¥x. B(I) (B (D) (£(x))) = B(D) (B2(D) (£(x))).

By the lemma, drop the B(I). Throw on another B, use (xx),
drop off the B(1), and get:

3 3
B (1) (f) = B (D) (g).
The method is perfectly general and proves (**n).

The import of this axiomatization is that B(I) is the re-

. n
traction of the universe U onto (U - U) and B (I) retracts onto

@»(U+W+.“(Q+MHJD.

.
n times

We need (#%%) to show, e.g.:
S: U~ (U~ (U~>1U)).

We need (**n) to show that the maps in these function spaces
are uniquely determined by their values.

We have just been speaking in terms of models; but the cal-
culations just carried out were formal. The axiomatic question,
then, is: what is the relationship between the equational the-
ories and the first-order theories? We shall now see the re-
lation is a close one - even if the logic is allowed to go be-

yond the first order.

4, A ROLE FOR INTUITIONISTIC LOGIC.

The (rather cheap) method of adjoining indeterminates proves
that every typed or untyped theory of A-calculus has an exten-
sional model. This can also be put as a conservative extension
result for theories: a A-~-theory is an equational theory, and

every such equational theory can be expanded to a first-order



426 D.S. SCOTT

theory without forcing any new equations on us. In the untyped
case, the style of first-order theory is that of axioms (%),
(x%), {(xx%) of the previous section. These are the "logical"
axioms (i.e. common to all such theories); the non-logical ax-
ioms would be all the equations between closed A-terms demanded
by whatever equational theory we started with -~ and these spe-
cial equations could involve special "non-logical" constants.
In the typed case, we would get a many-sorted theory with a
sort for each domain in the given category. As we have already
pointed out, an untyped theory can always be reformulated as a
typed theory by the method of retracts. So we now concentrate
on typed theories - that is to say, cartesian closed categories.
But the writing down of first-order theories is not all that
interesting: we clearly have nice axioms for a theory of func-
tions, but first-order theories do not impress us as being very
categorical. Such theories do not really capture the idea of
the "arbitrary" function. We began our discussion with set
theory, where the intention was that function spaces did really
contain "all" functions - they did not just appear as an "alge-

" of functions. Leaving aside for the moment the (philoso-

bra
phical) question of whether the desire for the ALL is a ration-
al one, we can ask the (formal) question of whether there
is a conservative extension result for higher-order theories.
Surprisingly, category theorists have known the answer for some
time.

Now we cannot hope to embed the theory of a typed A-calculus

into a classical higher—-order theory with a full comprehension

axiom of the form
¥x ¢ A Jly : B.p(x,y) >~ 3f : A > BVx : A, 9o(x,f(x)).

Because in higher-order logic we can prove Cantor's Theorem
which implies that the only type U which has a surjective map
j + U= (U~ U) is the one-element type. Thus, if a typed the-

ory had such a type (and we know many), then the adding of the
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standard higher-order axioms (where we construe (A -~ B) as the
total function space of all functions) would not at all be con-
servative. Something else has to be tried, and the answer is
higher—order intuitionistic logic.

As we shall now have to consider more than one category, let
me call our given c.c.c. the category C. To fix ideas, the
constructions to be carried out will be done in ordinary set
theory - with classical logic! The models obtained, however,
will only satisfy intuitionistic logic. The obvious lack of
harmony can be repaired, but it would take too much explanation
here, Moreover, we are also going to assume that the given
category C is a set. This is not much of a restriction, since
we were thinking of C as a theory and usually a theory has a
limited number of symbols in any case.

Before saying where the intuitionistic logic comes from, let
me give the construction. Let S be the category of all sets
and arbitrary functions; we know it is a c.,c.c. The construc-—

tion we need here is the well-known one of the functor category
op
S of all contravariant functors from C into S with the nat-

ural transformations as the maps - full definitions follow.
The result is that the functor category is a model for higher-
order intuitionistic logic, in particular it is a c.c.c.; more-—

over the original category C has a full and faithful embedding
op
in S » and this shows the conservative extension property.

So much for the outline of the method, now for the details.
Needless to say this represents a very early chapter in topos
theory; it should be more widely known.

What is a contravariant functor? It is a mapping F : C - S
that associates to every domain A of C a set F(A) of S and to
every map f : B+ A of C a function F(f) : F(A) - F(B) (and

note the change of order!) so that:
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F(1) = 1puys and

F(feg) = F(g) o F(f),

il

provided f : B> A and g : C~> B in C, It was one of the major
early insights of category theory to see that the functors form
a category in themselves. What is needed is a definition of
transformation between functors. We call such maps v : F > G

" for reasons explained in category

"natural transformations
theory books.

