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We present Dependent Lambek Calculus (Lambek
D
), a domain-specific dependent type theory for verified

parsing and formal grammar theory. In Lambek
D
, linear types are used as a syntax for formal grammars, and

parsers can be written as linear terms. The linear typing restriction provides a form of intrinsic verification

that a parser yields only valid parse trees for the input string. We demonstrate the expressivity of this system

by showing that the combination of inductive linear types and dependency on non-linear data can be used to

encode commonly used grammar formalisms such as regular and context-free grammars as well as traces of

various types of automata. Using these encodings, we define parsers for regular expressions using deterministic

automata, as well as examples of verified parsers of context-free grammars.

We present a denotational semantics of our type theory that interprets the types as a mathematical notion

of formal grammars. Based on this denotational semantics, we have made a prototype implementation of

Lambek
D
using a shallow embedding in the Agda proof assistant. All of our examples parsers have been

implemented in this prototype implementation.

1 INTRODUCTION
Parsing structured data from untrusted input is a ubiquitous task in computing. Any formally

verified software system that interacts with the outside worldmust contain some parsing component.

For example, in an extensive experiment finding bugs in C compilers [35], an early version of

the formally verified CompCert C compiler only contained bugs in the then unverified parsing

component [23]. Bugs in parsers undermine the overall correctness theorem for a verified system:

an incorrectly parsed C program will be compiled correctly but this is not very useful if it did not

correctly correspond to the actual source program. Eventually, a correct parser was implemented

using an automaton that is formally verified to implement an LR grammar [16].

It is entirely understandable from an engineering perspective why verified parsing was not

part of the initial releases of CompCert: parsing algorithms and formal grammars are a complex

area, featuring a variety of domain-specific formalisms such as context-free grammars and various

automata. These formalisms have little relation to the main components of a verified compiler. For

this reason, it is advantageous for verified parsers to be implemented using a reusable verified

library, just as parser generators and regular expression matchers have done for many decades in

unverified software.

Prior approaches to verified parsing focus on verification of a particular grammar formalism

such as non-left-recursive grammars or LL(1) grammars [5, 7, 21]. Each new grammar formalism is

extended with its own independent verified implementation.

In this work, we present the design of Dependent Lambek Calculus (Lambek
D
), a domain-

specific language for formal verification of parsers. A key property is that Lambek
D
is an extensible

framework for verification of parsers in that it supports the definition of grammar formalisms

of unrestricted complexity. That is, Lambek
D
is not a system for verifying one type of grammar

formalism, but instead is a domain-specific language in which many grammar formalisms and their

verified parsers can be implemented. For example, Lambek
D
is not a verified parser generator that

compiles regular expressions to deterministic finite automata, but is instead is a domain specific

language for writing such a verified parser generator.
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The design of Lambek
D
is an extension of Joachim Lambek’s syntactic calculus [20]. Lambek

calculus is a grammar formalism equivalent in expressive power to context-free grammars that

in modern terminology would be considered a kind of non-commutative linear logic — a version

of linear logic where the tensor product is not commutative, reflecting the obvious property that

the relative ordering of characters is significant in parsing problems. We extend non-commutative

linear logic with two key components that increase its power to support arbitrarily powerful

grammar formalisms: inductive linear types, as well as dependency of linear types on non-linear

data. The resulting system has two kinds of types: non-linear types which model sets and linear

types which model formal grammars. Crucially, the non-linear types and linear types are allowed

to be dependent on non-linear types, but not on linear types. This combination has been used

previously in the “linear-non-linear dependent” type theory with commutative linear logic to model

imperative programming [18].

The substructural nature of Lambek
D
is well-aligned with the requirements intrinsic to parsing

and to the theory of formal languages, where strings constitute a very clear notion of resource that

cannot be duplicated, reordered, or dropped. Moreover, the constructive aspect of Lambek
D
ensures

that verification of parsers written in the calculus are correct-by-construction. The type system is

powerful enough that derivations of a term type checking carry intrinsic proofs of correctness.

Parsers written in Lambek
D
take on a linear functional style, which makes them familiar to write

and amenable to compositional verification techniques.

To show the feasibility of our design, we have implemented Lambek
D
as a shallowly embedded

domain-specific language in the Cubical Agda proof assistant [34]. We have implemented many

example grammars and parsers in our system including regular expressions, non-deterministic and

deterministic automata, as well as some example context-free grammars and parsers based on LL(1)

and LR(1) automata. Throughout this paper, we will use to mark results that are mechanized in

our Agda development.

Our Agda prototype is based on a denotational semantics of Lambek
D
. The core idea of the

denotational semantics is [8], Elliott describes a formal grammar as type-level predicates on strings

that prove language membership. That is, a formal grammar A is a function String → Set such
that for a string w, A w is the set of “proofs” showing that w belongs to the language recognized by A.
We show that all linear types in Lambek

D
can be so interpreted as an abstract formal grammar in

this sense, and that linear terms are a kind of parse transformer, a function that takes a parse tree

from one grammar to a parse tree in a different grammar but over the same underlying string.

Our contributions are then:

• The design of Dependent Lambek Calculus (Lambek
D
): A dependent linear-non-linear type

theory for building verified parsers, which extends prior work on dependent linear-non-

linear type theory to support inductive linear types

• Demonstration of how to encode many common grammar formalisms (regular expressions,

(non-)deterministic automata, context-free grammars) and parser formalisms within our

type theory.

• A prototype implementation of Lambek
D
in Agda with all examples mechanized.

• A denotational semantics for Lambek
D
that shows that the parsers are in fact verified to be

correct and soundness of the equational theory.

This paper begins in Section 2 by studying small example programs from Lambek
D
to build

intuition. From there, in Section 3 we provide the syntax, typing and equational theory of Dependent

Lambek Calculus. In Section 4 we demonstrate the applicability of Lambek
D
for relating familiar

grammar and automata formalisms as well as building concrete parsers. Then in Section 5, we give



Intrinsic Verification of Parsers and Formal Grammar Theory in Dependent Lambek Calculus 3

f : ↑('a' ⊗ 'b' ⊸ ('a' ⊗ 'b') ⊕ 'c')
f (a , b) = inl (a ⊗ b)

a : 'a' ⊢ a : 'a' b : 'b' ⊢ b : 'b'

a : 'a', b : 'b' ⊢ a ⊗ b : 'a' ⊗ 'b'

a : 'a', b : 'b' ⊢ f := inl(a ⊗ b) : ('a' ⊗ 'b') ⊕ 'c'

Fig. 1. "ac" matches ('a' ⊕ 'b') ⊗ 'c'

a denotational semantics that makes precise the connection between Lambek
D
syntax and formal

grammars. Finally in Section 6 we discuss related and future work.

2 DEPENDENT LAMBEK CALCULUS BY EXAMPLE
To gain intuition for working in Lambek

D
, we begin with some illustrative examples drawn from

the theory of formal languages. Each of our examples will be defined for strings over the three

character alphabet Σ = {a, b, c}.

Finite Grammars. First consider finite grammars — those built from base types via disjunctions

and concatenations. The base types comprise characters drawn from the alphabet, the empty string,

and the empty grammar. For each character a in the alphabet we have a type 'a' which has a

single parse tree for the string "a" and no parse trees at any other strings. The grammar I has a
single parse tree for the empty string 𝜖 = "" and no parses for any other strings. The final base

type, the empty grammar 0, has no parses for any string. We use type-theoretic syntax to represent

disjunction ⊕ and concatenation ⊗ of grammars. Over an input string w, a parse of the disjunction
A ⊕ B is either a parse of A over the string w or a parse of B over the string w. Similarly, w matches

A ⊗ B if w can be split into two strings wA and wB that match A and B, respectively.
For a type A, a parse tree of a string w is represented as a term of type A in the context ⌈w⌉, where

⌈w⌉ is a context with one variable for each character of w. For example, to define a parse tree for

"ab", we use the context ⌈"ab"⌉ = a : 'a', b : 'b'. In Figure 1, we give a lambda term and its

typing derivation to define a parse for a finite grammar.

For this interpretation of parse trees as terms to make sense, our calculus cannot allow for any of

the usual structural rules of type theory: weakening, contraction and exchange. Weakening allows

for variables to go unused, while contraction allows for the same variable to be used twice, but in a

parse tree, every character must be accounted for exactly once. That is, we want to prevent the

following erroneous derivations,

a : 'a', b : 'b' ⊬ a : 'a' a : 'a', b : 'b' ⊬ (a, a) : 'a' ⊗ 'a'

Finally, the ordering of characters in a string cannot be ignored while parsing, so we omit the

exchange rule because it would allow for variables in the context to be reordered,

a : 'a', b : 'b' ⊬ (b, a) : 'b' ⊗ 'a'

Regular Expressions. Regular expressions can be encoded as types generated by base types, ⊕,
and ⊗, and the Kleene star (·)∗. For a grammar A, we define the Kleene star A∗ as a particular

inductive linear type of linear lists, as shown in Fig. 2. Here A∗ : L means we are defining a linear
type. A∗ has two constructors: nil, which builds a parse of type A∗ from nothing; and cons, which
linearly consumes a parse of A and a parse of A∗ and builds a parse of A∗. This linear consumption is

defined by the linear function type ⊸. The linear function type A ⊸ B defines functions that take
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data A∗ : L where
nil : ↑(A∗)
cons : ↑(A ⊸ A∗ ⊸ A∗)

Fig. 2. Kleene Star as an inductive type

· ⊢ cons : ↑ ('a' ⊸ 'a'∗ ⊸ 'a'∗)

· ⊢ cons : 'a' ⊸ 'a'∗ ⊸ 'a'∗ a : 'a' ⊢ a : 'a'

a : a ⊢ cons a : 'a'∗ ⊸ 'a'∗
· ⊢ nil : ↑ ('a'∗)

· ⊢ nil : 'a'∗

a : 'a' ⊢ cons a nil : 'a'∗ b : 'b' ⊢ b : 'b'

a : 'a', b : 'b' ⊢ (cons a nil) ⊗ b : 'a'∗ ⊗ 'b'

a : 'a', b : 'b' ⊢ g := inl((cons a nil) ⊗ b) : ('a'∗ ⊗ 'b') ⊕ 'c'

g : ↑(('a' ⊗ 'b') ⊸ ('a'∗ ⊗ 'b') ⊕ 'c')
g (a , b) = inl (cons a' nil ⊗ b')

Fig. 3. "ab" matches ('a'∗ ⊗ 'b') ⊕ 'c'

in parses of A as input, consume the input, and return a parse of B as output. The arrow, ↑, wrapping
these constructors means that the constructors by themselves are not consumed upon usage, and

so are non-linear values themselves. That is, the names nil and cons are function symbols that

may be reused as many times as we wish.

Through repeated application of the Kleene star constructors, Fig. 3 gives a derivation that shows

"ab"matches the regular expression ('a'∗ ⊗ 'b') ⊕ 'c'. The leaves of the proof tree that mention

the arrow ↑ describe a cast from a non-linear type to a linear type. For instance, the premise of the

leaf involving nil views nil : ↑ ('a'∗) as the name of a constructor, and a constructor should be

nonlinearly valued because we may call it several times (or not at all). However, the conclusion

of this leaf views nil : 'a'∗ as a linear value, which in our syntax is an implicit coercion from a

nonlinear value to a linear value. After we call the constructor it “returns” a value that may only be

used a single time.

We may also have derivations where the term in context is not simply a string of literals. In Fig. 4

we show that every parse of the grammar (A ⊗ A)∗ induces a parse of A∗ for an arbitrary grammar

A. The context (A ⊗ A)∗ does not correspond directly to a string, so it is not quite appropriate to

think of a linear term here as a parse tree. The context a : (A ⊗ A)∗ does not contain concrete data

to be parsed; rather, there may be many choices of string underlying the parse tree captured by the

variable a. Thus, the term h from Fig. 4 is not a parse of a string, and it is more appropriate to think

of it as a parse transformer — a function from parses of (A ⊗ A)∗ to parse of A∗.
We define h by recursion on terms of type (A ⊗ A)∗. This recursion is expressed in the derivation

tree by invoking the elimination principle for Kleene star, written as fold. The parse transformer

h is more compactly presented in the pseudocode of Fig. 4 by pattern matching on the input and

making an explicit recursive call in the body of its definition.

