
284

Gradual Typing for Effect Handlers (Extended Version)∗

MAX S. NEW, University of Michigan, USA

ERIC GIOVANNINI, University of Michigan, USA

DANIEL R. LICATA,Wesleyan University, USA

We present a gradually typed language, GrEff, with effects and handlers that supports migration from

unchecked to checked effect typing. This serves as a simple model of the integration of an effect typing

discipline with an existing effectful typed language that does not track fine-grained effect information. Our

language supports a simple module system to model the programming model of gradual migration from

unchecked to checked effect typing in the style of Typed Racket.

The surface language GrEff is given semantics by elaboration to a core language Core GrEff. We equip

Core GrEff with an inequational theory for reasoning about the semantic error ordering and desired program

equivalences for programming with effects and handlers. We derive an operational semantics for the language

from the equations provable in the theory.We then show that the theory is sound by constructing an operational

logical relations model to prove the graduality theorem. This extends prior work on embedding-projection

pair models of gradual typing to handle effect typing and subtyping.

CCS Concepts: • Software and its engineering→ Functional languages; • Theory of computation →
Operational semantics; Type structures.

Additional Key Words and Phrases: gradual typing, effect handlers, graduality, operational semantics, logical

relation

ACM Reference Format:
Max S. New, Eric Giovannini, and Daniel R. Licata. 2023. Gradual Typing for Effect Handlers (Extended Version).

Proc. ACM Program. Lang. 7, OOPSLA2, Article 284 (October 2023), 92 pages. https://doi.org/10.1145/3622860

1 INTRODUCTION
Gradually typed programming languages are designed to support smooth migration from a lax

to a strict static type discipline [Siek and Taha 2006; Tobin-Hochstadt and Felleisen 2008]. Most

commonly, gradually typed languages add a static type system to an existing dynamically typed

language and allow for (1) safe interoperability between the languages and (2) semantic guarantees

that adding types to existing programs only results in stricter type enforcement, and no other

behavioral change. More generally, gradual typing has been applied to provide a spectrum of

precision in other kinds of typing disciplines such as refinement typing or effect typing [Bañados

Schwerter et al. 2014; Lehmann and Tanter 2017], where the “dynamic” side is a statically typed

language itself.

One particular presentation of effects and effect typing that is gaining popularity is effect
handlers [Plotkin and Pretnar 2009]. Operationally, effect handlers are resumable exceptions,

∗
This material is based on research sponsored by the National Science Foundation under agreement number CCF-1909517

Authors’ addresses: Max S. New, Computer Science and Engineering, University of Michigan, USA, maxsnew@umich.edu;

Eric Giovannini, Computer Science and Engineering, University of Michigan, USA, ericgio@umich.edu; Daniel R. Licata,

Mathematics and Computer Science, Wesleyan University, USA, dlicata@wesleyan.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/10-ART284

https://doi.org/10.1145/3622860

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

HTTPS://ORCID.ORG/0000-0001-8141-195X
HTTPS://ORCID.ORG/0009-0003-6871-1714
HTTPS://ORCID.ORG/0000-0003-0697-7405
https://doi.org/10.1145/3622860
https://orcid.org/0000-0001-8141-195X
https://orcid.org/0009-0003-6871-1714
https://orcid.org/0000-0003-0697-7405
https://doi.org/10.1145/3622860

284:2 Max S. New, Eric Giovannini, and Daniel R. Licata

code can "raise" an effect operation, which will then be handled by the closest enclosing handler,

which in addition to the exception data will also receive the continuation for the raising code that

can be invoked to resume at the original point where the effect was raised. Effect handlers provide

an intuitive typed interface to delimited continuations, and can similarly be used to conveniently

implement backtracking search, non-determinism, mutable state, and as a convenient interface

to external system calls. Effect handlers have been implemented in a number of libraries and

experimental languages, and more recently have been incorporated as a built-in feature into OCaml

5, and have been proposed as an extension to WASM [Brachthäuser et al. 2020; Contributors [n.d.];

Cooper et al. 2006; Kiselyov et al. 2013; Leijen 2014; Lindley et al. 2017; Sivaramakrishnan et al.

2021].

Designers of languages supporting effect handlers, much like designers of languages with

exceptions, are left with a choice of whether the type system should merely validate that the input

and output types of effect operations are respected, or if an effect typing system should be employed

to determine that a particular effect can only be raised when the context is known to implement a

handler for it. On the one hand, checked effects allow programmers to easily reason about which

effects can be raised by subprocedures and ensure they are handled appropriately, rather than

being caught by the runtime system and causing the program to crash. On the other hand, strict

checking may necessitate large code changes when code is extended to raise new operations, and

even in languages such as Java that support both checked and unchecked exceptions, unchecked

exceptions are preferred in many scenarios. Furthermore, when adding effect typing to a language

that does not already support it, even correct existing libraries may not typically pass the necessarily

conservative static type checker. It may be infeasible to rewrite large amounts of existing library

code to precisely track effect usage. Gradual typing provides a linguistic framework for designing

languages where a programmer is not entirely locked in to one system or another: they might

use unchecked exceptions in one module and checked exceptions in another, while supporting

well-defined interoperability with useful error messages at runtime if there is an effect raised in a

context where it is not expected. Further, a gradually typed language provides a path for gradually

migrating code from less precise to more precise static type checking. This potential for gradual

typing to be used in this way to incorporate effect typing disciplines into existing languages has

been eloquently discussed in prior work by Phil Wadler [Wadler 2021].

In this work we present the design and semantics of GrEff, a gradual language with effect handlers

that supports gradual migration from unchecked effects to precise effect typing. The untracked

sublanguage of GrEff is designed to be similar to SML and Java’s treatment of exceptions: new

effect operations are declared with specified input and output types, and these can be imported

and used to raise and handle those operations in other modules, but which effects are raised by

a function is not tracked by the type system. In addition, GrEff supports tracked function types

𝐴 →𝜎 𝐵 where the input values must be of type𝐴, output values will be of type 𝐵, and the function

may raise any of and only the effects in the set 𝜎 . The untracked function type is modeled then as

a type 𝐴 →? 𝐵 which has a “dynamic” effect type, in the sense that it may raise any effect, possibly

including unknown effect operations declared in some independent module of the program. Since

our main focus in this work is on providing a foundation for extending existing statically typed

languages such as OCaml 5 with effect types, we have chosen not to support full dynamic typing

in the design of GrEff. However, the design should easily accommodate supporting fully dynamic

value typing in addition to the dynamic effect typing using standard gradual typing techniques.

In GrEff, new effect operations can be declared in each module, just as new exceptions can be

declared in Java and ML-style languages. When an effect is declared in a module, it is given an

associated request and response type. For instance, an effect for reading a boolean state would be

get : Unit --> Bool, the user provides a trivial value as the request and receives a boolean value

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:3

as the response, while an effect for writing to boolean state would be set : Bool --> Unit. Similar

to ML and Java, GrEff takes a nominal approach to effect operations: each effect operation has an

associated request and response type that are used to determine when an effect is properly raised

or handled. However, having a single, global assignment from effect names to request/response

types is problematic from the perspective of gradual migration from untracked to tracked effects.

In a completely nominal form of effect typing, if an effect operation is used in many different

modules with imprecise typing, and one module is migrated to use a more precise version of the

effect’s request/response type, then we would need to migrate all modules to use the more precise

type. Instead, gradual migration should allow for this to be done a single module at a time. To

achieve this, in GrEff, we take a locally nominal but globally structural approach to the typing of

effect operations. That is, locally, within each module, the request and response type for an effect

are fixed, and all raise and handle constructs are checked with the same typing. On the other

hand, globally, different modules across the program can associate different types to the same

effect operation. At module boundaries, i.e., imports and exports, modules are statically allowed to

interoperate if they agree on the precisely typed portion of the effects they share. If one module is

more precise than the other, then dynamic runtime monitoring is inserted in the implementation to

ensure that the runtime behavior agrees with the static typing, raising an error if the dynamically

typed code violates the imposed runtime type discipline.

There are two aspects in designing a sound gradually typed language: designing the syntax and

gradual type checking of the surface language and designing the corresponding core language and

semantics. The syntax should support a simple process for migrating from an imprecise to a precise

style, satisfying the static gradual guarantee [Siek et al. 2015]. We designed the surface language

with the goal of modeling program migration from dynamic to static effect typing. For this reason

we include a simple module system in the style of Typed Racket [Tobin-Hochstadt and Felleisen

2008] so that we can express that different portions of the program have different views on how the

effect operations are typed. Once the design of the base language is fixed, we design the gradual

type checking using techniques from prior work to arrive at a gradual type system that satisfies

the static gradual guarantee[Garcia et al. 2016; Siek and Taha 2006].