What is a natural transformation v : F -~ G? It is an asso-
ciation with every domain A of C of a function vyt F(A) -~ G(A)
so that whenever f : B > A in C, then the following diagram

commutes in S:

F(f)

F(A) F (B)
VA VB
cay—SE) ¢ (B)

This means v, © F(f) = G(f) © v An example will help explain

B A®
this.

For each C of C, let
HC(A)={h|h:A—>C}

and if £ : B » A in C, let Hc(f) be the map taking h € HC(A)

into h o f € HC(B). It is easy to show H. is a (contravariant)

C

functor. It is often called the representable functor (corres-—

onding to C), and we shall see that it is very "representative'.
Now let g : C - D in C, There is a natural transformation

Hg : HC - HD; because, for each h € HC(A) we can map it to

g o h € HD(A), naturally. The composite map for f : B > A

takes h € HC(A) into g ¢ h o f € HD(B), and there are two equal
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ways to calculate it owing to the associativity of composition
(in C); that is why the necessary diagram commutes.

Not only are the HC
ural transformations between them, but the by now classic

pleasant functors with cooperative nat-

Yoneda Lemma proves for us that the only natural transforma-
tions v : HC - HD are those of the form Hg for some g : C - D.

If we remark that if k : D - E, then

° =

Moo Hy R .
this shows us that H : C - S is a (covariant) functor be-
tween these categories. Of course HC uniquely determines C and
Hg determines g, so we conclude from this and the Yoneda Lemma
that H is a full and faithful embedding of C into the functor
category (all of this on p.2 of Johnstone (1677)!).

All of this discussion is "abstract nonsense" in the sense

that its validity is perfectly general for any category C. If

we assume that C is a c.c.c., then we can say more. The point
op
is that S 1is a very powerful category. For example, it is

always a c.c.c. even if C is not. The cartesian closed struc-
ture of the functor category is obtained through the following
definitions.

Before getting down to details, however, some more-vivid
op
terminology might help. Think of a functor U in Sc , follow-
ing Lawvere, as a 'varilable domain". That is to say, for each

A € C we have an associated domain (set) UA

f:B—>Ain C give us transitions between "stages" A and "lat-

= U(A). The maps

"

er" stages B; and each such transition 'restricts" elements in

UA to elements in Uy "along" the map f. To save writing, let
us set alf = (Uf)(a) when the functor U is understood. That

U is indeed a functor comes down to these equations:

all, =a and (@l1f)lg=al(feg),
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where f : B A and g : C~ B in C. To define a functor U,
then, we just have to give the domains and the restrictions.
For example the unit functor 1 has ﬁA = {0}, a one-point set,
and all restrictions constant 0 1f = 0. And all natural trans-
formations into 1 are constant.

Now suppose U and V are two functors. We define U x V so

that for all A in C

(U x V)A = UA X VA

and whenever a € UA and b € UA and £ : B >~ A, then

(a,b)1£f= (a1l f, b11).

(Note that the restriction symbol above is used in three diff-
erent senses.) The natural transformations p : U x V - U and
q : U XV >V have obvious pointwise definitions (e.g.

= . X -> i —_
Py pUAVA : UA VA UA) and they clearly commute with re
strictions. Similarly, if w : W—=> U and v : W > V are given

natural transformations, then <p,v> : W > U x V is also defined

pointwise:

SV, = SE V> WA - UA x VA.

Again it is obvious that these maps commute with restrictions,
SO <W,v> is natural, As all of this is pointwisej the verifi-
cation of such equations as p o <u,v> = | is easy.

Again suppose U and V are given. In defining (U ~ V), we
cannot be quite as pointwise. That is, (U —~> V)A cannot be
taken simply as the set of functions (UA - VA), the function
space in sets. The reason, roughly, is that when we have a
function at one stage, we also have to know how it restricts at
later stages; a simple mapping from UA into VA does not give us
enough information for that. When f : B - A, restriction on

U, maps into U this is the wrong direction for us to be able

A B’
to pass from an arbitrary function defined on UA to one defined

on UB. So an element of (U — V)A has to be a whole family of
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functions

¢ * Vg > Vg >
one for each £ : B > A. (Note: A is fixed, f and B are vari-
able.) Moreover, we must assume that all 1s harmonious with
restrictions: cig = ¢fog (b1 g) whenever ¢ = @f(b), for

b,c € U, and g : C » B in C. 1In words, ®1 is the "present"