Non-deterministic Finite Automata. Regular expressions are a compact formalism for defining a

formal grammar, but an expression such as ('a'∗ ⊗ 'b') ⊕ 'c' does not give a very operational

perspective of how to parse it. For this reason, most parsers are based on compiling a grammar to a

corresponding notion of automaton, which is readily implemented. To implement these algorithms
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· ⊢ nil : A∗

a1 : A, a2 : A, a∗ : A∗ ⊢ cons(a1, cons(a2, a∗)) : A∗

a′ : A ⊗ A, a∗ : A∗ ⊢ g := let a1 ⊗ a2 = a′ in cons(a1, cons(a2, a∗)) : A∗

· ⊢ f := 𝜆⊸a. 𝜆⊸a∗. g a a∗ : (A ⊗ A) ⊸ A∗ ⊸ A∗

a : (A ⊗ A)∗ ⊢ h := fold(nil, f)(a) : A∗

h : ↑((A ⊗ A)∗ ⊸ A∗)
h nil = nil
h (cons (a1 ⊗ a2) as) = cons a1 (cons a2 (h as))

Fig. 4. A parse transformer for abstract grammars

in Lambek
D
, we need a way to represent automata as types in the same way we can represent

regular expressions.

Finite automata are precisely the class of machines that recognize regular expressions. Fig. 5

shows a non-deterministic finite automaton (NFA) for the regular expression ('a'∗ ⊗ 'b') ⊕ 'c',
along with a type Trace, an indexed inductive linear type of traces through this automaton. Defining

an indexed inductive type can be thought of as defining a family of mutually recursive inductive

types, one for each element of the indexing type. Here Trace uses an index s : Fin 3 which picks

out which state in the automaton a trace begins at — where Fin 3 is the finite type containing

inhabitants {0, 1, 2}. We can think of this as defining three mutually recursive inductive types

Trace 0, Trace 1, and Trace 2. There are three kinds of constructors for Trace: (1) those that

terminate traces, (2) those that correspond to transitions labeled by a character, and (3) those that

correspond to transitions labeled by the empty string 𝜖 . The constructor stop terminates a trace in

the accepting state 2. The constructors 1to1, 1to2, 0to2 each define a labeled transition through

the NFA, and each of these consumes a parse of the label’s character and a trace beginning at the

destination of a transition to produce a trace beginning at the source of a transition. The constructor

0to1 behaves similarly, except its transition is labeled with the empty string 𝜖 . Therefore, 0to1
takes in a trace beginning at state 1 and returns a trace beginning at state 0 corresponding to

the same underlying string. Lastly, we give a lambda term that constructs an accepting trace

starting at the initial state for the string "ab". Later in Section 4, we will show that we can actually

construct mutually inverse functions between the regular expression ('a'∗ ⊗ 'b') ⊕ 'c' and its

corresponding NFA traces (Trace 0) demonstrating that the regular expression and the automaton

capture the same language. Further, since the functions are mutually inverse, this shows they are

strongly equivalent as grammars.

3 SYNTAX AND TYPING FOR DEPENDENT LAMBEK CALCULUS
The design of Lambek

D
is based on the dependent linear-non-linear calculus (LNLD) and Lambek

calculus, also known as non-commutative linear logic. [18, 20]. As in LNLD, Lambek
D
includes

both non-linear dependent types, as well as linear types, which are allowed to depend on the

non-linear types, but not on other linear types. The main point of departure from LNLD’s design is

that, as in Lambek calculus [20], the linear typing is non-commutative — i.e., that exchange is not

an admissible structural rule. Furthermore, we add a general-purpose indexed inductive linear type

connective, as well as an equalizer type, which we will show allows us to perform inductive proofs

of equalities between linear terms. Finally, while LNLDwas enhanced with special connectives
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1 2

𝜖
"c"

"a"
"b"

data Trace : (s : Fin 3) → L where
stop : ↑(Trace 2)
1to1 : ↑('a' ⊸ Trace 1 ⊸ Trace 1)
1to2 : ↑('b' ⊸ Trace 2 ⊸ Trace 1)
0to2 : ↑('c' ⊸ Trace 2 ⊸ Trace 0)
0to1 : ↑(Trace 1 ⊸ Trace 0)

k : ↑(('a' ⊗ 'b') ⊸ Trace 0)
k (a , b) = 0to1 (1to1 a (1to2 b stop))

Fig. 5. NFA for (a∗ ⊗ b) ⊕ c and its corresponding type

Γ ctx

Γ ctx

Γ ⊢ X type

Γ ⊢ X type

Γ ⊢ X small

Γ ⊢ X type Γ ⊢ Y type

Γ ⊢ X ≡ Y type

Γ ⊢ X type

Γ ⊢ M : X

Γ ⊢ M : X Γ ⊢ N : X

Γ ⊢ M ≡ N : X

Γ ctx

Γ ⊢ Δ lin. ctx.
Γ ctx

Γ ⊢ A lin. type

Γ ⊢ A lin. type Γ ⊢ B lin. type

Γ ⊢ A ≡ B

Γ ⊢ Δ lin. ctx. Γ ⊢ A lin. type

Γ; Δ ⊢ e : A

Γ; Δ ⊢ e : A Γ; Δ ⊢ f : A

Γ; Δ ⊢ e ≡ f : A

Fig. 6. Formation rules

inspired by separation logic to model imperative programming, we instead add base types and

axioms to the system specifically to model formal grammars and parsing.

The formation rules for the judgments of Lambek
D
are shown in Figure 6. Γ stands for non-linear

contexts; X, Y, Z stand for non-linear types; M, N stand for non-linear terms, these act as in an

ordinary dependent type theory; Δ stands for linear contexts; A, B, C for linear types; and, e, f, g
for linear terms. These contexts, types and terms are allowed to depend on an ambient non-linear

context Γ, but note that linear types A cannot depend on any linear variables in Δ. We include

definitional equality judgments for both kinds of type and term judgments as well. Additionally,

we have a judgment Γ ⊢ X small which is used in the definition of universe types.

3.1 Non-linear Typing
The non-linear types of Lambek

D
include the standard dependent types for Π, Σ, extensional equal-

ity, natural numbers, booleans, unit and empty types, and we assume function extensionality[15].

We present the other non-linear type constructions in Figure 7. First, we include universe types

U of small non-linear types and L of linear types. These are defined as universes “ala Coquand”

in that we define a judgment saying when a non-linear type is small and define the universe to
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Γ ⊢ U type

Γ ⊢ M : U

Γ ⊢ ⌊M⌋ type
Γ ⊢ X type

Γ ⊢ ⌈X⌉ : U
⌊ ⌈X⌉ ⌋ ≡ X

Γ ⊢ M : U

Γ ⊢ ⌈ ⌊M⌋ ⌉ ≡ M : U
Γ ⊢ L type

Γ ⊢ M : L

Γ ⊢ ⌊M⌋ lin. type

Γ ⊢ A lin. type
Γ ⊢ ⌈A⌉ : L

⌊ ⌈A⌉ ⌋ ≡ A
Γ ⊢ M : U

Γ ⊢ ⌈ ⌊M⌋ ⌉ ≡ M : U

Γ ⊢ A lin. type
Γ ⊢ ↑ A type

Γ; · ⊢ e : A

Γ ⊢ e : ↑ A

Γ ⊢ M : ↑ A

Γ; · ⊢ M : A

Fig. 7. Non-linear types (selection)

internalize precisely this judgment [4, 12]. These universe types are needed so that we can define

types by recursion on natural numbers. Next, we include a non-linear type ↑ A where A is a linear

type. The intuition for this type is that its elements are the linear terms that are “resource free”:

its introduction rule says we can construct an ↑ A when we have a linear term of type A with no

free linear variables. This type is used extensively in our examples, playing a similar role to the !
modality of ordinary linear logic or the persistence modality □ of separation logic [11, 17].

3.2 Linear Typing
We give an overview of the linear types and terms in Figure 8. The equational theory for these

types is straightforward 𝛽𝜂 equivalence and included in the appendix. First, the linear variable rule

says that a linear variable can be used if it is the only variable in the context.

First, we cover the “multiplicative” connectives of non-commutative linear logic. The linear unit

(I) and tensor product (⊗) are standard for a non-commutative linear logic: when we construct a

linear unit we cannot use any variables and when we construct a tensor product, the two sides

must use disjoint variables, and the variables the left side of the product uses must be to the left in

the context of the variables used by the right side of the tensor product. The elimination rules for

unit and tensor are given by pattern matching. The pattern matching rules split the linear context

into three pieces Δ1, Δ2, Δ3: the middle Δ2 is used by the scrutinee of the pattern match, and in

the continuation this context is replaced by the variables brought into scope by the pattern match.

This ensures that pattern matches maintain the proper ordering of resource usage.

Because we are non-commutative, there are two function types: A ⊸ B and B ⊸A, which have

similar 𝜆 introduction forms and application elimination forms. The difference between these is

that the introduction rule for A ⊸ B adds a variable to the right side of the context, whereas the
introduction rule (elided) for B ⊸A adds a variable to the left side of the context. In our experience,

because by convention parsing algorithms parse from left-to-right, we rarely need to use the B ⊸A
connective. As we have already seen, the ⊸ connective is frequently used in conjunction with the

↑ connective so that we can abstract non-linearly over linear functions.

Next, we cover the “additive” connectives. First, we use the non-linear types to define indexed
versions of the additive disjunction ⊕ and additive conjunction & of linear logic, which can be

thought of as linear versions of the Σ and Π connectives of ordinary dependent type theory,

respectively. The indexed & is defined by a 𝜆 that brings a non-linear variable into scope and

eliminated using projection where the index specified is given by a non-linear term. The rules

for indexed ⊕ are analogous to a “weak” Σ type: it has an injection introduction rule 𝜎 , but its

elimination rule is given by pattern matching rather than first and second projections. We can

define the more typical nullary and binary versions of these connectives by using indexing over

the empty and boolean type respectively. We will freely use 0 to refer to this empty disjunction

and ⊤ to refer to the empty conjunction, and use infix ⊕/& for binary disjunction/conjunction.

Lastly, we include a type {a | f a = g a} that we call the equalizer of linear functions f and g. We

think of this type as the “subtype” of elements of A that satisfy the equation f a ≡ g a. Note that it is
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Γ ⊢ I lin. type

Γ ⊢ A lin. type Γ ⊢ B lin. type

Γ ⊢ A ⊗ B lin. type

Γ ⊢ A lin. type Γ ⊢ B lin. type

Γ ⊢ A ⊸ B lin. type

Γ ⊢ A lin. type Γ ⊢ B lin. type

Γ ⊢ A ⊸B lin. type

Γ, x : X ⊢ A lin. type

Γ ⊢
⊕
x:X

A lin. type

Γ, x : X ⊢ A lin. type

Γ ⊢&
x:X

A lin. type

Γ ⊢ f : ↑ (A ⊸ B) Γ ⊢ g : ↑ (A ⊸ B)

Γ ⊢ {a | f a = g a} lin. type

Γ; a : A ⊢ a : A

Γ; Δ ⊢ e : B Γ ⊢ A ≡ B lin. type

Γ; Δ ⊢ e : A

Γ; · ⊢ () : I

Γ; Δ2 ⊢ e : I Γ; Δ1, Δ3 ⊢ e′ : C

Γ; Δ1, Δ2, Δ3 ⊢ let () = e in e′ : C

Γ; Δ ⊢ e : A Γ; Δ′ ⊢ e′ : B

Γ; Δ, Δ′ ⊢ (e, e′) : A ⊗ B

Γ; Δ2 ⊢ e : A ⊗ B Γ; Δ1, a : A, b : B, Δ2 ⊢ e′ : C

Γ; Δ1, Δ2, Δ3 ⊢ let (a, b) = e in e′ : C

Γ; Δ, a : A ⊢ e : B

Γ; Δ ⊢ 𝜆⊸a. e : A ⊸ B

Γ; Δ′ ⊢ e′ : A Γ; Δ ⊢ e : A ⊸ B

Γ; Δ, Δ′ ⊢ e′ e : B

Γ, x : X; Δ ⊢ e : A

Γ; Δ ⊢ 𝜆&x. e : &(x : X).A

Γ; Δ ⊢ e : &(x : X).A Γ ⊢ M : X

Γ; Δ ⊢ e .𝜋 M : A{M/x}

Γ ⊢ M : X Γ; Δ ⊢ e : A{M/x}

Γ; Δ ⊢ 𝜎 M e :
⊕
x:X

A

Γ; Δ2 ⊢ e :
⊕
x:X

A Γ, x : X; Δ1, a : A, Δ3 ⊢ e′ : C

Γ; Δ1, Δ2, Δ3 ⊢ let𝜎 x a = e in e′ : C

Γ; Δ ⊢ e : A Γ; Δ ⊢ f e ≡ g e

Γ; Δ ⊢ ⟨e⟩ : {a | f a = g a}

Γ; Δ ⊢ e : {a | f a = g a}

Γ; Δ ⊢ e.𝜋 : A

Fig. 8. Linear types and terms (selection)

important here that f, g themselves are non-linearly used functions, as linear values cannot be used

in a type. Equalizer types are not needed for non-linear types since they can be constructed using

the equality type as

∑
x:X f x =Y g x, but this construction can’t be used for linear types because it

uses a dependent version of the equality type, which we cannot define as a linear type. While the

equalizer type is not used directly in defining any of our parsers or formal grammars, it is used for

several proofs, allowing for inductive arguments about our indexed inductive types.