Next, the core language provides a definition for the runtime semantics. The semantics should

admit useful type-based reasoning principles for precisely typed code, even in the presence of

interaction with imprecisely typed components. Further, the aforementioned migration process

should have a predictable impact on program semantics: migrating to more precise checking may

result in new errors being identified (statically or dynamically), but otherwise should not impact

program behavior, a property known as the dynamic gradual guarantee or graduality [New and

Ahmed 2018; Siek et al. 2015]. To design the core language and runtime semantics, we follow

the prior work ([New and Ahmed 2018; New et al. 2020, 2019]) which established a recipe for

designing a new gradual core language to satisfy the graduality theorem and validate strong type-

based equational reasoning principles. Their approach is to axiomatize the type-based reasoning

principles as equations and the graduality theorem as inequalities, where casts are defined not by

specifying their operational behavior a priori but instead by assuming they are given by least upper

bounds/greatest lower bounds. Then the operational behavior of the casts can be derived from the

inequational theory. An operational or denotational model must then be constructed to prove the

theory is consistent, which implies the graduality theorem. But since the operational semantics is

derived from the inequational theory, this also establishes a stronger theorem that the observable

behavior of the casts is uniquely determined by the desired type-based reasoning and graduality,

showing that any observably different cast semantics must violate one or more of the axioms.

For designing our core language, called Core GrEff, we extend this recipe, which previously been

demonstrated on simple and polymorphic types, to apply also to effect casts and subtyping of value

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:4 Max S. New, Eric Giovannini, and Daniel R. Licata

and effect types. We then show that every rule of an operational semantics is derivable from the

least upper bound/greatest lower bound specifications of casts as well as congruence rules and an

effect forwarding principle for handlers. The effect forwarding principle states that a handler clause

that simply re-raises the effect it handles with the same continuation can be removed without

changing the observable behavior of the system, an intuitive principle as well as a highly desirable

compiler optimization.

In this work, we extend prior step-indexed logical relations models for proving graduality to

handle effects and subtyping, by showing that the runtime casts satisfy the properties of being

embedding-projection pairs [New and Ahmed 2018]. In doing so, we show how to combine effect

and value embedding-projection pairs within the same system, and how they interact. Additionally,

we identify new semantic principles for the interaction between subtyping and runtime casts.

The contributions of the paper are as follows:

(1) We define a gradually typed language GrEff supporting migration from unchecked to checked

effects and handlers.

(2) We prove this language satisfies the static gradual guarantee and the dynamic gradual

guarantee (graduality).

(3) We give the language a semantics by elaboration into a core language, core GrEff.

(4) We axiomatize the desired graduality and program equivalence properties of the core language

by giving an inequational theory. We then derive from this an operational semantics by

orienting certain equations in the theory, showing that the operational behavior is derivable

from the graduality and extensionality principles.

(5) We prove type soundness and graduality by constructing a logical relations model, extending

prior work on embedding-projection pair semantics to effects and subtyping.

2 OVERVIEW OF GREFF
Before discussing the syntax and semantics of GrEff, we provide an informal introduction to its

features and how it supports a gradual migration from unchecked to checked effect handlers. As

an example, consider the implementation of a simple threading library using effect handlers. We

start with a system using unchecked effect types in an ASCII syntax in Figure 1. We split this

program across three modules: first, a module Operations defines the effects we will be using in
our other modules. These are the effects that the threads use: print for displaying output so that

we can observe the interleaving of threads, yield, which yields back control to the scheduler, and

most importantly, fork, which allows for a thread to spawn new threads. Each effect declaration

effect e : Req --> Resp is annotated with two types: the type of requests to the ambient handler,

and the type of expected responses from the ambient handler. For instance, the request type for

print is a string to be printed, and the response is unit. In a more realistic setting, the response

type might be a boolean to say if the printing succeeded, or an unsigned integer to say how many

bytes were successfully printed. For yield, the request and response are both unit. For fork, the

response type is again unit and the request type is a thunk 1 -[?]-> 1 where the ? is the type of

effects the function may raise when called. In this case, ? indicates the thunk might raise any effect.

Next, module Scheduler defines a scheduler as a handler for the provided effects. For simplicity

the implementation relies on some built-in list implementation, and shallow handlers, a simple

extension to our formalism which uses the more complex deep handlers. The scheduler loop takes

a queue of threads, represented as thunks, and runs them in a round-robin fashion, taking in a

string consisting of everything printed so far and returning a final string that contains everything

printed by running the threads. If there are no threads in the queue, the scheduler returns the string

unchanged. Otherwise, it pops off the first thunk in the queue and executes it, handling effects

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:5

module Operations where
effect print : str --> 1
effect yield : 1 --> 1
effect fork : (1 -[?]-> 1) --> 1

module Scheduler where
import Operations.print : str --> 1
import Operations.yield : 1 --> 1
import Operations.fork : (1 -[?]-> 1) --> 1
define sch-loop : List (1 -[?]-> 1) -[?]-> str -[?]-> str = lambda q.
match q with
empty -> lambda s. s
cons(thunk, q') -> shallow-handle thunk() with
ret _ -> sch-loop q'
print(s, k) -> lambda s'. sch-loop (cons k q') (s ++ s')
yield(_, k) -> sch-loop (snoc q' k)
fork(new,k) -> sch-loop (cons k (snoc q' new))

define scheduler : (1 -[?]-> 1) -[?]-> str = lambda thunk.
sch-loop (cons thunk empty) ""

module Main where
import Operations.print : str --> 1
import Operations.yield : 1 --> 1
import Operations.fork : (1 -[?]-> 1) --> 1
import Scheduler.scheduler : (1 -[?]-> 1) -[?]-> str
define letters : 1 -[?]-> 1 =
print("a"); yield(); print("b"); ()

define numbers : 1 -[?]-> 1 =
print("1"); fork(letters); print("2"); ()

define main: 1 -[?]-> str =
scheduler(numbers)

Fig. 1. GrEff Threading Program with Imprecise Types

that it raises. The ret clause handles the case that the thread terminates without performing any

effects, in which case, the scheduler executes the remaining threads in the queue. In the print(s,k)
clause, the s parameter is the str to be printed by the thread, and the k is the continuation for the

program point where the print was raised. The scheduler handles this case by taking in the string

accumulator, appending the printed string to the back of it, and continuing the scheduling with

the continuation k at the front of the queue. In the yield(_,k) clause, the scheduler continues

with the continuation at the back of the queue. Finally, in the fork(new,k) clause, the scheduler
continues with the continuation thread k at the front of the queue and the new thread new at the
back of the queue. Then this loop is run by a wrapper scheduler function which calls the scheduler

loop with a singleton queue and an initial empty string accumulator.

Finally, we have the Main module, which uses the scheduler defined in the Scheduler module

with a thunk that uses the effects defined in the Operations to implement a program that prints a

simple message using threads whose output will depend on the scheduler’s behavior.

The imprecision of the effect typing in this program means that programmers have to rely on

documentation or understanding of the code to understand what effects might be raised when

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:6 Max S. New, Eric Giovannini, and Daniel R. Licata

module Operations where
effect print : str --> 1
effect yield : 1 --> 1
effect fork : (1 -[fork,print,yield]-> 1) --> 1

module Scheduler where
import Operations.print : str --> 1
import Operations.yield : 1 --> 1
import Operations.fork : (1 -[fork,print,yield]-> 1) --> 1
define sch-loop : List (1 -[fork,print,yield]-> 1) -[]-> str -[]-> str = ...
define scheduler : (1 -[fork,print,yield]-> 1) -[]-> str = ...

module Main where
import Operations.print : str --> 1
import Operations.yield : 1 --> 1
import Operations.fork : (1 -[fork,print,yield]-> 1) --> 1
import Scheduler.scheduler : (1 -[fork,print,yield]-> 1) -[]-> str
define letters : 1 -[print,yield]-> 1 =
print("a"); yield(); print("b"); ()

define numbers : 1 -[fork,print]-> 1 =
print("1"); fork(letters); print("2"); ()

define main: str =
scheduler(numbers)

Fig. 2. GrEff Threading Program with Precise Typing

they import a function from another module. With effect typing, this information can be expressed

precisely using effect annotations on the functions themselves. For instance, in the declaration of

the fork operation, the request is a thunk that when launched as a thread itself may raise further

effects such as manipulating shared state, yielding to other threads, or forking additional threads.
However with imprecise effect tracking, the scheduler procedure has the uninformative type (1
-[?]-> 1) -[?]-> 1 so we cannot specify in the type which operations the scheduler will handle

and which it will propagate forward.

GrEff allows as well for the introduction of precise effect types to express these choices in the type

structure. In figure 2, we show a fully precisely typed version of the same threading program (with

implementations, which are unchanged, now elided). This allows us to specify in the Scheduler
module that the scheduler expects threads that can (1) print a string, (2) yield to the other threads
and (3) fork further threads with the same effects. To express this, the scheduler module changes

the type to (1 -[fork,print,yield]-> 1) -[]-> str expressing that the scheduler will be

passed a thunk that may fork, print or yield, but will itself return a string without raising any

effects. Additionally, we can express that forked threads should only raise these three effects as

well. This is expressed by annotating the import statement, which defines fork as a recursive
1
effect

type whose response type is trivial and whose request type is that of thunks that can raise the

three provided effects. This typing will then be used by all occurrence of the fork effect, in raise or

handlers, within this module. The types are also changed in the main module, where the letters
thunk can be given a type expressing it only prints and yields, whereas numbers thunk only forks

1
though recursive effect types are natural here, we do not support them in our core language and leave this extension to

future work

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:7

and prints. These are compatible with the types in scheduler using an effect subtyping that allows

functions that use fewer effects to be used in a context that can handle more.