A
function; while e is what becomes of it in the "future", sup-

B

posing time evolves along f. Now families ¢ of this kind in
U - V)A have to be restricted, By what we just said, the fol-

lowing is more or less forced upon us:
(<p1f)g = Ofog

where f : B~ A and g : C > B, so that ¢ 1 f is a family in
(U ﬂ-V)B. op
That defines (U ~ V) as a functor. To have S be a
C.C.C., certain maps ¢ and A are, alas, still required. The
evaluation map € : ((V - W) x V) > W is fortunately rather
clear (as a natural transformation). Suppose ¢ € (V — W)A and

a € VA' Then
SA((p’a) = (PlA(a) b

so g, + ((V->W)

A X VA) - W,. If £ : B~ A, then

A A

EA(Q,a)1 f = ¢1A(a)1 f

pglal )

(1 £); (al1f)
-~ B

aB(@1 f7a1 £)

This proves that ¢ is natural,
Next, suppose } : U x V - W is natural. Define

Ay 2 U= (V> W) by
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M), + U, > (VW)

where for a ¢ UA’

(W), (@) (b) = ¥y(al £,b).

b € VB’ and £ : B -~ A we have:

To show Ay is natural, we must calculate:

(W), @16 (&) = (), (@) (o)

v (alE1g,0)

W16 (o)

it

for a ¢ UA’ f:B>A, g:C~>B, c €U

Ay, @)1 £ = (W) (al 1).

ce It follows that

We have to leave to the reader the verification of the two ba-
sic equations of c.c.c.'s involving ¢, A, p and q. As there
was only one way that the definitions could be written, the
verification is quite mechanical, however.

As I said before, the functor category is ''powerful", and
indeed it is much more than a c.c.c. For instance, we can de-
fine the analogue of the power set for arbitrary functors. For

any U, let (PU)A be the collection of all families Sf indexed

by £ : B > A where Sf E_UB and such that bl g € Sfog whenever
b € Sgand g : C~ B in C. Restriction is defined by

s1£f) =5 .

( )g fog

The significance of the power operator will become clear when
we speak about higher-order logic.

Having seen why the functor category is a c.c.c., it is good
to pause a moment to appreciate the difference between the ele-

ments a € U, as sets and the "elements'" of U in the categorical

sense. If a : | - U is natural, it means that a, ﬁA - UA in

S. Let a, = aA(O), then a, € UA‘ If £ : B> A, then because

a is natural we find:
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aA1 f = aA(O)1 f
= aB(01 f)
= ap(0)
= a,

This is very strong indeed, since usually if a € UA and

fo,f1 : B~ A, there is no reason why al f0 = al fl. So the
number of "elements" of U will very likely be rather small.
(And, even worse, aA has to be chosen for all A in C.)

In the special case o : | - PU we can simplify the choices
= cA(O)lA, then SA cu

for all A in C. Moreover, when £ : B = A, then

out of (PU)A even further. Write §

A A

S_ = o,(0)
B B lB

o,(01f)
B lB

(0,€0)1 1)
A 1

= OA(O)f

This means that oA(O) is determined from the SB's. And if they

are chosen so that

b ¢ SB implies b1 g € SC

whenever g : C -~ B, then the o, so defined from them provides a

A
natural transformation. Again, we see the elements of PU are
rather special. We can say that elements of a functor provide
information about the "global" nature of the functor; but this
is far from determining it, for there can be considerable "lo-
cal" activity that cannot be sensed globally. For example,
the sets UB can be empty for a long "time'", only becoming non-
empty in the '"future". The functor U is non trivial, but it

has no global elements.
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We should also pause to see why the functor H maps C into a
v op
subcartesian closed category of S (up to isomorphism). It

is easy to check that the functors HA X HB and HA><B are natu-=

rally isomorphic. We also have to do the same for (HA > HB)

and HA» Consider an element of (HA d HB)C. It is a family

B
of maps

op t Hy (D) > H (D),
for £ : D > C. In particular consider the standard maps
p: (CxA)Y > Cand q : (CxA) » A. Then (pp(q) : (CxA) - B.

A»B)C' In the

other direction, let t : C > (A - B). Define Te for £ : D> C

So, since C is a c.c.c., we find AQp(q) € (H

by
(Tf)(g) =g o <t o f,g >
where g : D > A, We see this lies in HB(D). Now
€ o<t o f,g> o k =€ o <t o f ok, gok>
whenever k : E - D, Thus,

(T (@) 1k = 1, (g1Kk).

This proves that the family T_. lies in (HA - BB)C. It has to

£
be left without proof that these two correspondences are in-
verse to one another and provide a natural isomorphism.