In addition to these type-theoretic principles, we need two additional axioms that do not generally

hold in systems based on linear logic. First, we need that additive conjunction distributes over
additive disjunction— e.g., in the finitary case that 0&A � 0 and (A+B)&C � (A&C)+(B&C). In itsmost

general form, the axiom says that the definable function

⊕
f:

∏
x:X Y(x)

&
x:X

A x (f x) ⊸ &
x:X

⊕
y:Y(x)

A x y

has an inverse. Second, we need that the different constructors of

⊕
are disjoint. We add this by

adding the axiom that for any A : X → L and x ≠ x′ : X there is a function ↑ ({b |𝜎 x ◦ 𝜋1 b =
𝜎 x′◦𝜋2 b} ⊸ 0)where b : A(x)&A(x′), i.e., the grammar of pairs of an a : A(x) and an a′ : A(x′)
such that 𝜎 x a = 𝜎 x′ a′ is empty.
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Γ ⊢ X type

Γ ⊢ SPF X type
Γ ⊢ X small

Γ ⊢ SPF X small

el :
∏
X:U

SPF X → (X → L) → L

map :
∏
X:U

∏
F:SPF X

∏
A,B:X→L

(∏
x:X

↑ (⌊A x⌋ ⊸ ⌊B x⌋)
)
→ ↑ (⌊el(F)(A)⌋ ⊸ ⌊el(F)(B)⌋) Var :

∏
X:U

X → SPF X

K :
∏
X:U

L → SPF X
⊕

:
∏
X:U

∏
Y:U

(Y → SPF X) → SPF X & :
∏
X:U

∏
Y:U

(Y → SPF X) → SPF X

⊗ :
∏
X:U

SPF X → SPF X → SPF X roll :
∏
X:U

∏
F:X→SPF X

∏
x:X

↑ (el(F x)(μ F))

fold :
∏
X:U

∏
F:X→SPF X

∏
A:X→L

(∏
x:X

↑ (⌊el(F x)(⌊A⌋)⌋ ⊸ ⌊A x⌋)
)
→

∏
x:X

↑ (μF x ⊸ A x)

Γ ⊢ f :
∏
x:X

↑ (el(F x)(A) ⊸ A x) Γ; Δ ⊢ e : el(F x)(μ F)

Γ; Δ ⊢ fold F f x (rolle) ≡ f x (map(F x) (fold F f)) : A x
Ind𝛽

Γ ⊢ f :
∏
x:X

↑ (el(F x)(A) ⊸ A x) Γ ⊢ e :
∏
x:X

↑ (μF x ⊸ A x)

Γ, x : X; a : el(F x)(μF) ⊢ e x (rolla) ≡ f x (map(F x) e) : A x

fold F f ≡ e′ :
∏
x:X

↑ (μF x ⊸ A x)
Ind𝜂

Fig. 9. Strictly positive functors and indexed inductive linear types

3.3 Indexed Inductive Linear Types
Next, we introduce the most complex and important linear type constructors of our development,

indexed inductive linear types. We encode these by adding a mechanism for constructing initial

algebras of strictly positive functorial type expressions, following prior work on inductive types

[1, 25]. The syntax is given in Figure 9. First, we add a non-linear type SPF X of strictly positive
functorial linear type expressions indexed by a non-linear type X. We think of the elements of this

type as syntactic descriptions of linear types that are parameterized by X-many variables standing

for linear types that are only used in strictly positive positions. Accordingly, the SPF X type supports
an operation el that interprets it as such a type constructor, as well as an operatormap that defines

a functorial action on parse transformers. The SPF X type supports constructors for a reference

Var x to one of the linear type variables, a constant expression that doesn’t mention any type

variables K, as well as tensor products and additive conjunction and disjunction of type expressions.

We additionally add equations in the appendix that say that the el/map operations correspond to

these descriptions of the constructors.

Next, given a family of X-many strictly positive linear type expressions F : X → SPF X, we define
a family μF : X → L of X-many mutually recursive inductive types. The introduction rule for this

is roll, which constructs an element of μF x from the one-level of the xth type expression. The

elimination principle is defined by a mutual fold operation: given a family of output types A indexed
by X, we can define a family of functions from μF x ⊸ A x if you specify how to interpret all of the

constructors as operations on A values. We add 𝛽𝜂 equations that specify that this makes the family

μF into an initial algebra for the functor el(F). That is the 𝛽 rule says that a fold applied to a roll is
equivalent tomapping the fold over all the sub-expressions, which means that fold interprets all of

the constructors homomorphically using the provided interpretation f. Then the 𝜂 rule says that
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fold is the unique such homomorphism, i.e. anything that satisfies the recurrence equation of the

fold is equal to it.

This definition as an initial algebra is well-understood semantically but the 𝜂 principle in

particular is somewhat cumbersome to use directly in proofs. In dependent type theory, we would

have a dependent elimination principle, which can be used to implement functions by recursion

as well as proofs by induction. Unfortunately, since linear types do not support dependency on

linear types, we cannot directly adapt this approach. However, if we are trying to prove that two

morphisms out of a mutually recursive type are equal, we can use the equalizer type to prove their

equality by induction. That is, if our goal is to prove two functions f, g :↑ (μF x ⊸ A x) equal, it
suffices to implement a function ind :↑ (μF x ⊸ {a | f a = g a}) such that ind(a) ≡ a. Then an

inductive-style proof can be implemented by constructing ind using a fold. This can all be justified

using only the 𝛽𝜂 principles for equalizers and inductive types, and this is how our most complex

inductive proofs are implemented in the Agda formalization.

3.4 Grammar-specific Additions
So far, our calculus is a somewhat generic combination of dependent types with non-commutative

linear types. In order to carry out formal grammar theory and define parsers, we need only add a few

grammar-specific constructions. First for each character in our alphabet, we add a corresponding

linear type c. We can then define a non-linear typeChar as the disjunction of all of these characters,

and define a type String as the Kleene star of Char, i.e. as an inductive linear type. Then we add a

function read : ↑ (⊤ ⊸ String) that intuitively “reads” the input string from the input andmakes it

available. It is important that the input type of read is⊤, which can control any amount of resources,

and not I which controls no resources. Further, we add an axiom that 𝜆s.read(!(s)) ≡ 𝜆s.s
where ! is the unique function ↑ (String ⊸ ⊤), i.e., that if we have a string, but then throw it

away and read it from the input, then in fact that is equivalent to the string we were given originally.

This ensures that the elements of the String type always stand for the actual input string in our

reasoning. In the next section, we will show how these basic principles are enough to provide a

basis for verified parsing and formal grammar theory.

4 FORMAL GRAMMAR THEORY IN DEPENDENT LAMBEK CALCULUS
This section explores the applications of Lambek

D
to conducting formal grammar theory. We

demonstrate that several classical notions and constructions integral to the theory of formal

languages are faithfully represented in Dependent Lambek Calculus. By encoding well-established

formal grammar concepts, we ensure that our framework remains grounded in the foundational

principles of formal language theory while opening the door to compositional formal verification

of parsers.

In the theory of formal grammars, there are two different notions of equivalence: up to weak

generative capacity, meaning just which strings are accepted by the grammar; and up to strong
generative capacity, when the parse trees of the two grammars are isomorphic [3]. Using linear

types as grammars, we can define both of these notions of equivalence in Lambek
D
.

Definition 4.1. Grammars A and B are weakly equivalent if there exists parse transformers f : ↑
(A ⊸ B) and g : ↑ (B ⊸ A). A is a retract of B if A and B are weakly equivalent and 𝜆a.g(f(a)) ≡
𝜆a.a. They are strongly equivalent if further the other composition is the identity, i.e., 𝜆b.f(g(b)) ≡
𝜆b.b.

A formal grammar A is ambiguous if there are multiple parse trees for the same string w. For
example, a ⊕ a is ambiguous because there are two parses of "a", constructed using inl and inr. On
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the other hand, a formal grammar is unambiguous when there is at most one parse tree for any

input string. We can capture this notion as a type in Lambek
D
in a clever way:

Definition 4.2. A grammar A is unambiguous if for every linear type B, f : ↑ (B ⊸ A), and
g : ↑ (B ⊸ A) then f ≡ g.

Definition 4.2 can be read more intuitively as stating that A is unambiguous if there is at most one

way to transform parses of any other grammar B into parse of A. This notion of an unambiguous

type is the analog for linear types of the definition of a (homotopy) proposition in the terminology

of homotopy type theory[33]. The most basic unambiguous types are ⊤ and 0, and in a system of

classical logic all unambiguous types would have to be equivalent to one of these, but with our

axioms we can show also that I and literals 'c' are unambiguous. To see this, first, we establish

two useful properties of unambiguity.

Lemma 4.3 ( ). If B is unambiguous and A is a retract of B then A is unambiguous. If a disjunction⊕
x:X

A(x) is unambiguous then each A(x) is unambiguous.

From the first principle, we can prove that String is unambiguous, since it is a retract of⊤. In fact,
observe that if A is a retract of B and B is unambiguous, then in fact A and B are strongly equivalent,

as the equation 𝜆b.f(g(b)) ≡ 𝜆b.b follows because B is unambiguous. Therefore String is also

strongly equivalent to ⊤. Next, since String is defined as a Kleene star, we can easily show that

String � I ⊕ Char ⊕ (Char ⊗ Char ⊗ String). Then by the second principle we have that I and

Char and each literal 'c' are unambiguous as well.

We now turn to our main task, which is using our linear type system to implement verified

parsers. Given a grammar defined as a linear type A, a first attempt at defining a parser would be

to implement a function ↑ (String ⊸ A). But since our linear functions must be total, this means

that we can construct an A parse for every input string, which is impossible for most grammars of

interest. Instead we might try to write a partial function as a ↑ (String ⊸ (A ⊕ ⊤)) using the

“option” monad. This allows for the possibility that the input string doesn’t parse, but is far too

weak as a specification: we can trivially implement a parser for any type by always returning inr.
The correct notion of a parser should be one that allows for failure, but only in the case that a parse

cannot be constructed.

Definition 4.4. A parser for a linear type A is a function ↑ (String ⊸ A ⊕ A¬), where A¬ is a

linear type that is disjoint from A in that we can implement a function ↑ (A&A¬ ⊸ 0).

Here we replace ⊤ in our partial parser type with a type A¬ that we can think of as a negation of

A. The function ↑ (A&A¬ ⊸ 0) ensures that it is impossible for A and A¬ to match the same input

string. This means that in defining a parser, we will need to define a kind of negative grammar for

strings that do not parse. Fortunately, we will see that deterministic automata naturally support

such a notion with no additional effort: the negative grammar is simply the grammar for traces

that end in a rejecting state. This follows from the following principle, a consequence of our axiom

that ⊕ constructors are disjoint.

Lemma 4.5 ( ). If A ⊕ A¬ is unambiguous, then A and A¬ are disjoint.

Writing a parser as a linear term in this way is an intrinsic verification of the soundness of the
parser completely for free from the typing: any inl parse that we return must correspond to a

parse tree of the input string. Further if we verify the disjointness property we then also get the

completeness of the parser as well, that it never fails to generate an A parse when it is possible.