Since GrEff is a gradual effect language, a programmer who started with the imprecise program

does not need to fully type the entire program before running it. Instead, the programmer can

gradually migrate from the imprecise style to the more precise style, for example one module at a

time. In fact, any of the 2
3 = 8 combinations of the imprecise versions and precise versions of the

three modules presented here will pass the GrEff gradual type-and-effect checker. For instance, we

might start with adding precise effect typing to the Operations module to specify the effects that

a forked thread can have. Whereas in a non-gradual type system, this would require changing the

consumer modules to use the more precise typing, in GrEff, the import statements allow for the uses

within the module to continue to use the imprecise typing, and at the module boundary it is checked

that the precise components of the declared type for the fork effect match the precise components

of the declaration in the defining module. On the other hand, we can keep the Operations module

imprecisely typed, and instead add typing to the Scheduler module first. This is again unusual

compared to a conventional typed language, we have declared a nominal effect type in one module,

but used it at a different type in a client module. The import statements allow for the gradual

migration of the client code without changing the original library.

The module system plays a crucial role in allowing for the programmer to independently choose

between migrating the declaration site of the nominal effects and its uses. If we were in a purely

expression-oriented language, then any change to the effect declaration, even in a gradual language,

would change the typing of all uses of the effect. Here we use the module boundaries in the style of

Typed Racket as a way to formally specify different expectations of what the type of the nominal

effect operations should be in different portions of the codebase. This design fixes the types of the

effects within a module, in keeping with the common nominal type system for exceptions in the

ML family of languages. An advantage of this design is that it is clear to the programmer at all

times what the type of an effect is in an expression. Further, this makes it clear what migration of

effect types means: the programmer can independently change the precision of the effect types for

each module one at a time, and there is never any confusion about what the "current types" of an

effect is.

However note that it is not the case that the only gain or loss of precision happens at module

boundaries. Within a module, gradual type casts of function values can occur. For instance, if you

pass a value of type A -[?]-> B to a function that expects an input of type A -[fork]-> B
then a downcast will be inserted to ensure only fork effects are raised.

3 SURFACE AND CORE GREFF
In this section, we introduce the syntax and typing of GrEff along with its elaboration into a core

language, Core GrEff. GrEff includes a module system and nominal effect operations, as well as a

gradual type checking algorithm that allows for a mix of dynamic and static effect tracking. Core

GrEff, on the other hand, is a simpler expression language with a declarative type system where all

gradual type casts (but not subtyping) are explicit in the term. The high-level features of GrEff are

elaborated away into core GrEff. Because Core GrEff is simpler, we describe its syntax and typing

first, and then describe GrEff and its type-checking/elaboration algorithm.

3.1 Syntax and Typing of Core GrEff
We give an overview of the Core GrEff syntax in Figure 3. Core GrEff expression syntax include

typical lambda calculus syntax for variables, let-bindings, functions and booleans. Additionally,

there is a term ℧ that represents a runtime error produced by a failed cast. Next, it includes forms

for raising an effect operation raise 𝜀 (𝑀) and handling effect operations handle 𝑀 {ret 𝑥 .𝑁 | 𝜙}.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:8 Max S. New, Eric Giovannini, and Daniel R. Licata

We use 𝜀 to stand for an element of some fixed countable set of effect names. The handler includes a

clause ret 𝑥 .𝑁 to handle a return value for𝑀 as well as clauses for handling effects 𝜙 . Abstracting

from syntactic details, 𝜙 is modeled as a finitely supported partial function (written ⇀fin) from

effect names to terms, which all have two free variables 𝑥 and 𝑘 for the payload of the effect raised

and its continuation. That is, if syntactically a handler has a clause 𝜀 (𝑥, 𝑘) ↦→ 𝑁𝜀 , we model this

by having 𝜙 (𝜀) = 𝑁𝜀 . Next, Core GrEff includes four explicit gradual type cast forms: downcasts

(⟨𝐴 ↞ 𝐵⟩𝑀) and upcasts (⟨𝐵 ↢ 𝐴⟩𝑀) for value types, as well as analogous casts for effect types

(⟨𝜎 ↞ 𝜏⟩𝑀 and ⟨𝜏 ↢ 𝜎⟩𝑀).

The value types𝐴, 𝐵,𝐶 classify runtime values: in this simple calculus, just booleans and functions,

where functions are typed with respect to a domain, codomain as well as an effect type 𝜎 which

classifies what effects the functionmay raise when it is called. The effect types are either ? to indicate

dynamically tracked effects, or a concrete effect type. A concrete effect type says which effect

names 𝜀 can be raised, and when they are raised, what is the type of the request 𝐴 the raising party

provides and what is the type of responses 𝐵 with which the handling party can resume. Abstracting

from syntactic details, this is defined to be a finitely supported partial mapping from names to pairs

of value types (i.e., an element of the Cartesian product ValueType
2 = ValueType × ValueType).

To model that an effect 𝜀 can be raised with request type 𝐴 and response type 𝐵 we would define

𝜎𝑐 (𝜀) = (𝐴, 𝐵), which we will notate more suggestively as 𝜀 : 𝐴 { 𝐵 ∈ 𝜎𝑐 . As shown in Section 2,

programs declare which effect names can be used, and with which associated request and response

types. To track this information in typing core GrEff expressions, we type check all GrEff expressions

against a Signature Σ which associates a pair of non-tracking types to each name. By a non-tracking

type 𝐴?, we mean a value type that only use ? effect types. Additionally, expressions are type-

checked with respect to an ordinary typing context Γ. Finally, we define typical notions of value and
evaluation context to encode a call-by-value, left-to-right evaluation order. Most notably, all casts

are evaluation contexts, and function casts are values, i.e. “proxies” that delay type enforcement

until an application is performed.

The use of non-tracking types in the signature is a design decision in the semantics of GrEff:

it means that when an effect is declared in a module, it fully specifies only the non-effect typing

portions of the request and response types. When a module imports an effect, it is only checked

that the new request and response type are consistent with the exporting module. Since effect types

can be re-exported and the consistency relation is not transitive, this means that in general the

types used in one module will not be consistent with those of the module where it was originally

declared. However, transitive closure of consistency
2
does ensure that the types have the same

non-tracking portion, and so it is sensible to define the valid instances of the effect type to be any

that agree on this non-tracking portion of the type. An alternative would be for the signature to

have a fully specified type and limit all uses of the effect to be at least as precise as the original

declaration. However we argue that this is not in the spirit of gradual typing: for instance it might

be the case that module 𝑃 provides an effect declaration, module 𝐼 is an intermediate that re-exports

the effect and module𝐶 is a client of 𝐼 that uses the effect but does not directly interact with 𝑃 . Say

𝑃, 𝐼,𝐶 all initially use untracked effects, but then 𝐶 becomes typed and so specifies precise effect

typing for the effect. The program functions properly and eventually 𝑃 is additionally made more

precise but in such a way that the effect implementation is incompatible with the usage in 𝐶 . In

GrEff this does not lead to a static error, because 𝐶 and 𝑃 are not directly communicating along a

precisely typed interface, but rather through an intermediary 𝐼 that uses imprecise typing. Indeed,

it may be the case that 𝐼 uses the effect differently between 𝐶 and 𝑃 and there is no runtime type

2
Note that in a gradual language with a dynamic type, the transitive closure of consistency is the total relation, but because

there is no dynamic value type the relation here is non-trivial.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:9

Terms𝑀, 𝑁 ::= 𝑥 | 𝜆𝑥 .𝑀 | 𝑀𝑀 ′ | true | false | if 𝑀{𝑁 }{𝑁 }
| let 𝑥 = 𝑀 in 𝑁 | raise 𝜀 (𝑀) | handle 𝑀 {ret 𝑥 .𝑁 | 𝜙}
| ⟨𝐵 ↢ 𝐴⟩𝑀 | ⟨𝐴 ↞ 𝐵⟩𝑀 | ⟨𝜏 ↢ 𝜎⟩𝑀 | ⟨𝜎 ↞ 𝜏⟩𝑀 | ℧

Handler clause 𝜙 ∈ Name ⇀fin Term

Value Types 𝐴, 𝐵,𝐶 ::= 𝐴 →𝜎 𝐵 | bool
Effect Types 𝜎, 𝜏 ::= ? | 𝜎𝑐

Concrete Effect Types 𝜎𝑐 ∈ Name ⇀fin ValueType
2

Signature Σ ∈ Name ⇀fin NonTrackingType
2

Non-tracking Types 𝐴? ::= 𝐴? →? 𝐴? | bool
Typing Contexts Γ ::= · | Γ, 𝑥 : 𝐴

Values 𝑉 ::= 𝑥 | 𝜆𝑥 : 𝐴.𝑀 | true | false
| ⟨𝐴 →𝜎 𝐵 ↢ 𝐴′ →𝜎 ′ 𝐵′⟩𝑉 | ⟨𝐴′ →𝜎 ′ 𝐵′

↞ 𝐴 →𝜎 𝐵⟩𝑉
Evaluation Context 𝐸 ::= • | ⟨𝐵 ↢ 𝐴⟩𝐸 | ⟨𝐴 ↞ 𝐵⟩𝐸 | ⟨𝜏 ↢ 𝜎⟩𝐸 | ⟨𝜎 ↞ 𝜏⟩𝐸

| raise 𝜀 (𝐸) | handle 𝐸 {ret 𝑥 .𝑁 | 𝜙} | 𝐸 𝑀 | 𝑉 𝐸

| if 𝐸{𝑁𝑡 }{𝑁𝑓 } | let 𝑥 = 𝐸 in 𝑁

Fig. 3. Core GrEff Syntax

error. However, if 𝐼 becomes precisely typed, it must specify its interpretation of the effect and will

result in a static error with either 𝐶 or 𝑃 .