Well, this is a rather heavy construction starting from one
little category C. The question: what does it prove? Why
worry about the functor category? The answer is that the func-
tors give an interpretation of higher-order logic, as we hinted
earlier, and now we have to pay up and demonstrate how to con—
strue logical formulae. The idea from topos theory when spe-—
cialized to the functor category looks very much like Kripke
models of intuitionistic logic - except that the "times" form a

category C rather than just a partially ordered set, as has

often been emphasized by Lawvere (see, e.g. Lawvere (1975)).
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To make the logical language more definite, let us think of
the domains A in C as being (in a one-one correspondence with)
type symbols. Introduce new type symbols built from the ones
in C (the "ground" types) by forming 1, (T xS), (T - S), PT for
all type symbols. (Note: A x B in C is being distinguished
from the type symbol A x B, But the "meaning" of the symbol
A %X B will turn out to be something "isomorphic" to A x B in C.
The trouble is that the domain A X B does not in itself deter-
mine the A and the B; whereas the type symbol does.) We extend
the notation H, to HT for any type symbol in the obvious way;

A

that is, HTXS is the product HT X H, in the functor category.

This is the first step in treating ihe functor category as an
interpretation of a higher-order theory.

Next we must imagine a logical language with a supply of
variables of each type. Atomic formulae will be of these
forms: L; x =y, where x and y have the same type; y = fx
where f is a constant symbol corresponding to a map f : A -~ B
in C and x has type A and y type B; z = (x,y) where x has type
T, y type S, z type T X 8; z = x(y), where z has type S, y has
type T, and x type (T - S); y € X, where y has type T and x
type PT. Atomic formulae are then made into compound formulae
by the usual constructs: & AV, ® v V¥, &Y, Vx. &, Ix. V.

Suppose A is a domain §f C, & is a formula, and s is a valu-
ation of the free variables of ¢, We are going to define what
Joyal-Reyes (1980) call the forcing-satisfaction relation
AlF®[s]. The definition here will be in one respect simpler
than theirs since the category C carries no topology; in an-
other respect it is more complicated because we have the whole
higher-order language. But the adaptation is straight forward.
Before we can give the clauses, we must say what kind of a
creature s is., We must make s relative to A in the first
place. So if x has type T, then s(x) is to belong to the set
HT(A). Now here are the clauses:
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AlF 1 [s] iff false

AlF x =1y [s] iff s(x) = s(y)

Al v = fx [s] iff s(y) = f o s(x)

Al z = (x,y) [s] 4iff s(z2) = (s(x),s(y))

Al z = x(y) [s] iff s(z) = s(x)l (s(y))
A

Al vy € x [s] iff  s(y) € s(X)l
A

These were for the atomic cases and the reader should stop and
think how the types are supposed to match. For the compound

cases we have:

Al [P A Y1[s] iff A IF®[s] and A|}FYI[s]

AlF [& v ¥][s] iff AlF®[s] or AlFY¥[s]

Al [®@ - Y][s] iff whenever f : B > A
and BIF $[s1f], then
BIF¥(s1f]

Al ¥x. ®[s] iff whenever £ : B >~ A

and b € HT(B), then
BIF 2[s 1 £ (b/x)]

AlF 3x. ®[s] iff there is an a € HT(A)
such that AlF $[s(a/x)]

In the above, the notation s(a/x) means the valuation is fixed
so that a matches x; of course the type of x must be T. By
s 1 f we mean the valuation that matches s(x)1 f with each of
the relevant variables x. In each case the restriction opera-
tion must be made appropriate to the functor HT, where T is the
type of x.

This is so much like Kripke models, the reader will have no
problem in showing every intuitionistic quantificational valid-

ity & is such that Al $[s] for all A and all appropriate s.
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We only have to take care that we remember that some ranges of
variables can be empty (that a set HT(A) may be empty), and so
the logic is the so-called "free" logic (cf. Scott (1979) for a
discussion).

In order to verity the special axioms of higher-order logic,
we need to remark first on what Joyal-Reyes call the '"func-

torial" character of Il :
if AlF®[s] and f : B > A, then BlF®[s 1 f].

This, too, is a property familiar from Kripke models. It plays

a direct rdle in the verification of the comprehension axiom:
Vuo,...,un_l IxVy [y € x +— &]

where the free variables of & are among Ugseeest _15Y and x is
a new variable not free in & of type PT where T is the type of
Ve

To show the above valid in the interpretation we only have
to show that for every A of C and for all bO""’bn—l in the
HS(A) of the appropriate types S, there is an element

c € HP(T)(A) such that
AlF Vyly € x> d[s].