Our main method for constructing verified parsers is to show that a grammar A is weakly

equivalent to a grammar for a deterministic automaton. Parsers for deterministic automata are
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data TraceN : (s : N.states) → L where
nil : ↑(&[ s : N.states ] N.isAcc → TraceN s)
cons : ↑(&[ t : N.transitions ]

('N.label t' ⊸ TraceN (N.dst t) ⊸ TraceN (N.src t)))
𝜖 cons : ↑(&[ t : N.𝜖 transitions ]

(TraceN (N.𝜖dst t) ⊸ TraceN(N.𝜖src t)))

data TraceD : (s : D.states) (b : Bool) → L where
nil : ↑(&[ s : D.states ] TraceD s D.isAcc s)
cons : ↑(&[ c : Char ] &[ s : D.states ] &[ b : Bool ]
('c' ⊸ TraceD (D.𝛿 c s) b ⊸ TraceD s b))

Fig. 10. Traces of an NFA N and a DFA D

simple to implement by stepping through the states of the automaton, with the rejecting traces

serving as the negative grammar. This is sufficient due to the following:

Lemma 4.6 ( ). If A is weakly equivalent to B then any parser for A can be extended to a parser for
B.

Here we need both directions of the weak equivalence. We need A ⊸ B to extend the parser

from String ⊸ A ⊕ A¬ to String ⊸ B ⊕ A¬ but then we also need B ⊸ A to establish that A¬ is

disjoint from B.

4.1 Regular Expressions and Finite Automata
In this section, we describe how to construct an intrinsically verified parser for regular expressions

by compiling it to an NFA and then a DFA. That is, for each regular expression A, we construct an
NFA N(A) and a corresponding DFA D(A) such that A is strongly equivalent to the traces of N(A)
and weakly equivalent to the accepting traces of D(A). Then we can easily construct a parser for

traces of D(A) and combine this using Lemma 4.6 to get a verified regex parser.

A regular expressions in Lambek
D
is a linear type constructed using only the connectives 'c', 0,

⊕, I, ⊗, and Kleene star. In Section 2, we saw one particular NFA and its corresponding type of

traces. More generally we define the linear type of traces as in Figure 10

In Fig. 10 we define a linear type of traces through an NFA N. TraceN is an inductive type indexed

by the starting state of the trace s : N.states. Traces in N may be built through one of three

constructors. We may terminate a trace at an accepting state with the constructor nil. Here we use
an Agda-style unicode syntax for &, as well as using the function arrow to mean a non-dependent

version of &. If we had a trace beginning at the destination state of a transition, then we may use

the cons constructor to linearly combine that trace with a parse of the label of the transition to

build a trace beginning at the source of the transition. Finally, if we had a trace beginning at the

destination of an 𝜖-transition then we may use 𝜀cons to pull it back along the 𝜖-transition and

construct a trace beginning at the source of the 𝜖-transition. As a shorthand, write ParseN for the
accepting traces out of N.init.

TraceD, the linear type of traces through D, is given next. Unlike traces for an NFA, we parameter-

ize this type additionally by a boolean which says whether the trace is accepting or rejecting. These

traces may be terminated in an accepting state s with the nil constructor. The cons constructor
builds a trace out of state s by linearly combining a parse of some character c with a trace out of

the state D.𝛿 c s. The trace built with cons is accepting if and only if the trace out of D.𝛿 c s is

accepting.
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parseD : ↑(String ⊸ &[ s : D.states ] ⊕[ b : Bool ] TraceD s b)
parseD String.nil s = 𝜎 (D.isAcc s) (TraceD.nil s)
parseD (String.cons (𝜎 c a) w) s =

let 𝜎 b t = parse w (D.𝛿 c s) in
𝜎 b (TraceD.cons c s b a t)

printD : (s : D.states) → ↑((⊕[ b : Bool ] TraceD s b) ⊸ String)
printD s (𝜎 b (TraceD.nil .s)) = String.nil
printD s (𝜎 b (TraceD.cons c (D.𝛿 c .s) b a trace)) =

String.cons (𝜎 c a) (printD (D.𝛿 c s) (𝜎 b trace))

Fig. 11. Parser/printer for DFA traces

Because DFAs are deterministic, we are able to prove that their type of traces are unambiguous and

define a parser for them. In particular we show that for any start state s,
⊕

(b : Bool).TraceD s b
is a retract of String. That is, first we construct a function parseD that is a parser for TraceD s true,
with TraceD s false being the disjoint type used. The fact that these types are disjoint follows by

showing that this function is part of a retraction, i.e., that there is only one way to trace through a

deterministic automaton.

The parser, parseD, is defined by recursion on strings in Fig. 11. If this string is empty, then

parseD defines a linear function that terminates a trace at the input state s. If the string is nonempty,

then parseD walks forward in D from the input state s by the character at the head of the string. The
inverse, printD is defined by recursion on traces. If the trace is defined via nil, then printD returns
the empty string. Otherwise, if the trace is defined by cons then parseD appends the character
from the most recent transition to the output string and recurses. We prove this is a retraction by

induction on traces.

Theorem 4.7 ( ). parseDs is a parser for TraceD s true.

Working backwards, we can then show the traces of an NFA are weakly equivalent to the traces

of a DFA implementing a variant of Rabin and Scott’s classic powerset construction [26]. Here we

note that this is only a weak equivalence and not a strong equivalence, as the DFA is unambiguous

even if the NFA is not.

Theorem 4.8 (Determinization, ). Given an NFA N, there exists a DFA D such that ParseN is
weakly equivalent to ParseD.

Proof. Define the states of D to be the P𝜀(N.states)— the type of 𝜖-closed1 subsets of N.states.
A subset is accepting in D if it contains an accepting state from N. Construct the initial state of D
as the 𝜖-closure of N.init. Lastly define the transition function of D to send the subset X under

the character c to the 𝜖-closure of all the states reachable from X via a transition labeled with the

character c.
We demonstrate the weak equivalence between ParseN and ParseD by constructing parse trans-

formers between the two grammars. To build the parse transformer ↑ (ParseN ⊸ ParseD), we
strengthen our inductive hypothesis and build a term

NtoD : ↑
(
TraceN s true ⊸ &

X:D.states
&

sInX:X∋s
TraceD X true

)
1
A subset of states X is 𝜖-closed if for every s ∈ X and 𝜖-transition s

𝜖→ s′ we have s′ ∈ X.
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data Dyck : L where
nil : ↑ Dyck
bal : ↑('(' ⊸ Dyck ⊸ ')' ⊸ Dyck ⊸ Dyck)

Fig. 12. The Dyck grammar as an inductive linear type

that maps a trace in N from an arbitrary state s to a trace in D that may begin at any subset of states

X that contains s. NtoD may then be instantiated at s = N.init and X = D.init to get the desired

parse transformer.

To construct a term from DFA traces to NFA traces, we similarly strengthen our induction

hypothesis and build a parse transformer

DtoN : ↑
(
TraceD X true ⊸

⊕
s:N.states

⊕
sInX:X∋s

TraceN s true

)
□

Finally, given any regular expression we can construct a strongly equivalent NFA. While only

weak equivalence is required to construct a parser, proving the strong equivalence shows that other

aspects of formal grammar theory are also verifiable in Lambek
D
.

Theorem 4.9 (Thompson’s Construction, ). Given a regular expression R, there exists an
NFA N such that R is strongly equivalent to TraceN(N.init).

Proof. We use a variant of Thompson’s construction [32], showing that NFAs are, up to strong

equivalence, closed under each type operation for regular expressions.

□

4.2 Context-free grammars
Next, we give two examples for parsing context-free grammars. Context-free grammars (CFG) can

be encoded in our type theory in a similar way to regular expressions, as CFGs are equivalent to

the formalism of μ-regular expressions, where the Kleene star is replaced by an arbitrary fixed

point operation[22].

A simple example of a CFG is the Dyck grammar of balanced parentheses, which we define in

Figure 12 Dyck is a grammar over the alphabet {"(", ")"}. The nil constructor shows that the
empty string is balanced, and the bal constructor builds a balanced parse by wrapping an already

balanced parse in an additional set of parentheses then following it with another balanced parse. We

construct a parser for Dyck by building a deterministic automaton M such that ParseM is strongly
equivalent to Dyck.

The Dyck language is an example of an LL(0) language, one that can be parsed top-down with no
lookahead[29]. This means we can implement it simply as an infinite state deterministic automaton,

in Figure 13. Here the state is a “stack” counting how many open parentheses have been seen so

far. Functions parseM and printM for this automaton can be defined analogously to the parser and

printer for DFAs, and so

⊕
(s : M.states).

⊕
(b : Bool).TraceM s b is likewise unambiguous.

Theorem 4.10 ( ). Dyck and ParseM are strongly equivalent. And therefore we can construct a
parser for Dyck.

Our final example is of a simple grammar of arithmetic expressions with an associative operation.

Here we take the alphabet to be {"(", ")", "+", "NUM"}. In Figure 14 we define it using two

mutually recursive types, corresponding to the two non-terminals we would use in a CFG syntax.
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0start 1 2 . . .

fail

"("

")"

"("

")"

"("

")"

"(", ")"

")"

Fig. 13. Automaton M for the Dyck grammar

The syntactic structure encodes that the binary operation is right associative. In the same figure, we

define the traces of an automaton with one token of lookahead. The automaton has four different

“states”, each with access to a natural number “stack”. The “opening” state O expects either an open

paren, in which case it increments the stack and stays in the opening state, or sees a number and

proceeds to the D state. The “done opening” state D is where lookahead is used: if the next token

will be a right paren, then we proceed to C, otherwise we proceed to M. Here NotStartsWithRP
is defined as I ⊕ (('(' ⊕ '+' ⊕ NUM) ⊗ ⊤). In the “closing” state C if we observe a close paren
we decrement the count and continue to the D state. In the “multiplying” state M, we succeed if

the string ends and the count is 0, and if we see a plus we continue to the O state. Additionally,

since the automaton need also parse all of the incorrect strings, we add additional failing cases. It

is straightforward to implement a parser for this lookahead automaton, generalizing the approach

for deterministic automata.

Theorem 4.11 ( ). We construct a parser for Exp by showing it is weakly equivalent to O 0 true.

4.3 Unrestricted Grammars
While we have shown only examples for context-free grammars, in fact arbitrarily complex gram-

mars are encodable in Lambek
D
. To demonstrate this, we show that for any non-linear function

P : String′ → U, where here String′ is the non-linear type of strings over the alphabet, we can
construct a grammar whose parses correspond to P.

Reify P =
⊕

w:String′

⊕
x:P w

⌈w⌉

where ⌈""⌉ = I and ⌈c :: w⌉ = 'c' ⊗ ⌈w⌉.
This reification operation on functions String′ → U is incredibly expressive, as it allows to

sidestep our linear typing connectives and utilize the whole of nonlinear dependent type theory to

define a grammar. For example, given a Turing machine Tur one may define a non-linear predicate

accepts : String′ → U such that accept w is equal to ⊤ if T accepts w and equal to 0 otherwise.
Then, Reify accepts is a linear type that captures precisely the strings accepted by Tur. That
is, Lang(Reify accepts) is recursively enumerable — the most general class of languages in the

Chomsky hierarchy.

Theorem 4.12 ( ). For any Turing machine, we can construct a grammar in LambekD that accepts
the same language as the Turing machine.

5 DENOTATIONAL SEMANTICS AND IMPLEMENTATION
To justify our assertion that Lambek

D
is a syntax for formal grammars and parse transformers,

we will now define a denotational semantics that makes this mathematically precise by defining a
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data Exp : L where
done : ↑(Atom ⊸ Exp)
add : ↑(Atom ⊸ '+' ⊸ Exp ⊸ Exp)

data Atom : L where
num : ↑(NUM ⊸ Atom)
parens : ↑('(' ⊸ Exp ⊸ ')' ⊸ Atom)

data O : Nat → Bool → L where
left : ↑(&[ n ] &[ b ] '(' ⊸ O (n + 1) b ⊸ O n b)
num : ↑(&[ n ] &[ b ] NUM ⊸ DO n b ⊸ O n b)
done : ↑(&[ n ] O n false)
unexpected : ↑(&[ n ] (')' ⊕ '+') ⊸ ⊤ ⊸ O n false)

data D : Nat → Bool → L where
lookAheadRP : ↑(&[ n ] &[ b ] ((')' ⊗ ⊤) & C n b) ⊸ D n b)
lookAheadNot : ↑(&[ n ] &[ b ] (NotStartsWithRP & M n b) ⊸ D n b)

data C : Nat → Bool → L where
closeGood : ↑(&[ n ] &[ b ] ')' ⊸ D n b ⊸ C (n + 1) b)
closeBad : ↑(&[ n ] ')' ⊸ C 0 b)
done : ↑(&[ n ] C n false)
unexpected : ↑(&[ n ] ('(' ⊕ '+' ⊕ NUM) ⊸ ⊤ ⊸ C n false)

data M : Nat → Bool → L where
doneGood : ↑(M 0 true)
doneBad : ↑(&[ n ] M (n + 1) false)
add : ↑(&[ n ] &[ b ] '(' ⊸ O n b ⊸ M n b)
unexpected : ↑(&[ n ] ('(' ⊕ ')'⊕ NUM) ⊸ ⊤ ⊸ M n false)

Fig. 14. Associative arithmetic expressions and a corresponding lookahead automaton

notion of formal grammar and parse transformer then showing that our type theory can be soundly

interpreted in this model. We then discuss how this denotational semantics provides the basis for

our prototype implementation in Agda.