Next, we present declarative term typing rules in Figure 4. The main judgment Σ | Γ ⊢𝜎 𝑀 : 𝐴

says that under the assumptions Γ,𝑀 can raise effects drawn from 𝜎 , and produce a final value of

type 𝐴. We follow the convention that whenever we form the judgment Σ | Γ ⊢𝜎 𝑀 : 𝐴 we must

already have established that the types in Γ, 𝐴, 𝜎 are well-formed under the signature Σ. First, we
include a subsumption rule for value and effect subtyping, which we will soon define. The rules for

value forms (variable, booleans, and lambdas) all have an arbitrary effect type 𝜎 because they do not

raise any effects themselves. The runtime cast error ℧ can be given any value or effect type. The

let, application and if rules simply require that all the sub-terms use the same effect type, though

subsumption can be used to combine effects. The raise rule says that the effect being raised needs

to be in the current effect type and the payload of the request must also have the same effect type.

Next, the rule for typing a handler works as follows. First, the output value type is 𝐵 and output

effect type is 𝜏 , while for the scrutinee 𝑀 the corresponding types are 𝐴 and 𝜎 . First, we check

that the return clause 𝑁 has the same output types as the handler overall, when its input 𝑥 has the

type of the output of𝑀 . Next, for each effect operation 𝜀 : 𝐴𝜀 { 𝐵𝜀 raised by𝑀 , either the effect

is not handled by 𝜙 , in which case it must be included in the final effect type, or it is handled by

𝜙 . If it is handled by 𝜙 , then the clause 𝜙 (𝜀) must be well typed with a request value 𝑥 : 𝐴𝜀 and a

continuation that takes responses and has output effect and value types that match the term overall

𝑘 : 𝐵𝜀 →𝜏 𝐵. Lastly, we include the rules for type and effect upcasts and downcasts. Whenever a

type precision relationship 𝐴 ⊑ 𝐵 holds (to be defined), we get an upcast from the more precise type

𝐴 to the more imprecise type 𝐵 and a corresponding downcast from 𝐵 to 𝐴.

Finally, finishing out the syntax, in Figure 5, we define three judgments on types: well-formedness,

subtyping and type precision. Well-formedness Σ ⊢ 𝐴 and Σ ⊢ 𝜎 checks that the types used in

effect operations erase to the types associated in the signature. Here we use the notation |𝐴| to
mean the erasure of effect typing information in that we replace any effect type subterms 𝜎 with

dynamic ?. Subtyping works as usual for booleans and functions, contravariant in domain of the

function type, but covariant in the codomain and effect. Subtyping for effect types includes both a

width subtyping aspect: a smaller type can raise fewer operations, as well as a depth aspect that is

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:10 Max S. New, Eric Giovannini, and Daniel R. Licata

Σ | Γ ⊢𝜎 𝑀 : 𝐴 Σ | Γ ⊢ 𝐴 ≤ 𝐵 𝜎 ≤ 𝜏

Σ | Γ ⊢𝜏 𝑀 : 𝐵

Γ(𝑥) = 𝐴

Σ | Γ ⊢𝜎 𝑥 : 𝐴
Σ | Γ ⊢𝜎 ℧ : 𝐴

Σ | Γ ⊢𝜎 true, false : bool
Σ | Γ, 𝑥 : 𝐴 ⊢𝜏 𝑀 : 𝐵

Σ | Γ ⊢𝜎 𝜆𝑥 .𝑀 : 𝐴 →𝜏 𝐵

Σ | Γ ⊢𝜎 𝑀 : 𝐴

Σ | Γ, 𝑥 : 𝐴 ⊢𝜎 𝑁 : 𝐵

Σ | Γ ⊢𝜎 let 𝑥 = 𝑀 in 𝑁 : 𝐵

Σ | Γ ⊢𝜎 𝑀 : 𝐴 →𝜎 𝐵

Σ | Γ ⊢𝜎 𝑁 : 𝐴

Σ | Γ ⊢𝜎 𝑀 𝑁 : 𝐵

Σ | Γ ⊢𝜎 𝑀 : bool
Σ | Γ ⊢𝜎 𝑁𝑡 : 𝐵 Σ | Γ ⊢𝜎 𝑁𝑓 : 𝐵

Σ | Γ ⊢𝜎 if 𝑀{𝑁𝑡 }{𝑁𝑓 } : 𝐵
Σ | Γ ⊢𝜎 𝑀 : 𝐴 𝜖 : 𝐴 { 𝐵 ∈ 𝜎

Σ | Γ ⊢𝜎 raise 𝜖 (𝑀) : 𝐵

Σ | Γ ⊢𝜎 𝑀 : 𝐴

Σ | Γ, 𝑥 : 𝐴 ⊢𝜏 𝑁 : 𝐵

(∀(𝜀 : 𝐴𝜀 { 𝐵𝜀) ∈ 𝜎. (𝜀 ∉ dom(𝜙) ∧ (𝜀 : 𝐴𝜀 { 𝐵𝜀) ∈ 𝜏)
∨(𝜀 ∉ dom(𝜙) ∧ Σ | Γ, 𝑥 : 𝐴𝜀 , 𝑘 : 𝐵𝜀 →𝜏 𝐵 ⊢𝜏 𝜙 (𝜀) : 𝐵))

Σ | Γ ⊢𝜏 handle 𝑀 {ret 𝑥 .𝑁 | 𝜙} : 𝐵
Σ | Γ ⊢𝜎 𝑀 : 𝐴 𝐴 ⊑ 𝐵

Σ | Γ ⊢𝜎 ⟨𝐵 ↢ 𝐴⟩𝑀 : 𝐵

Σ | Γ ⊢𝜎 𝑀 : 𝐵 𝐴 ⊑ 𝐵

Σ | Γ ⊢𝜎 ⟨𝐴 ↞ 𝐵⟩𝑀 : 𝐴

Σ | Γ ⊢𝜎 𝑀 : 𝐴 𝜎 ⊑ 𝜎 ′

Σ | Γ ⊢𝜎 ′ ⟨𝜎 ′ ↢ 𝜎⟩𝑀 : 𝐴

Σ | Γ ⊢𝜎 ′ 𝑀 : 𝐴 𝜎 ⊑ 𝜎 ′

Σ | Γ ⊢𝜎 ⟨𝜎 ↞ 𝜎 ′⟩𝑀 : 𝐴

Fig. 4. Core GrEff Typing

covariant in the request type and contravariant in the response type. This variance makes sense

from the perspective of the party producing the request, to match the function type subtyping.

Finally, type precision 𝐴 ⊑ 𝐵 tracks instead how “dynamic” or “imprecise” a type is. For functions

it is covariant in every argument, and for effect types, the dynamic effect is the most imprecise

and for two concrete effect sets, it has a depth rule that that is covariant in request and response

positions. In a more standard gradual language with full dynamic typing, in addition to the dynamic

effect type we would have a dynamic value type ?𝑣 that is similarly maximally imprecise among

value types.

3.2 Syntax and Elaboration of GrEff
We present the syntax for the surface language GrEff in Figure 6. To distinguish surface GrEff

syntactic forms from similar core GrEff forms we use an underscore of 𝑠 for surface GrEff forms.

A GrEff program 𝑃 consists of a sequence of modules ending in a single “main” module. Each

module𝑚 consists of two parts: first, the effect definitions and then the value definitions, whose

types annotations may use the effects previously defined in that module. An effect definition is

either a declaration of a new effect operation effect 𝜀 : 𝐴𝑠 { 𝐵𝑠 or an import of an existing

effect operation import-eff 𝑚.𝜀 :𝐴𝑠 { 𝐵𝑠 . In either case, the declaration includes the request

type 𝐴𝑠 and the response type 𝐵𝑠 for the effect within the current module. An effect import brings

an effect defined in another module into the current scope, but with a possibly different request

and response type. To support gradual migration, these types are allowed to have a different level

of precision than the original, but on subterms where both types are precise they must match. After

the effect declarations are the value definitions which are also either a definition of a new value

define 𝑥 = 𝑉𝑠 or an import of a value declared in a different module at a possibly different type

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:11

Σ ⊢ bool
Σ ⊢ 𝐴 Σ ⊢ 𝜎 Σ ⊢ 𝐵

Σ ⊢ 𝐴 →𝜎 𝐵
Σ ⊢ ?