Here s is the valuation where s(x) = c¢ and s(ui) = bi' We have

to define ¢. For each £ : B » A, let

cp = {t € Hy(B) | BIF @[s1£(t/y)]}

The functorial character of Il proves for us that ¢ € HP(T)(A)'
It is now easy to check from the clauses of the definition of
Il that at A the above formula is indeed forced.

In a similar way we can verify the functional version of

comprehension:

VxdyVz[z = y <> &] - IfVx,z[z = f(x) «— &],
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where we have x of type T, y and z of type S; f of type (T =+ S)
and y not free in®. Again, the functorial character of |+ con-
nects with the way we had to define (HT - HS).

We also have to verity such extensionality properties as:
VE,glvx,yly = £(x) <>y = g(x)]1 ~ £ = gl,
Vx,y[Vz[z € x>z € y] > x =y],

where the variables have to be given the appropriate types.
But in defining the function spaces and the powersets in the
functor category, we only put in just enough of a mapping or a
set to get an appropriate functorial character. Hence, if two
such objects are extensionally equal by the formulae above,
they will be equal. This has to be spelled out viall, but it
is not surprising.

The Higher—order axioms for ordered pairs are obvious, and
their satisfaction relates at once to the definition of product
of functors. As for the embedding of C into the higher—order
theory we find

Vx,yly = fx <>y = gx]
is valid if and only if £ = g in C. Also, when h = g o £, we
have as valid

Vx,y,z[[y = fx A z = gy] - z = hx].
Further, functions like f are well defined:

Yx Iy . y = £x

There are many principles of identity that should be men-
tioned, but we will not write them down here. Among them we
would also find the statements that there is a unique element
of type 1 and all maps of type (T »1) are constant. (Perhaps
the constant 0 should figure in the language, but it is not all

that essential.)
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As for questions of uniqueness, if the sentence
YxdyVzlz = y <> &]

is valid (i.e. forced at all A), then provided x and y have
ground types B and C, respectively, there is an f ¢ B+ C in C

such that
VYx,z[z = fx «— &]

is valid too. The validities, chen give us an exact picture
of C at the level of ground types: the higher-order theory is
conservative over C,

But the higher-order intuitionistic theory of the functor
category is much more than just a conservative extension; it is
a full-blown higher-order theory with full comprehension axioms.
That is to say, we started out with a category C we regarded
algebraically as a theory of functjons., Well, the construction
of the functor category shows us that we can indeed construe C
and its maps as normal, everyday functions in a normal, every-
day highér—order logic. This works as long as we agree to keep
our logic intuitionistic. But experience with intuitionistic
logic really shows that the system is a natural one and that it
leads to very, very interesting theories. Even if C is a
c.c.c., we can show that the embedding of C in the higher-order
logic preserves all the cartesian closed structure, so that the
function spaces in C really become spaces of all possible func-
tions in the higher-order theory. The principles of A-calculus
are thus consequences of the standard logical axioms. This
seems to me to establish complete harmony between (intuitionis—
tic) logic and (typed) h~calculus.

The next step in this investigation would be to see what
other properties of the higher-order logic could be enforced and
still preserve the conservative extension over the given cate—
gory C, The functor category is just a very first stage of the

investigation: 1In topos theory the categories of sheaves result
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from putting a kind of modal operator into the logic, and making

a reinterpretation of the logical connectives and quantifiers.

op
"The passage from S is one of finding c.c.c. as cartesian

closed subcategories of the functor category. There are many of
them and many still contain C as a cartesian closed subcategory.
So, there is much to look for, and - I am sure - much left to be

discovered of definite logical interest.

5. TYPE-FREE DOMAINS REVISITED

Having made any given c.c.c. C "honest" as a theory of func-
tions in higher-order logic, we can conclude from the method of
retracts of Section 3 that any type-~free A-theory can similarly
be made honest. Intuitionistic logic is very tolerant of types
U where (U - U) is a retract; so tolerant in fact that any A—
theory can be embedded in a suitable higher-order logic. Self-
application is no longer odd: it is something that may very
well turn up when we weaken our logic to be intuitionistic but
still require that functions spaces ‘like (U -+ U) contain all
functions.

This provides a certain kind of rescue for the type-free
calculus, but the move fails to give it a universal rdle: the
creators of the type-free theory hoped that such a universe U
could be thought of as containing all the functions there were,
We shall not try to go so far in the present context, but vari-
ous constructions can bé used to show that not only is it pos-
sible to have one such type-free domain, but it is always pos-—
sible to find them being richer and richer and containing more
and more functions. Only a sketch of the construction can be
given here,

Suppose, for the sake of illustration, we have some types A,
B, C that we happen to like, and that we are interested in the
functions between them — possibly also in functions of the type

(A2 x B) - C, and similar multivariable types. We could prob-
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ably work up a c.c.c. containing A, B, C and these functions,
but the straight-forward construction would comtain no type-
free domains (cf. the category of sets and maps in ordinary
logic). We need a new method. My first approach is to use the
idea of continuous lattices. I do not want to go into a lot of
detail (cf. Gierz et al. (1980) for just such details), but
there is an easy definition that can be invoked at least to
make the statements precise.