5.1 Formal Grammars and Parse Transformers
The most common definition of a formal grammar is as generative grammars, defined by a set of

non-terminals, a specified start symbol and set of production rules. We instead use a more abstract

formulation that is closer in spirit to the standard definition of a formal language[8]:

Definition 5.1. A formal language L is a function from strings to propositions. A (small) formal
grammar A is a function from strings to (small) sets.

We think of the grammar A as taking a string to the set of all parse trees for that string. However

since A could be any function whatsoever there is no requirement that an element of A(w) be

a “tree” in the usual sense. This definition provides a simple, syntax-independent definition of a

grammar that can be used for any formalism: generative grammars, categorial grammars, or our

own type-theoretic grammars. Note that the definition of a formal grammar is a generalization of

the usual notion of formal language since a proposition can be equivalently defined as a subset of

a one-element set. Then the difference between a formal grammar and a formal language is that

formal grammars can be ambiguous in that there can be more than one parse of the same string.

Even for unambiguous grammars, we care not just about whether a string has a parse tree, but

which parse tree it has, i.e., what the structure of the element of A(w) is. To interpret our universes
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U, Lwe assume we have a universe of small sets. In the remainder, all formal grammars are assumed

to be small.

We then interpret linear terms as parse transformers:

Definition 5.2. Let A1, A2 be formal grammars. Then a parse transformer f from A1 to A2 is a
function assigning to each string w a function fw : A1(w) → A2(w).

Just as formal grammars generalize formal languages, parse transformers generalize formal

language inclusion: if A1(w), A2(w) are all subsets of a one-element set, then a parse transformer

is equivalent to showing that A1(w) ⊆ A2(w). In our denotational semantics, linear terms will

be interpreted as such parse transformers, and the notions of unambiguous grammar, parsers,

disjointness, etc, introduced in Section 4 can be verified to correspond to their intended meanings

under this interpretation.

Parse transformers can be composed: given two parse transformers f and g, their composition

is defined pointwise, i.e. (f ◦ g)w = fw ◦ gw. Furthermore, given a formal grammar A, its identity
transformer is idw = idA(w), where idA(w) is the identity function on the set A(w). This defines a
category.

Definition 5.3. Define Gr to be the category whose objects are formal grammars and morphisms

are parse transformers.

This category is equivalent to the slice category Set/Σ∗ and as such is very well-behaved. It is

complete, co-complete, Cartesian closed and carries a monoidal biclosed structure. We will use

these structures to model the linear types, terms and equalities in Lambek
D
. These categorical

properties are precisely what is required to interpret all of the linear type and term constructors.

5.2 Semantics
We now define our denotational semantics.

Definition 5.4 (Grammar Semantics). We define the following interpretations by mutual recursion

on the judgments of Lambek
D
:

(1) For each non-linear context Γ ctx, we define a set JΓK.
(2) For each non-linear type Γ ⊢ X type, and element 𝛾 ∈ JΓK, we define a set JXK𝛾 .
(3) For each linear type ΓA lin. type and element 𝛾 ∈ JΓK, we define a formal grammar JAK𝛾 .

We similarly define a formal grammar JΔK𝛾 for each linear context ΓΔ lin. ctx..

(4) For each non-linear term Γ ⊢ M : X and 𝛾 ∈ JΓK, we define an element JMK𝛾 ∈ JXK𝛾 .
(5) For each linear term Γ; Δ ⊢ e : A and 𝛾 ∈ JΓK we define a parse transformer from JΔK𝛾 to

JAK𝛾 .
And we verify the following conditions:

(1) If Γ ⊢ X small, then JXK𝛾 is a small set.

(2) If Γ ⊢ X ≡ X′ then for every 𝛾 , JXK𝛾 = JX′K𝛾 .
(3) If Γ ⊢ A ≡ A′ then for every 𝛾 , JAK𝛾 = JA′K𝛾 .
(4) If Γ ⊢ M ≡ M′ : X then for every 𝛾 , JMK𝛾 = JM′K𝛾 .
(5) If Γ; Δ ⊢ e ≡ e′ : A then for every 𝛾 , JeK𝛾 = Je′K𝛾 .

The interpretation of dependent types as sets is standard [15]. We present the concrete descrip-

tions of the semantics of linear types, as well as our non-standard non-linear types in Figure 15.

The grammar for a literal c has a single parse precisely when the input string consists of the single

character. The grammar for the unit similarly has a single parse for the empty string. A parse of

the tensor product A ⊗ B consists of a splitting of the empty string into a prefix w1 and suffix w2
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JcK𝛾 w = {c|w = c}

JIK𝛾 w = {() | w = 𝜀}

JA ⊗ BK𝛾 w = {(w1, w2, a, b) | w1w2 = w ∧ a ∈ JAK𝛾 w1 ∧ b ∈ JBK𝛾 w2}

JA ⊸ BK𝛾 w =
∏
w′

JAK𝛾 w′ → JBK𝛾 ww′

JB ⊸AK𝛾 w =
∏
w′

JAK𝛾 w′ → JBK𝛾 w′w

J
⊕
x:X

AK𝛾 w = {(x, a) | x ∈ JXK𝛾 ∧ a ∈ JAK(𝛾, x)w}

J&
x:X

AK𝛾 w =
∏

x∈JXK𝛾

JAK(𝛾, x) w

J↑ AK𝛾 = JAK𝛾 𝜀

J{a | f a = g a}K𝛾 w = {a ∈ JAK𝛾 w | JfK𝛾 w a = JgK𝛾 w a}

JLK𝛾 = Gr0

JSPF XK𝛾 = DepPolyFunctor(JXK𝛾 × Σ∗, Σ∗)
Jel(F)K𝛾 G = JFK𝛾 G

Jmap(F)K𝛾 f = JFK𝛾 f

JμAK𝛾 = μ(JAK𝛾)

Fig. 15. Grammar Semantics

along with an A parse of w1 and B parse of w2. A parse of

⊕
x:X A is a pair of an element of the set X

and a parse of A(x), while dually a parse of&x:X A is a function taking any x : X to a parse of A(x).
A w-parse of A ⊸ B is a function that takes an A parse of some other string w′ to a B parse of ww′,
and B ⊸A is the same except the B parse is for the reversed concatenation w′w. The set ↑ A is the
set of parse for the empty string for A. This definition means that J↑ (A ⊸ B)K (or J↑ (B ⊸A)K) is
equivalent to the set of parse transformers:

J↑ (A ⊸ B)K𝛾 = JA ⊸ BK𝛾 𝜀 =
∏
w′

JAK𝛾 w′ → JBK𝛾 w′

Next, a parse in the equalizer {a | f a = g a} is defined as a parse in JAK that is mapped to the same

parse by the parse transformers JfK and JgK. The universe L of linear types is interpreted as the set

of all small grammars.

The most complex part of the semantics is the interpretation of strictly positive functors and

indexed inductive linear types. We interpret a strictly positive functor as a dependent polynomial
functor on the category of sets, also sometimes called an indexed container [1, 10].

Definition 5.5. Let I and O be sets. A (dependent) polynomial (of sets) from I to O consists of a set
of shapes S, a set of positions P and functions f : P → I, g : P → S and h : S → O. The extension
of a polynomial is a functor Set/I → Set/O defined as the composite

Set/I Set/P Set/S Set/Of∗ Πg Σh

Where f∗ is the pullback functor along f; Πg is the dependent product operation and Σh is the

dependent sum operation, which are, respectively, the right and left adjoint of their pullback

functors g∗ and h∗. A dependent polynomial functor from I to O is a functor Set/I → Set/O that

is naturally isomorphic to the extension of a dependent polynomial from I to O.
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With this interpretation of F as a polynomial functor, el(F) and map(F) are just interpreted as

the action of the functor on objects and morphisms, respectively. We interpret the constructors

K,Var, etc. on functors in the obvious way that matches the definitional behavior of el and map.
The non-trivial part of the construction is verifying that such such constructions are closed under

being polynomial. The details are tedious but straightforward extension of prior work on dependent

polynomials and indexed containers and we have verified the construction in Agda.

We use dependent polynomials functors on sets as these are guaranteed to have initial algebras.

Further, these initial algebras are readily constructed in our Agda implementation as an inductive

type of IW trees which are already available in the cubical library of Agda [31]. Then an element

F ∈ JX → SPF XK𝛾 is an JXK𝛾-indexed family of polynomial functors from JXK𝛾 × Σ∗ to Σ
∗
, and

taking the product of these constructs a polynomial functor from JXK𝛾 × Σ∗ to itself. Then Jμ FK𝛾 is

defined to be the initial algebra of this functor, and the initial algebra structure is used to interpret

roll, fold and the corresponding axioms.

The remaining details of the interpretation of linear terms as parse transformers and verification

of the equational axioms is a relatively straightforward extension of existing semantics of linear

logic in monoidal categories, and is included in the appendix[30].

5.3 Agda Implementation
This denotational semantics in grammars and parse transformers serves as the basis for our

prototype implementation of Lambek
D
in cubical Agda. The implementation is a shallow embedding,

meaning that rather than formalizing a syntax of Lambek
D
types and terms, we work directly with

Agda types and a definition of a formal grammar as a function String → Set. Then we implement

each of the type and term constructors of Lambek
D
as combinators on formal grammars or parse

transformers, and use cubical Agda’s equality type to model the term equalities. Cubical Agda is

convenient for this purpose as it has built-in support for function extensionality which we use

extensively. Axioms such as distributivity of ⊕/& and disjointness of constructors are then provable

directly in Agda, and we are careful to only construct grammars, terms and proofs using constructs

that are possible in Lambek
D
. The main difference between our shallow embedding and Lambek

D
is

that our linear terms are written in a combinator-style, without being able to use named variables

in linear terms. A benefit of this shallow embedding is that the parsers are immediately available

to a larger Agda development, as they are just normal Agda code. In future work we will look to

implement a type checker for a syntax closer to the presentation in this paper, but with the goal of

still making it integrate with an existing proof assistant.

6 DISCUSSION AND FUTUREWORK
Grammars as (Linear) Types. Lambek’s original syntactic calculus [20] describes a logical system

for linguistic derivations, and it can be given semantics inside of a non-commutative biclosed

monoidal category [19]. This led to many uses of non-commutative linear logic and lambda calculi

in linguistics [2] — including mechanized categorial grammar parsers [13, 27]. This style of grammar

formalism has gone by the names Lambek calculus or categorial grammar, and it is equal in

expressivity to context-free grammars. The existing works on categorial grammar are different in

nature to our approach: they are based on non-commutative linear logic, but their terms do not

include elimination rules, and so can only express parse trees, and so cannot be used to express

verified parsers.

The most similar prior work to our own is Luo’s Lambek calculus with dependent types [24].

Their design differs from our own in allowing linear types to depend on other linear types and

supporting directed Π and Σ types that have no analog in our system. They do not provide a
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semantics for these connectives, and it is unclear how to interpret their connectives in our grammar

semantics. Further, we provide several examples showing that Lambek
D
is a practical system for

describing grammar formalisms and parsers, and it is unclear if these could be implemented in

their calculus.

The usage of a simple type system to reason about regular expressions up to weak equivalence

was introduced by Frisch and Cardelli [9]. Henglein and Nielsen [14] later adapt this approach by

providing a type system for regular expressionswhose semantics were in one-to-one correspondence

with the set of parse trees. Elliott [8] gives a similar semantic interpretation of regular grammars as

type-level predicates on strings. The type system of Lambek
D
extends these semantic interpretations

of to a broader class of grammars and also gives a formal syntax and equational theory for the

parse transformers that these prior works lack.