∀𝜀 : 𝐴 { 𝐵 ∈ 𝜎𝑐 .

(𝜀 : |𝐴| { |𝐵 | ∈ Σ). ∧ Σ ⊢ 𝐴 ∧ Σ ⊢ 𝐵)
Σ ⊢ 𝜎𝑐

bool ≤ bool
𝐴′ ≤ 𝐴 𝜎 ≤ 𝜎 ′ 𝐵 ≤ 𝐵′

𝐴 →𝜎 𝐵 ≤ 𝐴′ →𝜎 ′ 𝐵′ ? ≤ ?

∀𝜀 : 𝐴𝜎 { 𝐵𝜎 ∈ 𝜎𝑐 .∃𝐴𝜏 , 𝐵𝜏 .

𝜀 : 𝐴𝜏 { 𝐵𝜏 ∈ 𝜏𝑐 ∧𝐴𝜎 ≤ 𝐴𝜏 ∧ 𝐵𝜏 ≤ 𝐴𝜏

𝜎𝑐 ≤ 𝜏𝑐

bool ⊑ bool
𝐴 ⊑ 𝐴′ 𝜎 ⊑ 𝜎 ′ 𝐵 ⊑ 𝐵′

𝐴 →𝜎 𝐵 ⊑ 𝐴′ →𝜎 ′ 𝐵′ 𝜎 ⊑ ?

dom(𝜎𝑐) = dom(𝜎 ′
𝑐)

∀𝜀 : 𝐴 { 𝐵 ∈ 𝜎𝑐 .∃𝐴′, 𝐵′ .
𝜀 : 𝐴′ { 𝐵′ ∈ 𝜎 ′

𝑐 ∧𝐴 ⊑ 𝐴′ ∧ 𝐵 ⊑ 𝐵′

𝜎𝑐 ⊑ 𝜎 ′
𝑐

Fig. 5. Well formed types and effects, Type and Effect Precision

Programs 𝑃 ::= 𝐿; · · · 𝐿𝑚𝑎𝑖𝑛

Modules 𝐿 ::= module 𝑚 {𝑏}
Module Body 𝑏 ::= · | 𝐷 ;𝑏

Main Module 𝐿𝑚𝑎𝑖𝑛 ::= main {𝑏;𝑀𝑠 }
Module reference 𝑟 ::= 𝑚.𝑥 | 𝑚.𝜀

Declaration 𝐷 ::= import-eff 𝑟 :𝐴𝑠 { 𝐵𝑠 | effect 𝜀 : 𝐴𝑠 { 𝐵𝑠
| define 𝑥 = 𝑉 | import-val 𝑟 as 𝑥 :𝐴

Surface Value Types 𝐴𝑠 , 𝐵𝑠 ,𝐶𝑠 ::= 𝐴 →𝜎 𝐵 | bool
Surface Effect Types 𝜎𝑠 , 𝜏𝑠 ::= ? | 𝜎𝑠𝑐

Operation Set 𝜎𝑠𝑐 , 𝜏𝑠𝑐 ∈ Pfin (Name)
Surface Values 𝑉𝑠 ::= 𝑥 | 𝜆𝑥 : 𝐴𝑠 .𝑀𝑠 | true | false

Surface Terms𝑀𝑠 , 𝑁𝑠 ::= 𝑥 | raise 𝜀 (𝑀𝑠) | handle𝐶𝑠 !𝜎𝑠 𝑀𝑠 {ret 𝑥 .𝑁𝑠 | 𝜙𝑠 }
| 𝜆𝑥.𝑀𝑠 | 𝑀𝑠 𝑀

′
𝑠 | true | false | if 𝑀𝑠 {𝑁𝑠 }{𝑁 ′

𝑠 }
| 𝑀𝑠 :: 𝐴𝑠 | 𝑀𝑠 :: 𝜎𝑠

Handler clauses 𝜙𝑠 ∈ Name ⇀fin SurfTerm

Program Typing Contexts Δ ::= · | Δ,𝑚 ↦→ Γ𝑠
Module Typing Contexts Γ𝑠 ::= · | Γ𝑠 , 𝜀 : 𝐴 { 𝐵 | Γ𝑠 , 𝑥 : 𝐴

Fig. 6. GrEff Syntax

import-val 𝑟 as 𝑥 :𝐴𝑠 . For simplicity, all effects and values are public and can be imported by

later modules. Finally a program ends with a main module, which consists of the same kind of

effect and value declarations, followed by a final main expression.

Surface GrEff types differ from core GrEff types in that effect types are nominal: a concrete

effect set 𝜎𝑠𝑐 is simply a finite set of names such as {fork, yield, print} where the types of the
effect names are determined by the declaration in the current module. The elaboration process

adds the relevant type information to match the more structural typing of core GrEff. Surface GrEff

terms and values are for the most part similar to the core GrEff forms except that they may include

syntactic type annotations in order to support the algorithmic gradual type system of the surface

language.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:12 Max S. New, Eric Giovannini, and Daniel R. Licata

Σ | Δ | · ⊢ 𝑏 ⇒ Σ′;𝛾 ; Γ𝑠
Γ𝑠 ⊢ 𝑀𝑠 ⇒ 𝑀 : 𝜎 !𝐴

Σ | Δ ⊢ main 𝑏 𝑀𝑠 ⇒ Σ′ ⊢𝜎 let Γ𝑠 = 𝛾 in 𝑀 : 𝐴

Σ | Δ | · ⊢ 𝑏 ⇒ Σ′;𝛾 ; Γ𝑠
Σ, Σ′ | Δ,𝑚 ↦→ Γ𝑠 ⊢ 𝑃 ⇒ Σ′′ ⊢𝜎 𝑀 : 𝐴

Σ | Δ ⊢ module 𝑚 𝑏; 𝑃 ⇒ Σ′, Σ′′ ⊢𝜎 let Γ𝑠 = 𝛾 in 𝑀 : 𝐴
Σ | Δ | Γ𝑠 ⊢ · ⇒ ·; ·; ·

𝜀 ∉ Σ Γ𝑠 ⊢ 𝐴𝑠 ⇒ 𝐴 Γ𝑠 ⊢ 𝐵𝑠 ⇒ 𝐵

Σ | Δ | Γ𝑠 ⊢ effect 𝜀 : 𝐴𝑠 { 𝐵𝑠 ⇒ (𝜀 : |𝐴| { |𝐵 |); ·; 𝜀 : 𝐴 { 𝐵

Σ | Δ | Γ𝑠 ⊢ 𝐷 ⇒ Σ′;𝛾 ′; Γ𝑠 ′

Σ, Σ′ | Δ | Γ𝑠 , Γ𝑠 ′ ⊢ 𝑏 ⇒ Σ′′;𝛾 ′′; Γ𝑠 ′′

Σ | Δ | Γ𝑠 ⊢ 𝐷 ;𝑏 ⇒ Σ′, Σ′′;𝛾 ′, 𝛾 ′′; Γ𝑠 ′, Γ𝑠 ′′

Δ(𝑚) ∋ 𝜀 : 𝐴′ { 𝐵′ Γ𝑠 ⊢ 𝐴𝑠 ⇒ 𝐴 Γ𝑠 ⊢ 𝐵𝑠 ⇒ 𝐵

𝐴 ∼ 𝐴′ 𝐵 ∼ 𝐵′

Σ | Δ | Γ𝑠 ⊢ import-eff 𝑚.𝜀 :𝐴𝑠 { 𝐵𝑠 ⇒ ·; ·; 𝜀 : 𝐴 { 𝐵

Γ𝑠 ⊢ 𝑉𝑠 ⇒ 𝑉 : ∅ !𝐴
Σ | Δ | Γ𝑠 ⊢ define 𝑥 = 𝑉𝑠 ⇒ ·;𝑉 /𝑥 ;𝑥 : 𝐴

Δ(𝑚) ∋ 𝑥 : 𝐴′ Γ𝑠 ⊢ 𝐴𝑠 ⇒ 𝐴 𝐴′ ≲ 𝐴

Σ | Δ | Γ𝑠 ⊢ import-val 𝑚.𝑥 as 𝑦 :𝐴𝑠 ⇒ ·; ⟨𝐴 ⇐ 𝐴′⟩𝑥/𝑦;𝑦 : 𝐴

Fig. 7. GrEff Typing/Elaboration, Module Language

Finally we define the typing contexts for programs Δ and modules Γ𝑠 , which are used in the

elaboration/type checking process. A program typing context Δ associates module names𝑚 to

their module typing contexts. The module typing context Γ𝑠 contains both typings for values and

effect names. Note that the types in the module typing context are core GrEff types because these

types are the result of elaboration of surface GrEff types.