We shall employ what are not technically lattices but "half"
lattices without unit elements (top elements). Fortunately we
do not have to go into a long list of definitions, since I have
been able to characterize them reatly as special topological
spaces. They are in fact To—spaces (i.e. spaces where points
are uniquely determined by their neighborhoods) D such that
whenever X is a dense subspace of a topological space Y, and
f : X > D is a continuous function, then f has a continuous ex—
tension £ : Y > D. What I proved is that the category of such
spaces D together with continuous maps between them is a c.c.c.
(There are very many intriguing c.c.c.'s related to the cate-
gory of topological spaces!) Let us employ the temporary name
"injective" for these spaces.

As an example of injective spaces, consider one of our giv—-
en types A, which for simplicity we construe just as a set.

The injective space A, corresponding to A results from adding
one new point %, Or, if classical logic is not assumed, we
take A, as the space of subsets of A with at most one element.
The topology is generated by sets of the form {x ¢ A, | a € x}
where a € A, Thus, a function f : X > A, 1s continuous iff

{x € X|a € £(x)} is open in X for each a ¢ A. Now if X ¢ Y

as a dense subspace, we have only to define
E(y) =U{{facAa|vyx € NNZX. ac€fx}]|yeN

where N ranges over the open sets of Y. Because every non—emp-

ty open set has a non-empty intersection with X, it follows
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that £ : ¥ = A,. To prove f continuous, we remark that

{y eY | a € £(y)} is the largest open subset of Y whose inter-
section with X gives {x € X | a € f(x)}. It is also easy to
calculate that f extends f. So A, is injective. Note, too;
that A may be regarded as a dense subspace of A, if we map a to
{a}. Hence, every function g : A » B has a unique counterpart
g, ¢ A, > B, so that the "restriction" of g, to A gives g back
again (indeed g,({a}) = {g(a)}). This really means that the
*—construction is a faithful functor from the category of our
sets A, B, C into the category of injective spaces and contin-
uous functions.

But now we can apply my construction of A-calculus models to
find an injective space U which, in the category of injective
spaces, has (U - U) as a (continuous) retract and in addition
has A,, B,, and C, as retracts. (In fact, for those who know

the method, we solve the domain equation

U=A, x B, xC,x (U>U),

where of course a factor is always a retract of a product; be—
cause in the category of injective spaces the one-point space
is a retract of every space.) This idea could be extended to
obtain any given set of injective spaces as retracts of a
single space U,

Next we invoke the plan of the previous section using as the
category C the retracts of U (and continuous functions), which
we can regard as a small'categéry (as a set). The functor cat-
egory has all higher-order logic as well as a full and faith-
ful picture of C. We are definitely going to take advantage
of the higher-order structure in looking at subtypes of the
functors HV where V is a domain in C - more precisely, we will
look at the category generated by certain of these subtypes or

subfunctors in the functor category.
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In the first place, consider HA . Let K, be the functor

where KA(V) is just the set of allxcontinuoﬁs functions

f: V> A, where for some a € A, we have a € f(x) for all x€ V.
(The retracts of U are simply being regarded as injective
spaces, and we do not distinguish between A, as a constructed
space based on the set A and as a retract of U.) The restric-~

tion operation 1f : KA(V) -> KA(W) is the one for the functor

H with the domain cut down: K, is a subfunctor of H, . We

A A A,

cai think of the maps in KA(V) as being the constant maps with
values in A. So what then can we have for natural transforma-
tions v : KA - KB, the maps in the functor category? Well,
imagine one. Now if a € A, we can take the appropriate con-
stant map ka € KA(ﬂ), where 1 is the one-element space. Then
v(ka) € KB(ﬂ). But this too is a constant map and determines a
unique b € B; so v defines a function ]v| : A~ B, And, since
every constant map factors through the one-—element space 1, the
map |v| uniquely determines v. But any map from A into B can
be made to turn up in this way by trivially fooeling around with
constants. We conclude, therefore, that KA as a functor - of
our given sets A - is a full and faithful embedding.