Relation to Separation Logic. Lambek
D
is similar in spirit to separation logic [28]. Semantically,

they are closely related: linear types in Lambek
D
denote families of sets indexed by a monoid of

strings, whereas separation logic formulae typically denote families of predicates indexed by an

ordered partial commutative monoid of worlds [17]. The monoidal structure in both cases is are

instances of the category-theoretic notion of Day convolution monoidal structure [6]. From a

separation-logic perspective, our notion of memory is very primitive: a memory shape is just a

string of characters and the state of the memory is never allowed to evolve.

This semantic connection to separation logic suggests an avenue of future work: to develop a

program logic based on non-commutative separation logic for verifying imperative implementations

of parsers. This could be implemented by modifying an existing separation logic implementation

or embedding the logic within Lambek
D
.

Semantic Actions. Our verification has mainly focused on the verification that a parser outputs

a correct concrete syntax tree for a grammar. However, in practice, parsers are combined with a

semantic action that emits an abstract syntax tree that omits superfluous syntactic details that aren’t

needed in later stages of the overall program. We can define a semantic action in Lambek
D
for a

linear type A with semantic outputs in a non-linear type X to be a function ↑ (A ⊸
⊕

_:X ⊤). That
is, a semantic action is a function that produces a semantic element of X from the concrete parses

of A. In future work, we aim to study the question of verifying efficient implementations of parsers

with semantic actions.

Implementation. Our Agda prototype implementation serves as a useful proof of concept for

showing what can be implemented in Lambek
D
, but it has downsides we aim to address in future

work. Firstly, it would be preferable to work with the more intuitive type theoretic syntax we have

used in this work, rather than the combinator-style our shallow embedding requires. Additionally,

Agda itself does not have a high-performance implementation, and so the parsers we implement in

Agda do not have competitive performance to industry parser generators. In future work we aim

to study if we can embed a proof of the correctness of a parser generator that produces imperative

programs, and if the correctness of those imperative programs can be proven within Lambek
D
.

Type Checking and Semantic Analysis. Our focus in this work has been on the verification of

parsers for grammars over strings, but because Lambek
D
allows for the definition of arbitrarily

powerful grammars, the system could also be used in principle for more sophisticated semantic

analysis such as scope checking or type checking. Alternatively, we could more directly encode

type type systems as linear types in a modified version of Lambek
D
where linear types are not

grammars over strings, but type systems over trees. This could analogously serve as a framework

for verified type checking and static analysis.
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el(Var M)B = B M

el(K A)B = A

el(
⊕

A)B =
⊕
y:Y

el(Ay)B

el(&A)B = &
y:Y

el(Ay)B

el(A ⊗ A′)B = el(A)B ⊗ el(A′)B

map(Var M) f = f M

map(K A) f = 𝜆a.a

map(
⊕

A) f = 𝜆a.let𝜎 y ay = a in𝜎 ymap(A y) f ay

map(& A) f = 𝜆a.𝜆&y.map(A y) f (𝜋 y a)

map(A ⊗ A′) f = 𝜆b.let (a, a′) = b in (map(A) f a,map(A′) f a′)

Fig. 16. Strictly positive functors functorial actions

· ctx
Γ ctx Γ ⊢ X type

Γ, x : X ctx

Γ ⊢ X : Ui

Γ ⊢ X type

Γ ⊢ A lin. type

Γ ⊢ · lin. ctx.

Γ ⊢ Δ lin. ctx. 𝛾 ⊢ A lin. type

Γ ⊢ Δ, a : A lin. ctx.

Fig. 17. Context rules

Γ; a : A, Δ ⊢ e : B

Γ; Δ ⊢ 𝜆

⊸

a. e : B ⊸A

Γ; Δ ⊢ e : B ⊸A Γ; Δ′ ⊢ e′ : A

Γ; Δ′, Δ ⊢ e

⊸

e′ : B

Fig. 18. Linear terms (extended)

A SYNTAX
In this section we include the elided syntactic forms, as well as definitions and basic properties of

linear and non-linear substitution.

Definition A.1. The set of (non-linear) substitutions 𝛾 ∈ Subst(Γ, Γ′) where Γ ctx and Γ′ ctx is
defined by recursion on Γ:

Subst(Γ, ·) = {·}
Subst(Γ, Γ′, x : A) = {(𝛾, M/x) |𝛾 ∈ Subst(Γ, Γ′) ∧ Γ ⊢ M : A[𝛾]}

simultaneously with an action of substitution on types, terms, etc. in the standard way.
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Γ; Δ ⊢ e ≡ e′ : A
Γ; Δ, a : A ⊢ e : C Γ; Δ′ ⊢ e′ : A

Γ; Δ, Δ′ ⊢ (𝜆⊸a. e) e′ ≡ e{e′/a} : C

Γ; Δ ⊢ e : A ⊸ B

Γ; Δ ⊢ e ≡ 𝜆⊸a. e a : A ⊸ B

Γ; a : A, Δ ⊢ e : C Γ; Δ′ ⊢ e′ : A

Γ; Δ, Δ′ ⊢ (𝜆

⊸

a. e) e′ ≡ e{e′/a} : C

Γ; Δ ⊢ e : B ⊸A

Γ; Δ ⊢ e ≡ 𝜆

⊸

a. e a : B ⊸A

Γ, x : X ⊢ e : A Γ ⊢ M : X

Γ; Δ ⊢ (𝜆&x. e) M ≡ e{M/x} : C

Γ; Δ ⊢ e : &(x : X).A

Γ; Δ ⊢ e ≡ 𝜆&x. e x : &(x : X).A

Γ; Δ1, Δ2 ⊢ e : C

Γ; Δ1, Δ2 ⊢ let () = () in e ≡ e : C

Γ; Δ2 ⊢ e : I Γ; Δ1, a : A, Δ3 ⊢ e′ : C

Γ; Δ1, Δ3 ⊢ let () = e in e′{()/a} ≡ e′{e/a} : C

Γ; Δ2 ⊢ e : A Γ; Δ3 ⊢ e′ : B Γ; Δ1, a : A, b : B, Δ4 ⊢ e′′ : C

Γ; Δ1, Δ2, Δ3, Δ4 ⊢ let (a, b) = (e, e′) in e′′ ≡ e′′{e/a, e′/b} : C

Γ; Δ2 ⊢ e : A ⊗ B Γ; Δ1, c : A ⊗ B, Δ3 ⊢ e′ : C

Γ; Δ1, Δ2, Δ3 ⊢ let (a, b) = e in e′{(a, b)/c} ≡ e′{e/c} : C

Γ ⊢ M : X Γ; Δ2 ⊢ e : A Γ, x : X ⊢ Δ1, a : A, Δ3

Γ; Δ1, Δ2, Δ3 ⊢ let𝜎 x a = 𝜎 M e in e′ ≡ e′{M/x, e/a} : C

Γ; Δ1, y :
⊕

(x : X).A, Δ2 ⊢ e′ : C Γ; Δ2 ⊢ e :
⊕

(x : X).A

Γ; Δ1, Δ2, Δ3 ⊢ let𝜎 x a = e in e′{𝜎 x a/y} ≡ e′{e/y} : C

Γ; Δ ⊢ e : A Γ; Δ ⊢ f e ≡ g e

Γ; Δ ⊢ ⟨e⟩.𝜋 ≡ e : A

Γ; Δ ⊢ e : {e | f e = g e}

Γ; Δ ⊢ ⟨e.𝜋⟩ ≡ e : {e | f e = g e}

Fig. 19. Judgmental equality for linear terms

It is straightforward, but laborious to establish that all forms in the type theory that are parame-

terized by a non-linear context Γ support the admissible actions of a substitution 𝛾 ∈ Subst(Γ′, Γ)
in Figure 20.

Definition A.2. Let Γ ⊢ Δ lin. ctx. and Γ ⊢ Δ′ lin. ctx.. The set of linear substitutions Subst(Δ′, Δ)
is defined by recursion on Δ:

Subst(Δ′, ·) = {· | Δ′ = ·}
Subst(Δ′, (Δ, a : A)) = {(𝛿, e/a) |𝛿 ∈ Subst(Δ1, Δ), Δ2 ⊢ e : A, Δ′ = (Δ1, Δ2)}

Given substitutions 𝛿1 ∈ Subst(Δ′1, Δ1) and 𝛿2 ∈ Subst(Δ′2, Δ2), we can define a substitution

𝛿1,𝛿2 ∈ Subst((Δ′1, Δ
′
2), (Δ1, Δ2)). Furthermore, for any substitution 𝛿 ∈ Subst(Δ, (Δ1, Δ2)),

we can deconstruct 𝛿 = 𝛿1,𝛿2 with 𝛿1 ∈ Subst(Δ′1, Δ1) and 𝛿2 ∈ Subst(Δ′2, Δ2).

Definition A.3. Given any Γ; Δ ⊢ e : A and 𝛿 ∈ Subst(Δ′, Δ), we define the action of the

substitution on e in Fig. 21, frequently using the inversion principle to split the substitution into
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Γ ⊢ X type

Γ
′ ⊢ X[𝛾] type

Γ ⊢ X small

Γ
′ ⊢ X[𝛾] small

Γ ⊢ X ≡ Y

Γ
′ ⊢ X[𝛾] ≡ Y[𝛾]

Γ ⊢ M : X

Γ
′ ⊢ M[𝛾] : X[𝛾]

Γ ⊢ M ≡ N : X

Γ
′ ⊢ M[𝛾] ≡ N[𝛾] : X[𝛾]

Γ ⊢ Δ lin. ctx.
Γ
′ ⊢ Δ[𝛾] lin. ctx.

Γ ⊢ A lin. type

Γ
′ ⊢ A[𝛾] lin. type

Γ ⊢ A ≡ B

Γ
′ ⊢ A[𝛾] ≡ B[𝛾]

Γ; Δ ⊢ e : A

Γ
′; Δ[𝛾] ⊢ e[𝛾] : A[𝛾]

j
Γ; Δ ⊢ e ≡ f : A

Γ
′; Δ[𝛾] ⊢ e[𝛾] ≡ f[𝛾] : A[𝛾]

j

Fig. 20. Non-linear substitution

a[e/a] = e

(e1, e2)[𝛿1,𝛿2] = (e1[𝛿1], e2[𝛿2])

(let (a, b) = e in e′)[𝛿1,𝛿2,𝛿3] = let (a, b) = e[𝛿2] in e′[𝛿1, a/a, b/b,𝛿2]

()[·] = ()

let () = e in e′[𝛿1,𝛿2,𝛿3] = let () = e[𝛿2] in e′[𝛿1, a/a, b/b,𝛿2]

(𝜆⊸a. e)[𝛿] = 𝜆⊸a. e[𝛿, a/a]

(e′ e)[𝛿1,𝛿2] = e′[𝛿1] e[𝛿2]

(𝜆⊸a. e)[𝛿] = 𝜆⊸a. e[𝛿, a/a]

(e′ e)[𝛿1,𝛿2] = e′[𝛿1] e[𝛿2]

(𝜆

⊸

a. e)[𝛿] = 𝜆⊸a. e[a/a,𝛿]

(e′

⊸

e)[𝛿1,𝛿2] = e′[𝛿1]

⊸

e[𝛿2]

(𝜆&x. e)[𝛿] = 𝜆&x. e[𝛿]

(e .𝜋 M)[𝛿] = (e[𝛿] .𝜋 M)

(𝜎 M e)[𝛿] = 𝜎 M e[𝛿]

(let𝜎 x a = e in e′)[𝛿1,𝛿2,𝛿3] = let𝜎 x a = e[𝛿2] in e′[𝛿1,𝛿3]

(⟨e⟩)[𝛿] = ⟨e[𝛿]⟩
(e.𝜋)[𝛿] = e[𝛿].𝜋

Fig. 21. Action of substitution on linear terms

constituent components. By induction on linear term and equality judgments, we establish the

following admissible rules for 𝛿 ∈ Subst(Δ′, Δ):

Γ; Δ ⊢ e : A

Γ; Δ′ ⊢ e[𝛿] : A

Γ; Δ ⊢ e ≡ f : A

Γ; Δ′ ⊢ e[𝛿] ≡ f[𝛿 ′] : A

B DENOTATIONAL SEMANTICS
Here we extend the denotational semantics from Section 5 to cover all of Dependent Lambek

Calculus syntax. Here we will freely use that the category of grammars is a complete, co-complete
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biclosed monoidal category, and use categorical notation for the constructions in the denotational

semantics. For example, we will use the same notation I, ⊗,⊸, ⊸

for the biclosed monoidal

structure of Gr that we do for the corresponding syntactic notions.