Next, we present the combination type checker and elaborator from GrEff into core GrEff. We

view GrEff programs as essentially a description of an effect signature Σ and a closed expression

well-typed under that signature. The module system is a way to manage the declaration of new

effect operations in the signature and a way to manage the typing of effect operations by giving

nominal associations to request and response types rather than solely the structural typing in core

GrEff. We describe the elaboration of the module language in Figure 7. The top-level judgment

Σ | Δ ⊢ 𝑃 ⇒ Σ′ ⊢𝜎 𝑀 : 𝐴 says that under the starting signature Σ and previously defined modules

Δ, we can elaborate 𝑃 to a core GrEff term𝑀 with core GrEff effect type 𝜎 and core GrEff value type

𝐴 that is well-typed under the extension of the signature by Σ′
. To elaborate a complete program, we

initialize this with empty signature and module typing (· | · ⊢ 𝑃 ⇒ Σ ⊢𝜎 𝑀 : 𝐴). This expresses that

not only does a program denote a core GrEff program, but it also has a “side effect” of allocating new

effect names Σ′
. A module is elaborated with the judgment Σ | Δ | Γ𝑠 ⊢ 𝑏 ⇒ Σ′

;𝛾 ′; Γ′𝑠 . The outputs
of this judgment are the newly allocated effects of the module Σ′

, the names of effect operations and

types for values the module defines Γ′𝑠 and the definitions of all the values the module defines, given

as a core GrEff substitution 𝛾 ′ from variable names in Γ′𝑠 to core GrEff values of their associated

types. Then to elaborate a program consisting of several modules, we first elaborate the modules

and then elaborate the remainder of the program and finally combine the two by let-binding all of

the variables declared in the module, which we write as a shorthand let Γ𝑠 = 𝛾 in 𝑀 . A module

is elaborated by combining the results of elaborating each declaration. A new effect declaration

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:13

⟨𝐴 ⇐ 𝐵⟩𝑀 = ⟨𝐴 ↞ |𝐴|⟩⟨|𝐵 | ↢ 𝐵⟩𝑀 ⟨𝜎 ⇐ 𝜏⟩𝑀 = ⟨𝜎 ↞ ?⟩⟨?↢ 𝜏⟩𝑀
Γ ∋ 𝑥 : 𝐴

Γ ⊢ 𝑥 ⇒ 𝑥 : ∅ !𝐴

Γ ⊢ true ⇒ true : ∅ ! bool Γ ⊢ false ⇒ false : ∅ ! bool

Γ ⊢ 𝑀𝑠 ⇒ 𝑀 : 𝜎 !𝐴′ Γ ⊢ 𝐴𝑠 ⇒ 𝐴

𝐴′ ≲ 𝐴

Γ ⊢ 𝑀𝑠 :: 𝐴𝑠 ⇒ ⟨𝐴 ⇐ 𝐴′⟩𝑀 : 𝜎 !𝐴

Γ ⊢ 𝑀𝑠 ⇒ 𝑀 : 𝜎 ′
!𝐴 Γ ⊢ 𝜎𝑠 ⇒ 𝜎

𝜎 ′ ≲ 𝜎

Γ ⊢ 𝑀𝑠 :: 𝜎𝑠 ⇒ ⟨𝜎 ⇐ 𝜎 ′⟩𝑀 : 𝜎 !𝐴

Γ ⊢ 𝑀𝑠 ⇒ 𝑀 : 𝜎𝑚 ! bool Γ ⊢ 𝑁𝑠 ⇒ 𝑁 : 𝜎𝑛 !𝐵 Γ ⊢ 𝑁 ′
𝑠 ⇒ 𝑁 ′

: 𝜎 ′
𝑛 !𝐵

′

𝐶 = 𝐵
∼
∨𝐵′ 𝜎 = 𝜎𝑚

∼
∨𝜎𝑛

∼
∨𝜎 ′

𝑛

Γ ⊢ if 𝑀𝑠 {𝑁𝑠 }{𝑁 ′
𝑠 } ⇒ if ⟨𝜎 ⇐ 𝜎𝑚⟩𝑀{⟨𝜎 ⇐ 𝜎𝑛⟩⟨𝐶 ⇐ 𝐵⟩𝑁 }{⟨𝜎 ⇐ 𝜎 ′

𝑛⟩⟨𝐶 ⇐ 𝐵′⟩𝑁 ′} : 𝜎 !𝐶

Γ ⊢ 𝐴𝑠 ⇒ 𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑀𝑠 ⇒ 𝑀 : 𝜎 !𝐵

Γ ⊢ 𝜆𝑥 : 𝐴𝑠 .𝑀𝑠 ⇒ 𝜆𝑥 .𝑀 : ∅ !𝐴 →𝜎 𝐵

Γ ⊢ 𝑀𝑠 ⇒ 𝑀 : 𝜎𝑚 !𝐴 →𝜎𝑜 𝐵

Γ ⊢ 𝑁𝑠 ⇒ 𝑁 : 𝜎𝑛 !𝐴
′

𝐴′ ≲ 𝐴 𝜎 = 𝜎𝑚
∼
∨𝜎𝑛

∼
∨𝜎𝑜

Γ ⊢ 𝑀𝑠 𝑁𝑠 ⇒
(⟨𝜎 ⇐ 𝜎𝑚⟩𝑀) (⟨𝐴 ⇐ 𝐴′⟩⟨𝜎 ⇐ 𝜎𝑛⟩𝑁) : 𝜎 !𝐵

Γ ⊢ 𝑀𝑠 ⇒ 𝑀 : 𝜎𝑚 !𝐴′ Γ ∋ 𝜀 : 𝐴 { 𝐵 𝐴′ ≲ 𝐴 𝜎 = 𝜎𝑚
∼
∨{𝜀 : 𝐴 { 𝐵}

Γ ⊢ raise 𝜀 (𝑀𝑠) ⇒ let 𝑥 = ⟨𝜎 ⇐ 𝜎𝑚⟩𝑀 in ⟨𝜎 ⇐ {𝜀 : 𝐴 { 𝐵}⟩raise 𝜀 (⟨𝐴 ⇐ 𝐴′⟩𝑥) : 𝜎 !𝐵

Γ ⊢ 𝐶𝑠 ⇒ 𝐶 Γ ⊢ 𝜎𝑠 ⇒ 𝜎 Γ ⊢ 𝑀𝑠 ⇒ 𝑀 : 𝜎𝑚 !𝐴𝑚

Γ, 𝑥 : 𝐴𝑚 ⊢ 𝑁𝑠 ⇒ 𝑁 : 𝜎𝑛 !𝐶𝑛 𝜎𝑛 ≲ 𝜎 𝐶𝑛 ≲ 𝐶

dom(𝜙⇐) = dom(𝜙𝑠) Γ ⊢ handleTy(𝜎𝑚, 𝜎, dom(𝜙𝑠)) = 𝜎 ′
𝑚

(∀𝜀 ∈ dom(𝜙𝑠). ∃(𝜀 : 𝐴𝜀 { 𝐵𝜀) ∈ Γ.
Γ, 𝑥 : 𝐴𝜀 , 𝑘 : 𝐵𝜀 →𝜎 𝐶 ⊢ 𝜙𝑠 (𝜀) ⇒ 𝑁𝜀 : 𝜎𝜀 !𝐶𝜀

𝜎𝜀 ≲ 𝜎 𝐶𝜀 ≲ 𝐶 𝜙⇐ (𝜀) = ⟨𝜎 ⇐ 𝜎𝜀⟩⟨𝐶 ⇐ 𝐶𝜀⟩𝑁𝜀)
Γ ⊢ handle𝜎𝑠 !𝐶𝑠

𝑀𝑠 {ret 𝑥 .𝑁𝑠 | 𝜙𝑠 } ⇒
handle ⟨𝜎 ′

𝑚 ⇐ 𝜎𝑚⟩𝑀 {ret 𝑥 .⟨𝜎 ⇐ 𝜎𝑛⟩⟨𝐶 ⇐ 𝐶𝑛⟩𝑁 | 𝜙⇐} : 𝜎 !𝐶

dom(𝜎𝑐) ⊆ dom(𝜏𝑐) ∪ 𝜎𝑠𝑐

Γ ⊢ handleTy(𝜎𝑐 , 𝜏𝑐 , 𝜎𝑠𝑐) = 𝜏𝑐 ∪ Γ(𝜎𝑠𝑐)
Γ ⊢ handleTy(?, 𝜏𝑐 , 𝜎𝑠𝑐) = 𝜏𝑐 ∪ Γ(𝜎𝑠𝑐)

Γ ⊢ handleTy(𝜎𝑐 , ?, 𝜎𝑠𝑐) = 𝜎𝑐 |𝜎𝑠𝑐 ⊎ |Γ(dom(𝜎𝑐) − 𝜎𝑠𝑐) | Γ ⊢ handleTy(?, ?, 𝜎𝑠𝑐) = ?

Fig. 8. GrEff Typing/Elaboration, Expression Language

checks that the name is not previously declared, and then recursively elaborates the syntactic types

declared for request and response and then adds these to the allocated effects as well as the local

effect names declared in the module. When adding to the signature, we take erasure of the types

because signatures use untracked types. Next, to import an effect from a different module, the

types given for the effect are checked to be compatible with the types declared in the other module.