What have we done? First, starting in sets - or perhaps,
better, in higher-order logic - we found (or gave ourselves)
a category of types we liked, To be more definite, they could
have been unioned together so they were all subtypes (subsets)
of a single set, V, say. We.then embedded faithfully this
category of sets and maps into the category of injective spaces
via the very elementary A, construction. Of course, the spaces
A, are very special, so the "universal" space U with (U » U) as
a retract is much more messy than V,. But the category of re-
tracts of U contains all the maps between the A,. Finally this

category of retracts is fully and faithfully embedded in the
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the functor category. The latter has the advantage of subtypes
in profusion, so we were able to recapture the original cate-
gory of subsets of V as a full and faithful subcategory of the
functor category.

And having done all this, what have we bought? Well, the
(pictures of) the A's were subtypes of the A*'s which are both
retracts and subtypes of U, and in the functor category U is a
model for the untyped A-calculus. So that means that starting
with our original notion of function, we have - in the logic of
the functor category - consistently been able to assume that
there are types giving models for the "type-free" A-calculus,
and further, that these types are rich enough to contain our
original category in a full and faithful way. In more detail:
the new logic allows us to think of A and B as subtypes of U,
where (U - U) is a retract, so that any function from A into B
is the result of restricting a function in (U - U) down to the
subset A, Warning: this does not hold for all subtypes of U,
the A, B, C were given in advance and U was constructed rela-
tive to them. Still, this means that even in models for type-
free A-calculus (which can be regarded as ordinary function
spaces), we are not losing sight of the standard idea of func-
tion. To have (U -~ U) as a retract of U, the functions have to
"bend" a little, but we have kept them "straight" as far as the
given A, B, and C go.

We have just shown how a type-free domain U can incorporate
given domains as well as the "arbitrary" functions on them. 1In
Engeler (1979) it is shown that A-calculus models can also in-
corporate any algebra; specifically it is shown that any alge-
bra can be made isomorphic to a subset of the model where the
operation is functional application itself. We shall give a

proof here using the constructs we have mentioned,
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Let A be set. An "algebra" can be regarded as any binary
operation ® : A X A > A, A partial algebra can be taken to be
any continuous e : A, X A, > A,. It is easy to argue that any
algebra on A determines a partial algebra on A

Now let the A-calculus model U be taken so that
U =A% (U~>U). We regard elements x € U as pairs (xo,xl).
The application operation f(x) on U can be defined as fl(x) be-
cause fl € (U~ U). Now recall that A-calculus models satisfy
the fixed-point theorem; so we can define a map o : A, > U by

the functional equation:
p(a) = (a, Ax:U. p(a » X)),

where the A-operator gives an element in (U - U). This map is

continuous and one-one into. Now calculate in U:

p(a)(p(b)) = pla * o(b),)

p(a * b)

So the image of p is closed under application, and the result-
ing applicative subalgebra is isomorphic to the given algebra

<A,

o> ®>e

This result would seem to have a potentially useful implica-
tion for non-extensional models of combinatory algebra: any
such can be embedded in an application-preserving way into an
extensional model. This works even if we regard application as
a partial operation. Warning: we do not obtain a combinator-
preserving embedding, howevef. That is, if the algebra
<A,, *> has elements S and K, satisfying the usual equations in
A,, we cannot conclude that the embedding o : A, - U will map
the S and K of A, to the "true" S and K of the \-calculus model
U. The "functions" in A, operate only on A,, which is quite a
limited part of U; clearly p does not give elements p(a) € U
very broad réles. But at least we can say that anything that
even looks a little like application can be assumed to be ap-

plication in a suitable domain.
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6. SUMMARY AND CONCLUSIONS

The constructions reviewed and outlined here have been rath-
er lengthy, so it would seem best to summarize the principal
conclusions we have reached.

1. A theory in typed A-calculus is just the same as a car-—
tesian closed category.

As was stated, this has been known for well over ten years
from the work of Lambek. It should be stressed, however, that
category theory achieves a greater generality than the usual
logical presentations, because in category theory the type con-
structions are axiomatized. Thus, the types form an "algebra"
under the operations T x U and (T - U). We need not assume
that we always have a "free" algebra of types built out of
"ground" types.

2. In a c.c.c. a reflexive domain provides an interpreta-
tion of the "type-free" theory.

We can call U "reflexive'" if (U » U) is a retract. The last
statement is of course obvious. What makes it interesting is:

3., Every type-free theory is the theory of a reflexive do-
main in a c.c.c.

The proof of this result was by the author's method of re-
tracts. The use of idempotents in a category as forming a cat-
egory is well known, but the author believes that he was the
first to nmote that in a c.c.c. we really have a calculus of re-
tracts — especially when there are reflexive domains available.