Definition B.1 (Denotation of Linear Contexts). The semantics of linear contexts Γ ⊢ Δ lin. ctx. is
defined as follows:

J·K𝛾 = I

JΔ, x : AK𝛾 = JΔK𝛾 ⊗ JAK𝛾

Definition B.2 (Denotation of Linear Substitutions). The semantics of a linear substitution 𝛿 :
Subst(Δ′, Δ) are given as maps J𝛿K𝛾 : JΔ′K𝛾 → Δ. Define J𝛿K𝛾 by recursion on 𝛿 :

J·K𝛾 = idI

J𝛿, e/aK𝛾 = J𝛿K𝛾 ⊗ JeK𝛾 ◦ mΔ1,Δ2
where Δ2 ⊢ e : A and Δ′ = Δ1, Δ2.

Theorem B.3. For any Γ ⊢ Δ1, Δ2 lin. ctx. and 𝛾 ∈ JΓK there is a natural isomorphism mΔ1,Δ2 :
JΔ1, Δ2K𝛾 � JΔ1K𝛾 ⊗ JΔ2K𝛾 .
This can be extended to a sequence of contexts of any length.

Proof. Construct mΔ1,Δ2 by recursion on Δ2.

mΔ1,· = 𝜌–1

mΔ1,(Δ2,a:A) = 𝛼 ◦ mΔ1,Δ2 ⊗ id

□

Lemma B.4. For each term Δ ⊢ e : A and substitution 𝛿 : Subst(Δ′, Δ), the semantics of 𝛿 acting
on e splits into the composition Je[𝛿]K𝛾 = JeK𝛾 ◦ J𝛿K𝛾 .

B.1 Grammar Semantics for Linear Terms
Here we define denotations of linear terms. Note that the denotations interpret typing deriva-

tions, not raw terms, as the data of how contexts are split is needed in order to construct the

correct associator functions. Further, we demonstrate that the denotational semantics respects

the equational theory of Lambek
D
. The correctness of the equational theory heavily relies on the

coherence theorem for monoidal categories. The coherence theorem says that any diagram in a

monoidal category constructed using only associators 𝛼A,B,C : (A ⊗ B) ⊗ C � A ⊗ (B ⊗ C), unitors
𝜌A : A ⊗ I � A and 𝜆A : I ⊗ A � A and compositions and tensor products of these, commutes. We

call a morphism built in this way a generalized associator.

B.1.1 Variables. Note that the denotation of a singleton context a : A is given as

Ja : AK𝛾 = J·, a : AK𝛾 = I ⊗ JAK𝛾

So for a : A ⊢ a : A, the denotation of a single variable term JaK𝛾 : Ja : AK𝛾 → JAK𝛾 is given by

the left unitor

JaK𝛾 = 𝜆

B.1.2 Linear Unit.

I-Introduction. J()K𝛾 : J·K𝛾 → JIK𝛾 .

J()K𝛾 = idI
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I-Elimination. Jlet () = e in e′K𝛾 : JΔ′1, Δ, Δ
′
2K𝛾 → JCK𝛾 defined in the following diagram,

JΔ′1, Δ, Δ
′
2K𝛾 JΔ′1, ΔK𝛾 ⊗ JΔ′2K𝛾

(
JΔ′1K𝛾 ⊗ JΔK𝛾

)
⊗ JΔ′2K𝛾

JΔ′1, Δ
′
2K𝛾 JΔ′1K𝛾 ⊗ JΔ′2K𝛾

(
JΔ′1K𝛾 ⊗ I

)
⊗ JΔ′2K𝛾

JCK𝛾

m(Δ′1,Δ),Δ
′
2

m
Δ
′
1,Δ

⊗id

(id⊗JeK𝛾)⊗id

Je′K𝛾
m–1
Δ
′
1,Δ

′
2

𝜌⊗id

We demonstrate that the denotations of the introduction and elimination forms for I obey the 𝛽

and 𝜂 equalities for I.

I𝛽 . Given Δ′1, ·, Δ
′
2 ⊢ e′ : C, the desired 𝛽 law is

Jlet () = () in e′K𝛾 = JeK𝛾

Proof.

Jlet () = () in e′K𝛾 = Je′K𝛾 ◦ m–1
Δ
′
1,Δ

′
2
◦ 𝜌 ⊗ id ◦ (id ⊗ J()K𝛾) ⊗ id ◦ mΔ1,· ⊗ id ◦ m(Δ′1,·),Δ′2

= Je′K𝛾 ◦ m–1
Δ
′
1,Δ

′
2
◦ 𝜌 ⊗ id ◦ (id ⊗ id) ⊗ id ◦ mΔ1,· ⊗ id ◦ mΔ′1,Δ′2

= Je′K𝛾 ◦ m–1
Δ
′
1,Δ

′
2
◦ 𝜌 ⊗ id ◦ 𝜌–1 ⊗ id ◦ mΔ′1,Δ′2

= Je′K𝛾 (coherence)

□

I𝜂. Similarly, for Δ1, a : A, Δ3 ⊢ e′ : C and Δ2 ⊢ e : I the desired 𝜂 law is

Jlet () = e in e′[()/a]K𝛾 = Je′[e/a]K𝛾

However, through application of Lemma B.4 it suffices to handle the case where e is a variable a′.
That is,

let () = e in e′[()/a] = (let () = a′ in e′[()/a])[e/a′]

e′[e/a] = e′[a′/a][e/a]

so without loss of generality we may take may take e to be variable a′. We will additionally use

this style of argumentation when necessary throughout this section.

Proof.

Jlet () = a′ in e′[()/a]K𝛾 = Je′K𝛾 ◦ m–1
Δ
′
1,Δ

′
2
◦ 𝜌 ⊗ id ◦ (id ⊗ Ja′K𝛾) ⊗ id ◦ mΔ1,· ⊗ id ◦ mΔ′1,Δ′2

= Je′K𝛾 ◦ m–1
Δ
′
1,Δ

′
2
◦ 𝜌 ⊗ id ◦ (id ⊗ 𝜆) ⊗ id ◦ mΔ1,· ⊗ id ◦ mΔ′1,Δ′2

= Je′K𝛾 (coherence)

Because m–1
Δ
′
1,Δ

′
2
◦ 𝜌 ⊗ id ◦ (id ⊗ 𝜆) ⊗ id ◦ mΔ1,· ⊗ id ◦ mΔ′1,Δ′2 is a composition of generalized

associators from JΔ′1, Δ
′
2K𝛾 to itself, it is equal to the identity by the coherence theorem for monoidal

categories.

Further by Lemma B.4,

Je′[a′/a]K𝛾 = Je′K𝛾 ◦ Ja′/aK𝛾 (Lemma B.4)

= Je′K𝛾 (coherence)



28 Steven Schaefer, Nathan Varner, Pedro H. Azevedo de Amorim, and Max S. New

Again by the coherence theorem, Ja′/aK𝛾 = id. Thus, 𝜂 law for I holds in the denotational

semantics. □

B.1.3 Tensor.

⊗-Introduction. J(e1, e2)K𝛾 : JΔ, Δ′K𝛾 → JA ⊗ BK𝛾 is given by the diagram

JΔ, Δ′K𝛾 JΔK𝛾 ⊗ JΔ′K𝛾 JAK𝛾 ⊗ JGK𝛾
mΔ,Δ′ Je1K𝛾⊗Je2K𝛾

⊗-Elimination. Jlet (a, b) = e in fK𝛾 : JΔ′1, Δ, Δ
′
2K𝛾 → JCK𝛾 defined via the diagram,

JΔ′1, Δ, Δ
′
2K𝛾 JΔ′1, ΔK𝛾 ⊗ JΔ′2K𝛾

(
JΔ′1K𝛾 ⊗ JΔK𝛾

)
⊗ JΔ′2K𝛾

JcK𝛾
( (

JΔ′1K𝛾 ⊗ JAK𝛾
)
⊗ JBK𝛾

)
⊗ JΔ′2K𝛾

(
JΔ′1K𝛾 ⊗

(
JAK𝛾 ⊗ JBK𝛾

) )
⊗ JΔ′2K𝛾

m(Δ′1,Δ),Δ
′
2

m
Δ
′
1,Δ

⊗id

(id⊗JeK𝛾)⊗id

JfK𝛾 𝛼⊗id

⊗𝛽 . The desired 𝛽 equality for ⊗ is,

Jlet (a, b) = (a′, b′) in fK𝛾 = Jf[a′/a, b′/b]K𝛾

Proof. The left hand side reduces as follows,

Jlet (a, b) = (a′, b′) in fK𝛾 = JfK𝛾 ◦ 𝛼 ⊗ id ◦ (id ⊗ J(a′, b′)K𝛾) ⊗ id ◦ mΔ,Δ′
= JfK𝛾 ◦ 𝛼 ⊗ id ◦ (id ⊗ 𝜆 ⊗ 𝜆 ◦ ma:A,b:B)) ⊗ id ◦ mΔ,Δ′
= JfK𝛾 (coherence)

Which is equal to the right hand side,

Jf[a′/a, b′/b]K𝛾 = JfK𝛾 ◦ Ja′/a, b′/bK𝛾
= JfK𝛾 (coherence)

□

⊗𝜂. The desired 𝜂 equality for ⊗ is,

Jlet (a, b) = c′ in f[(a, b)/c]K𝛾 = Jf[c′/c]K𝛾

Proof.

Jlet (a, b) = c′ in f[(a, b)/c]K𝛾 = Jf[(a, b)/c]K𝛾 ◦ 𝛼 ⊗ id ◦ (id ⊗ Jc′K𝛾) ⊗ id ◦ mΔ,Δ′
= JfK𝛾 ◦ J(a, b)/cK𝛾 ◦ 𝛼 ⊗ id ◦ (id ⊗ Jc′K𝛾) ⊗ id ◦ mΔ,Δ′
= JfK𝛾 (coherence)

Jf[c′/c]K𝛾 = JfK𝛾 ◦ Jc′/cK𝛾 (Lemma B.4)

= JfK𝛾 (coherence)

□

B.1.4 ⊸-Functions.
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⊸-Introduction. J𝜆⊸a. eK𝛾 : JΔK𝛾 → JA ⊸ BK𝛾 is defined using the natural isomorphism

𝜙 : Hom(JΔK𝛾 ⊗ JAK𝛾, JBK𝛾) → Hom(JΔK𝛾, JA ⊸ BK𝛾) that is provided by the adjunction between

J– ⊗ AK𝛾 and JA ⊸ –K𝛾 .

J𝜆⊸a. eK𝛾 = 𝜙
(
JeK𝛾

)
⊸-Elimination. Je′ eK𝛾 : JΔ, Δ′K𝛾 → JBK𝛾 is defined by the diagram,

JΔ, Δ′K𝛾 JΔK𝛾 ⊗ JΔ′K𝛾 JΔK𝛾 ⊗ JAK𝛾 JBK𝛾
mΔ,Δ′ id⊗JeK𝛾 𝜙–1(Je′K𝛾)

⊸ 𝛽 . The 𝛽 rule for ⊸ is given by,

J(𝜆⊸a. e) a′K𝛾 = Je[a′/a]K𝛾

Proof.

J(𝜆⊸a. e) a′K𝛾 = 𝜙–1(J𝜆⊸a. eK𝛾) ◦ id ⊗ Ja′K𝛾 ◦ mΔ,Δ′

= 𝜙–1(𝜙(JeK𝛾)) ◦ id ⊗ Ja′K𝛾 ◦ mΔ,Δ′
= JeK𝛾 ◦ id ⊗ Ja′K𝛾 ◦ mΔ,Δ′
= JeK𝛾 ◦ id ⊗ 𝜆 ◦ mΔ,Δ′
= JeK𝛾 (coherence)

Je[a′/a]K𝛾 = JeK𝛾 ◦ Ja′/aK𝛾 (Lemma B.4)

= JeK𝛾 (coherence)

□

⊸ 𝜂. The 𝜂 rule for⊸ is given by,

J𝜆⊸a. e aK𝛾 = JeK𝛾

Proof.

J𝜆⊸a. e aK𝛾 = 𝜙(Je aK𝛾)

= 𝜙(𝜙–1(JeK𝛾) ◦ id ⊗ JaK𝛾 ◦ mΔ,a:A)
= 𝜙(𝜙–1(JeK𝛾) ◦ id ⊗ 𝜆 ◦ mΔ,a:A)
= 𝜙(𝜙–1(JeK𝛾)) (coherence)

= JeK𝛾

□

B.1.5 ⊸-Functions.