Note that for simplicity of presentation, all effects must be used with the same name in all modules.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:14 Max S. New, Eric Giovannini, and Daniel R. Licata

More flexible renaming mechanisms can easily be supported in a realistic implementation. Here

the compatibility judgment 𝐴 ∼ 𝐴′
is defined on core GrEff types as the conjunction of gradual

subtyping in both directions, 𝐴 ≲ 𝐴′
and 𝐴′ ≲ 𝐴, to be defined soon. This compatibility check

ensures that any imports from that module using this effect name will succeed. We check gradual

subtyping in both directions because the effect may be used in both positive and negative positions

in a later import. This effect name is added to the local names only, and not the signature, because

it is using an already allocated effect name. Next, defining a value simply elaborates the value and

adds its type to the output typing and associates the value to that name. Importing a value is similar,

except that we check that the declared type is a gradual subtype, and so can be coerced by the cast

⟨𝐴 ⇐ 𝐴′⟩, whose definition will be described shortly.

Next, we define the elaboration of the expression language in Figure 8. The judgment Γ𝑠 ⊢ 𝑀𝑠 ⇒
𝑀 : 𝜎 !𝐴 says that under the typing of names given by Γ𝑠 , the GrEff expression 𝑀𝑠 elaborates

to the core GrEff function 𝑀 , which will be well-typed with inferred core GrEff effect type 𝜎

and value type 𝐴. All forms essentially elaborate to similar forms in core GrEff, but with suitable

casts inserted. First, we define the translation of value type casts ⟨𝐴 ⇐ 𝐵⟩𝑀 and effect type casts

⟨𝜎 ⇐ 𝜏⟩𝑀 as an upcast followed by a downcast. For the effect cast, these casts go through the

dynamic effect type, but for two value types there is no single most dynamic effect type so we

again use the erasure operation. Note that this will only be well-typed in case |𝐵 | = |𝐴|, which is

ensured whenever 𝐴 ≲ 𝐵, which is a precondition for inserting a cast. This is not necessarily the

most efficient implementation of the cast, we discuss optimizations in Section 4.3

Next, variables, boolean values and function values elaborate to themselves with an empty effect

type ∅. The let-binding form shows how different effect types are combined: the effect types of𝑀𝑠

and 𝑁𝑠 are combined using a gradual join

∼
∨ (to be defined shortly), and casts are inserted into the

elaborations of𝑀𝑠 and 𝑁𝑠 to give them this effect type. The ascription forms simply check that the

appropriate kind of type satisfies a gradual subtyping judgment and inserts a cast. This uses the

elaboration of types Γ ⊢ 𝐴𝑠 ⇒ 𝐴, defined below. The if rule checks that the condition has boolean

type and gives the output value type as the gradual join of the branches, and the output effect type

as the gradual join with the condition expression as well, matching prior work [Garcia et al. 2016].

The application rule is similar except that the argument is cast to have the type of the domain of

the function and the effect type of the function is joined with the effect types of the terms. Next,

we have the raise form, which elaborates to a raise but first let-binds the request term and casts the

raise term to have an effect type that is the join of the request term’s effect type and the operation’s

type. Finally, we have the most complex case, the handle form. The handle form elaborates to a

handle form in the core language with casts inserted in each case to make them agree with the

ascribed value type 𝐶𝑠 and effect type 𝜎𝑠 . The request variables and input to the continuations are

given by looking up the effect in Γ𝑠 , while the output is given by the ascription. The most complex

part of this elaboration is the cast needed for the scrutinee𝑀𝑠 . In the core language, we need that

all of the effects that𝑀 raises but are not caught by the handle are in the output type 𝜎𝑠 . But when

𝜎𝑠 is dynamic and𝑀𝑠 has concrete effect type or vice-versa, this is not necessarily true, so in these

cases a cast must be inserted that effectively handles all of the “other” effects. This definition is

given below in a special elaboration of handle scrutinees (Γ ⊢ handleTy(𝜎, 𝜏, 𝜎𝑠𝑐) = 𝜎𝑜). Here, the
type 𝜎 is the elaborated type of the scrutinee, 𝜏 is the elaborated type of the result of the handle

expression, and 𝜎𝑠 is the set of effect names caught by the handler, where we write Γ(𝜎𝑠𝑐) for the
map that looks up the currently associated types for each operation in 𝜎𝑠𝑐 . First, if 𝜎 and 𝜏 are both

precise collections of effects, then we check that all of the effects it raises are either caught or still

occur in the output type, and we insert a subtyping cast. Second, if 𝜎 , the type of the scrutinee

is imprecise, then we downcast it to include only the union of the output effects and the caught

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:15

Γ ⊢ bool ⇒ bool

Γ ⊢ 𝐴𝑠 ⇒ 𝐴 Γ ⊢ 𝐵𝑠 ⇒ 𝐵

Γ ⊢ 𝜎𝑠 ⇒ 𝜎

Γ ⊢ 𝐴𝑠 →𝜎𝑠 𝐵𝑠 ⇒ 𝐴 →𝜎 𝐵
Γ ⊢ ? ⇒ ?

dom(𝜎𝑐) = 𝜎𝑠
∀𝜀 ∈ 𝜎𝑐 . 𝜎𝑐 (𝜀) = Γ(𝜀)

Γ ⊢ 𝜎𝑠 ⇒ 𝜎𝑐

bool ≲ bool
𝐴′ ≲ 𝐴 𝜎 ≲ 𝜎 ′ 𝐵 ≲ 𝐵′

𝐴 →𝜎 𝐵 ≲ 𝐴′ →𝜎 ′ 𝐵′ ? ≲ 𝜎 𝜎 ≲ ?

∀𝜀 : 𝐴𝜎 { 𝐵𝜎 ∈ 𝜎𝑐 .∃𝐴𝜏 , 𝐵𝜏 .

𝜀 : 𝐴𝜏 { 𝐵𝜏 ∈ 𝜏𝑐
∧𝐴𝜎 ≲ 𝐴𝜏

∧𝐵𝜏 ≲ 𝐵𝜎

𝜎𝑐 ≲ 𝜏𝑐

bool
∼
∨ bool = bool

(𝐴 →𝜎 𝐵)
∼
∨(𝐴′ →𝜎 ′ 𝐵′) = (𝐴

∼
∧𝐴′) →

𝜎
∼
∨𝜎 ′ (𝐵

∼
∨𝐵′)

?

∼
∨𝜎 = ?

𝜎
∼
∨ ? = ?

𝜎𝑐
∼
∨𝜏𝑐 = {𝜀 : 𝐴 { 𝐵 | 𝜀 : 𝐴 { 𝐵 ∈ 𝜎𝑐 ∧ 𝜀 ∉ dom(𝜏𝑐)}

∪ {𝜀 : 𝐴′ { 𝐵′ | 𝜀 ∉ dom(𝜎𝑐) ∧ 𝜀 : 𝐴′ { 𝐵′ ∈ 𝜏𝑐 }

∪ {𝜀 : 𝐴
∼
∨𝐴′ { 𝐵

∼
∧𝐵′ | 𝜀 : 𝐴 { 𝐵 ∈ 𝜎𝑐 ∧ 𝜀 : 𝐴′ { 𝐵′ ∈ 𝜏𝑐 }

bool
∼
∨ bool = bool

(𝐴 →𝜎 𝐵)
∼
∧(𝐴′ →𝜎 ′ 𝐵′) = (𝐴

∼
∨𝐴′) →

𝜎
∼
∧𝜎 ′ (𝐵

∼
∧𝐵′)

?

∼
∧𝜎 = 𝜎

𝜎
∼
∧ ? = 𝜎

𝜎𝑐
∼
∧𝜏𝑐 = {𝜀 : 𝐴

∼
∧𝐴′ { 𝐵

∼
∨𝐵′ | 𝜀 : 𝐴 { 𝐵 ∈ 𝜎𝑐 ∧ 𝜀 : 𝐴′ { 𝐵′ ∈ 𝜏𝑐 }

Fig. 9. Type Elaboration, Gradual Subtyping and Join/Meet

effects, otherwise erroring. Third, if the scrutinee is precise but the result 𝜏 = ? is dynamic, then we

need to upcast all of the unhandled effect operations to their dynamic versions. This is expressed

by having the result type be the combination (⊎) of the effects who are handled as is, written 𝜎𝑐 |𝜎𝑠
with the most dynamic version of any other effects that are not handled |Γ(dom(𝜎𝑐) − 𝜎𝑠) |. Here
𝜎𝑐 |𝜎𝑠 means the restriction of the partial function 𝜎𝑐 to only be defined on the set 𝜎𝑠𝑐 . Finally, if the

scrutinee and the goal are both imprecise then we put a trivial identity cast to ? on the scrutinee.

Finally, Figure 9 describes the elaboration of types, gradual subtyping and gradual join and meet.

Value and effect type elaboration Γ𝑠 ⊢ 𝐴𝑠 ⇒ 𝐴 is mostly structural. The elaboration of a concrete

effect set is essentially a “map” over the fields of the concrete effect set, saying the elaborated

concrete effect type has the exact same names as the surface effect set, and they are associated to

the request and response types of the effect operation based on the current module context Γ𝑠 . Next,
we describe the mostly standard gradual subtyping of value types 𝐴 ≲ 𝐵 and effect types 𝜎 ≲ 𝜏 to

determine when a dynamic cast ⟨𝐵 ⇐ 𝐴⟩ or ⟨𝜏 ⇐ 𝜎⟩ would reduce to subtyping on the precise

portions of the types. Note that we define gradual subtyping of types in the core language i.e.,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:16 Max S. New, Eric Giovannini, and Daniel R. Licata

after elaboration, so that we can compare effect types across module boundaries that use different

typings for the effect names. With this intuition, the definition is like that of subtyping, except that

the dynamic effect type is a gradual subtype and supertype of all other effect types.