Then some remarks were made about theories and models and
the significance of adding indeterminants (also well known).
What might not have been clear from other works was the type-
free theory in terms of application, S, and K. Up to that
point the theories had been equational; and, though the first-—

order version (with extensionality) was pleasant, it was not of
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great philosophical interest since it does not relate the idea
of A-calculus to any broad notion of functions. This desire
was taken care of by:

4, Every c.c.c. can be fully and faithfully embedded in an
intuitionistic theory of types with the full (impredicative)
power-set construct and function spaces (higher-order Iintui-
tionistic logic).

The domains of the c.c.c. become types in the theory. The
word "fully" means that the definable maps between the types
all come from maps in the category; ''faithfully" means that in
the higher—order theory no new equations between these maps are
introduced over what we already had in the category. In other
words, this is a conservative extension result. It has been
known for quite a time in category theory, and the functor
category we employed in the construction is one of the
very first examples of a topos; there must be considerable use
possible of more interesting examples of topoi.

However, there was already enough philosophical interest in
this easy construction. Namely, it was seen that equational
A-calculus is perfectly consistent with higher-order logic
where - provided we only employ intuitionistic logic — we can
speak of function spaces in the normal way in type theory.
Some people can, if they like, stick to A-terms and equations;
but others can use whatever logical means they like for dis-
cussing functions. However, if the logician proves in his
higher-order theory that a certain property picks out a func-
tion £ : A~ B, then, 1f A and B are from our given category,
this definable f must be given by a standard A-term. So the
iogic in that sense gives nothing new, but at least we know
that the sense for A-calculus is exactly that it can always be
taken to be talking about functions and full function spaces in

a higher-order theory.
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Turning things around the other way, it is interesting to
see from what we know about "type-free'" theories that intuition-
istic logic allows for reflexive domains - and even lots of
them. It would be even more interesting if it were possible to
strengthen higher-order logic (say, by adding some new primi-
tives), so that we could express in the logic the axiom that
every c.c.c., (a structure satisfying a simple first-order state-
ment) had a full and faithful representation in a category of
subsets (better: quotients of subsets) of a reflexive domain.

I conjecture that this is possible and that the theory can be
taken conservative over any given c.c.C.
Though we did not prove such a sweeping result, we did

sketch a proof of:

5. Every given c.c.c. can be realized fully and faithfully
as a category of subtypes of a reflexive type in a higher-order
theory.

We did not work out the cartesian closed details of this as-
sertion but contented ourselves with showing how to accomodate
a finite number of types. By the way, it should be remarked
that 4 and 5 hold for an arbitrary (small) category, so in par—
ticular we have the (known) result that every category can be
conservatively extended to a c.c.c. The method of proof for 5
was via the author's original construction of A-calculus mod-
els, which can be conveniently carried out in the category of
"injective" To—spaces. There are many variations on this con-
struction, and it might be interesting to see how different the
different categories with reflexive domains really are from the
point of view of higher-order logic.

Another remark: the construction has many connections with
Curry's Theory of Functionality (i.e. the problem of finding
other c.c.c.'s inside a A-calculus model). But as I have in-—
dicated several times it is really better to work with equiva-

lence relations (on subtypes of a reflexive domain U) because
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in typing the functions we have to make them hereditarily ex~
tensional in order to be able to have a category. Thus a re-
flexive domain has (at least) two interesting c.c.c.'s asso-
ciated with it: the category of retracts and the category of
equivalence relations. The second, by the way, contains the
first as a sub-c.c.c.

Finally we recalled a result of Engeler which was very ap-

propriate to the present discussion:

6. Any (partial) algebra can be isomorphically represented
as an applicative subalgebra of a reflexive domain,

I think that this means in particular that non-extensional
theories of functions can be subsumed under the extensional
theory: the non-extensional function algebras are just sub-
algebras of normal function algebras. There is certainly a
conservative extension result here, but whether it helps to
prove any new theorems is another question.

What has to be investigated next, I think, is the problem of
how strong the higher—qrder theories can be made and still have
them as conservative extensions of given categories. Much is
known in topos theory about constructions of categories of
sheaves (these are subcategories of the functor category), but
much remains to be explained to the logician. Thus, there are
several interesting categories made up out of continuous func-—
tions or out of computable functions (when we look at them from
the outside), but what we would like to know is what logical
sentences (internal properties) are satisfied for the various
functor or sheaf categories. The so-called Church's Thesis
(all number-theoretic functions are recursive) or Broﬁwer's

Theorem (all real functions are continuous) are cases in point,
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and they are satisfied in certain topoi. It would be an impor-
tant next step for A-calculus to relate these model construc-
tions to interpretations of A-calculus. The author hopes that

the present paper will encourage others to look further. TYPED TERMS
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