⊸-Introduction. Just as with the other linear function type, we have an adjunction between

JA ⊗ –K𝛾 and J– ⊸AK𝛾 . J𝜆

⊸

a. eK𝛾 : JΔK𝛾 → JB ⊸AK𝛾 is defined using the natural isomorphism

𝜓 : Hom(JAK𝛾 ⊗ JΔK𝛾, JBK𝛾) → Hom(JΔK𝛾, JB ⊸AK𝛾) induced by this adjunction. In particular,

J𝜆

⊸

a. eK𝛾 is given by𝜓 acting on the following diagram

JAK𝛾 ⊗ JΔK𝛾 Ja : AK𝛾 ⊗ JΔK𝛾 Ja : A, ΔK𝛾 JBK𝛾𝜆–1⊗id m–1a:A,Δ JeK𝛾



30 Steven Schaefer, Nathan Varner, Pedro H. Azevedo de Amorim, and Max S. New

⊸-Elimination. The application of a

⊸

-function, Je

⊸

e′K𝛾 : JΔ′, ΔK𝛾 → JBK𝛾 defined by the

diagram

JΔ′, ΔK𝛾 JΔ′K𝛾 ⊗ JΔK𝛾 JAK𝛾 ⊗ JΔK𝛾 JBK𝛾
mΔ′,Δ Je′K𝛾⊗id 𝜓 –1(JeK𝛾)

⊸

𝛽 . The 𝛽 rule for

⊸

is given by,

J(𝜆

⊸

a. e)

⊸

a′K𝛾 = Je[a′/a]K𝛾

Proof.

J(𝜆

⊸

a. e)

⊸

a′K𝛾 = 𝜓–1(J𝜆

⊸

a. eK𝛾) ◦ Ja′K𝛾 ⊗ id ◦ ma:A,Δ
= 𝜓–1(J𝜆

⊸

a. eK𝛾) ◦ 𝜆 ⊗ id ◦ ma:A,Δ
= 𝜓–1(𝜓(JeK𝛾 ◦ m–1a:A,Δ ◦ 𝜆

–1 ⊗ id)) ◦ 𝜆 ⊗ id ◦ mΔ′,Δ
= JeK𝛾 ◦ m–1a:A,Δ ◦ 𝜆

–1 ⊗ id ◦ 𝜆 ⊗ id ◦ ma:A,Δ
= JeK𝛾

Je[a′/a]K𝛾 = JeK𝛾 ◦ Ja′/aK𝛾 (Lemma B.4)

= JeK𝛾 (coherence)

□

⊸

𝜂. The 𝜂 rule for

⊸

is given by,

J𝜆

⊸

a. e

⊸

aK𝛾 = JeK𝛾

Proof.

J𝜆

⊸

a. e

⊸

aK𝛾 = 𝜙(Je

⊸

aK𝛾 ◦ m–1a:A,Δ ◦ 𝜆
–1 ⊗ id)

= 𝜙(𝜙–1(JeK𝛾) ◦ JaK𝛾 ⊗ id ◦ ma:A,Δ ◦ m–1a:A,Δ ◦ 𝜆
–1 ⊗ id)

= 𝜙(𝜙–1(JeK𝛾) ◦ 𝜆 ⊗ id ◦ ma:A,Δ ◦ m–1a:A,Δ ◦ 𝜆
–1 ⊗ id)

= 𝜙(𝜙–1(JeK𝛾))
= JeK𝛾

□

B.1.6 &-Products.

&-Introduction. J𝜆&x. eK𝛾 : JΔK𝛾 → ∏
x:X JAK(𝛾, x) is defined by the universal property of the

product

J𝜆&x. eK𝛾 =
(
JeK(𝛾, x)

)
(x:X)

&-Elimination. Je.𝜋 MK𝛾 : JΔK𝛾 → JAK(𝛾, M) is defined using the projection out of the product,

JΔK𝛾
∏

x:X JAK(𝛾, x) JAK(𝛾, M)
JeK𝛾 𝜋M
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& 𝛽 . The 𝛽 law for & is given by,

J(𝜆&x. e).𝜋 MK(𝛾, x) = Je[M/x]K(𝛾, x)

Proof.

J(𝜆&x. e).𝜋 MK𝛾 = 𝜋M ◦ J𝜆&x. eK𝛾
= 𝜋M ◦ (JeK(𝛾, x))(x:X)
= JeK(𝛾, M)

by the universal property of the product.

Je[M/x]K(𝛾, x) = JeK(𝛾, x) ◦ JM/xK(𝛾, x)
= JeK(𝛾, M)

□

&𝜂. The 𝜂 law for & is given by,

J(𝜆&x. e.𝜋 x)K𝛾 = JeK𝛾

Proof.

J(𝜆&x. e.𝜋 x)K𝛾 = (Je.𝜋 xK𝛾)x:X
= (𝜋x ◦ JeK𝛾)x:X
= JeK𝛾

□

by the universal property of the product.

B.1.7
⊕

-Sums.⊕
-Introduction. J𝜎 M eK𝛾 : JΔK𝛾 → ∐

x:XJAK(𝛾, x)

JΔK𝛾 JAK(𝛾, M)
∐

x:X JAK(𝛾, x)
JeK𝛾 iM⊕

-Elimination. Jlet𝜎 x a = e in e′K𝛾 : JΔ′1, Δ, Δ
′
2K𝛾 → JCK𝛾 is defined in the diagram

JΔ′1, Δ, Δ
′
2K𝛾 JΔ′1, ΔK𝛾 ⊗ JΔ′2K𝛾

(
JΔ′1K𝛾 ⊗ ∐

x:X JAK(𝛾, x)
)
⊗ JΔ′2K𝛾

(
JΔ′1K𝛾 ⊗ JΔK𝛾

)
⊗ JΔ′2K𝛾

∐
x:X

(
JΔ′1K(𝛾, x) ⊗ JAK(𝛾, x)

)
⊗ JΔ′2K(𝛾, x)

∐
x:X JΔ′1, a : A, Δ′2K(𝛾, x)

JCK𝛾 JCK(𝛾, x)

m(Δ′1,Δ),Δ
′
2

m
Δ
′
1,Δ

⊗id

d

(id⊗JeK𝛾)⊗id∐
x:X(m

–1
(Δ′1,a:A),Δ

′
2
)

[Je′K(𝛾,x)](x:X)

where d is the distributivity morphism, and the last morphism implicitly weakens JCK.
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𝛽 . The 𝛽 rule for

⊕
is given by,

Jlet𝜎 x a = 𝜎 M a′ in e′K𝛾 = Je′[M/x, a′/a]K𝛾

Proof.

Jlet𝜎 x a = 𝜎 M a′ in e′K𝛾 = [Je′K(𝛾, x)](x:X) ◦
∐
x:X

(m–1) ◦ d ◦ (id ⊗ J𝜎 M a′K𝛾) ⊗ id ◦ m ⊗ id ◦ m

= [Je′K(𝛾, x)](x:X) ◦
∐
x:X

m–1 ◦ d ◦ (id ⊗ (iM ◦ Ja′K𝛾)) ⊗ id ◦ m ⊗ id ◦ m

= [Je′K(𝛾, x)](x:X) ◦
∐
x:X

m–1 ◦ d ◦ (id ⊗ iM) ⊗ id ◦ (id ⊗ 𝜆) ⊗ id ◦ m ⊗ id ◦ m

= [Je′K(𝛾, x)](x:X) ◦
∐
x:X

m–1 ◦ iM ◦ (id ⊗ 𝜆) ⊗ id ◦ m ⊗ id ◦ m

= Je′K(𝛾, M) ◦ m–1(id ⊗ 𝜆) ⊗ id ◦ m ⊗ id ◦ m
= Je′K(𝛾, M) (coherence)

Je′[M/x, a′/a]K𝛾 = Je′K𝛾 ◦ JM/x, a′/aK𝛾 (Lemma B.4)

= Je′K(𝛾, x)

□⊕
𝜂. It suffices to show

Jlet𝜎 x a = c′ in f[𝜎 x a/c]K𝛾 = Jf[c′/c]K𝛾 = JfK𝛾

First, expanding the left hand side, we have.

Proof.

Jlet𝜎 x a = c′ in f[𝜎 x a/c]K𝛾 = [Jf[𝜎 x a/c]K𝛾](x:X) ◦
∐
x:X

(m–1) ◦ d ◦ (id ⊗ 𝜆) ⊗ id ◦ m ⊗ id ◦ m

= [JfK𝛾 ◦ (id ⊗ ix) ⊗ id](x:X) ◦
∐
x:X

(m–1) ◦ d ◦ (id ⊗ 𝜆) ⊗ id ◦ m ⊗ id ◦ m

= JfK𝛾 ◦ [(id ⊗ ix) ⊗ id ◦ (m–1)](x:X) ◦ d ◦ (id ⊗ 𝜆) ⊗ id ◦ m ⊗ id ◦ m

Since the domain has the universal property of a coproduct (due to distributivity), to prove this is

equal to JfK𝛾 , it is sufficient to prove they are equal when composed with the injections:

JfK𝛾 ◦ [(id ⊗ ix) ⊗ id ◦ (m–1)](x:X) ◦ d ◦ (id ⊗ 𝜆) ⊗ id ◦ m ⊗ id ◦ m ◦ (id ⊗ iy) ⊗ id

= JfK𝛾 ◦ [(id ⊗ ix) ⊗ id ◦ (m–1)](x:X) ◦ d ◦ (id ⊗ iy) ⊗ id ◦ (id ⊗ 𝜆) ⊗ id ◦ m ⊗ id ◦ m
(naturality)

= JfK𝛾 ◦ [(id ⊗ ix) ⊗ id ◦ (m–1)](x:X) ◦ iy ⊗ id ◦ (id ⊗ 𝜆) ⊗ id ◦ m ⊗ id ◦ m (naturality)

= JfK𝛾 ◦ (id ⊗ iy) ⊗ id ◦ (m–1) ⊗ id ◦ (id ⊗ 𝜆) ⊗ id ◦ m ⊗ id ◦ m
= JfK𝛾 ◦ (m–1) ⊗ id ◦ (id ⊗ 𝜆) ⊗ id ◦ m ⊗ id ◦ m ◦ (id ⊗ iy) ⊗ id

= JfK𝛾 ◦ (id ⊗ iy) ⊗ id (coherence)
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□

B.1.8 Equalizer.

Equalizer Introduction. J⟨e⟩K𝛾 : JΔK𝛾 → J{e | f e = g e}K𝛾 where JeK𝛾 : JΔK𝛾 → JAK𝛾 and

JfK𝛾 ◦ JeK𝛾 = JgK𝛾 ◦ JeK𝛾 . By the universal property of the equalizer the preceding equality induces

a unique morphism JΔK𝛾 → Eq(JfK𝛾, JgK𝛾) = J{e | f e = g e}K𝛾 . Define J⟨e⟩K𝛾 to be this map.

Equalizer Elimination. Je.𝜋K𝛾 : JΔK𝛾 → JAK𝛾 is defined using the map 𝜋eq from Eq(JfK𝛾, JgK𝛾)
to the domain of f and g.

Je.𝜋K𝛾 = 𝜋eq ◦ JeK𝛾

Equalizer 𝛽 . The 𝛽 rule for {e | f e = g e} is given as,

J⟨e⟩.𝜋K𝛾 = JeK𝛾

where JfK𝛾 ◦ JeK𝛾 = JgK𝛾 ◦ JeK𝛾 .

Proof. In C the universal property of Eq(JfK𝛾, JgK𝛾) implies that the following diagram com-

mutes, implying the 𝛽 rule.

Eq(JfK𝛾, JgK𝛾) JAK𝛾 JBK𝛾

JΔK𝛾

𝜋eq
JfK𝛾

JgK𝛾
J⟨e⟩K𝛾

JeK𝛾

□

Equalizer 𝜂. The 𝜂 rule for {e | f e = g e} is given as,

J⟨e.𝜋⟩K𝛾 = JeK𝛾

Proof. Likewise, the universal property of Eq(JfK𝛾, JgK𝛾) implies 𝜂 rule via this diagram.

Eq(JfK𝛾, JgK𝛾) JAK𝛾 JBK𝛾

JΔK𝛾

𝜋eq
JfK𝛾

JgK𝛾
JeK𝛾

Je.𝜋K𝛾

□
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