Lastly, we define gradual join and meet of types and effects as a partial function. The gradual

join of types is defined similarly to prior work, with the covariant positions in the function type

recursively being joined, while the contravariant position, the domain uses the gradual meet. The

gradual join of two concrete effect rows takes the union of the effects used in each type, where the

common effect names have to be joined as well. Here the request is covariant, and recursively joined

and the response type is contravariantly and so recursively the gradual meet is used. On concrete

effect types, the gradual meet is similarly defined as an intersection of the effects used, where the

requests and responses are handled dually. Finally, taking the gradual join with the dynamic effect

always returns the dynamic effect and taking the gradual meet always returns the original type.

This can be justified by the AGT methodology by interpreting the concretization of the gradual

effect type as the set of all possible fully static effect types. Following the AGT methodology in this

way ensures the static gradual guarantee is satisfied.

We conclude by noting the following syntactic properties of elaboration, which follow by

structural induction.

Lemma 3.1 (Elaboration is a function). If · | · ⊢ 𝑃 ⇒ Σ ⊢𝜎 𝑀 : 𝐴 and · | · ⊢ 𝑃 ⇒ Σ′ ⊢𝜎 ′ 𝑀 ′
:

𝐴′
then Σ = Σ′

and𝑀 = 𝑀 ′
and 𝜎 = 𝜎 ′

and 𝐴 = 𝐴′
.

Lemma 3.2 (Elaborated terms are Well-typed). If · | · ⊢ 𝑃 ⇒ Σ ⊢𝜎 𝑀 : 𝐴, then Σ | · ⊢𝜎 𝑀 : 𝐴.

4 AXIOMATICS AND OPERATIONAL SEMANTICS
Next we turn to the semantic aspects of GrEff: how expressions are evaluated, what simplifica-

tions/optimizations are correct to perform, and that the graduality principle holds for the language.

We formalize these three aspects axiomatically in the form of an inequational theory for reasoning

about Core GrEff programs. That is, we define a notion of inequality𝑀 ⊑ 𝑁 between expressions

called term precision, which is a kind of extension of the notion of type precision to expressions.

The semantic interpretation of this inequality is that𝑀 has the same behavior as 𝑁 with respect to

output and termination, except in that it may raise a dynamic type error when 𝑁 does not. From

this notion of inequality we get an induced equivalence relation 𝑀 ≡ 𝑁 that specifies when 𝑀

and 𝑁 have the same behavior. Term precision and the induced equivalence are used to model

our desired semantic ideas: an expression𝑀 can be evaluated to a value 𝑉 when the equivalence

𝑀 ≡ 𝑉 holds,𝑀 can be simplified/optimized to 𝑁 when𝑀 ≡ 𝑁 holds, and the graduality principle

states that when𝑀 is rewritten in the surface language to some𝑀 ′
that has more precise typing

information, then a corresponding relationship 𝑀 ′ ⊑ 𝑀 should hold: adding more precise type

information results in more precise dynamic type checking. With this in mind, we axiomatize the

valid optimizations known from effect handlers as well as desired inequalities from prior work on

graduality in our inequational theory.

Axioms are only useful if we can construct models in which they are satisfied. For GrEff, we

do this by constructing an operational semantics that specifies more precisely how to evaluate

programs and then define notions of observational equivalence and an error ordering to model

≡ and ⊑ and prove that all of the axioms are valid in this operational model. We will construct

this operational semantics, based on the axiomatics: we show in Section 4.2 that every reduction

𝑀 ↦→ 𝑁 is justified by a provable equivalence𝑀 ≡ 𝑁 in the inequational theory. For many rules

this is very straightforward, e.g., 𝛽 reduction of functions is justified by a corresponding 𝛽 equation.

The most utility we get from the axioms in this case is for the cast reductions: cast reductions for

handlers are justified not by a direct corresponding rule in the axioms, but instead by extensionality

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:17

(𝜂) principles for handlers combined with a least upper bound/greatest lower bound property of

casts identified in prior work as being key to the graduality property [New and Licata 2018]. This

shows that the operational behavior we define has a canonical status: if certain optimizations for

handlers are to be valid, and the graduality property is desired, then the cast reductions we define

must be used.

4.1 Axiomatics
We present a selection of the rules of the inequational theory of term precision in Figure 10. The

full rules are provided in the appendix [New et al. 2023]. The form of the inequality judgment

is Γ⊑ ⊢𝜎⊑𝜏 𝑀 ⊑ 𝑁 : 𝐴 ⊑ 𝐵, which says that 𝑀 is more precise, or, roughly, “errors more” than

𝑁 . This is a kind of heterogeneous inequality relation in that 𝑀 and 𝑁 are not required to have

the same type: 𝑀 must have value type 𝐴 and effect type 𝜎 and 𝑁 must have value type 𝐵 and

effect type 𝜏 under the context Γ⊑ and 𝐴 ⊑ 𝐵 and 𝜎 ⊑ 𝜏 must hold. We allow for 𝑀 and 𝑁 to be

open terms, typed with respect to the typing context Γ⊑ . The typing context Γ⊑ is like an ordinary

typing context Γ, except that variables are typed 𝑥 : 𝐴 ⊑ 𝐵 where the left type 𝐴 is the type 𝑥 has

in the left term 𝑀 and 𝐵 is the type for 𝑁 . For the context to be well formed, each of the 𝐴 ⊑ 𝐵

must be provable.

First, we add reflexivity and transitivity rules, where in the transitivity rule both the value and

effect type are allowed to vary simultaneously. Next, we give two rules for modeling errors: first

℧ is the least element in the ordering, which models the graduality property, and second that

all evaluation contexts are strict with respect to errors. The latter uses equivalence ≡, which is

defined as a shorthand: 𝑀 ≡ 𝑁 means that both 𝑀 ⊑ 𝑁 and 𝑁 ⊑ 𝑀 are true. In this case, we

elide the typing, but both sides are assumed to be well typed under the same context and typing

Γ ⊢𝜎 𝑀, 𝑁 : 𝐴. Next we have computation (𝛽) and reasoning (𝜂) rules for each type. For functions

and if, these are standard call-by-value 𝛽𝜂 rules, so we instead show only the handle rules. There

are two 𝛽 rules for handle. If the term being handled is a value, then the return clause is used. If the

term being handled is a raise of an effect 𝜀, it is equivalent to the handler clause 𝜙 (𝜀) where the
continuation is the captured continuation surrounding the original handler term. We require this to

be a let, but note that we have additional rules that imply that any evaluation context that doesn’t

handle can be re-written as a let. We then have two reasoning (𝜂) rules for handle. First, if 𝑀 is

handled by a handler with no effect clauses, then the handler is equivalent to a let-binding. This can

be combined with standard rules for let binding to show that any term is equivalent to a handler

with no clauses𝑀 ≡ handle 𝑀 {ret 𝑥 .𝑥 | ∅}. We call this the non-handling principle. Second, we

have a rule that says that any clause that simply re-raises its operation with the same continuation

it was passed can be dropped from the handler, as this is the same behavior as not catching the

term at all. We call this the effect forwarding principle, as it says that forwarding an effect to the

ambient context is equivalent to not handling it explicitly at all. Combined with the non-handling

principle, any term 𝑀 with effect type 𝜎 can be shown equivalent to handle 𝑀 {ret 𝑥 .𝑥 | 𝜙𝜎 }
where 𝜙𝜎 simply forwards all the effects in 𝜎 . We next show rules describing the interaction of

subtyping with value type casts, the full system includes analogous rules for effect types. The first

says that an upcast followed by a subtyping coercion is less than a subtyping coercion followed

by an upcast, and the downcast rule is similar. Finally, we have rules specifying the behavior of

value and effect casts. These rules characterize upcasts as least upper bounds and downcasts as

greatest lower bounds. The first rule shows that the downcast is a lower bound and the second that

it is the greatest. The upcasts have similar rules, and we include analogous rules for effect casts

as well. These lub/glb properties are adapted from prior work on axiomatics for gradual typing

[New et al. 2019], but now incorporate the ordering on both effect and value typing. We found

that this general form of the rule, where the effect is allowed to differ (𝜎 ⊑ 𝜎 ′
) while performing a

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:18 Max S. New, Eric Giovannini, and Daniel R. Licata

Γ ⊢𝜎 𝑀 : 𝐴

Γ ⊢𝜎⊑𝜎 𝑀 ⊑ 𝑀 : 𝐴 ⊑ 𝐴

Γ⊑ ⊢𝜎1⊑𝜎2 𝑀1 ⊑ 𝑀2 : 𝐴1 ⊑ 𝐴2 Γ′⊑ ⊢𝜎2⊑𝜎3 𝑀2 ⊑ 𝑀3 : 𝐴2 ⊑ 𝐴3

rhs(Γ⊑) = lhs(Γ′⊑) lhs(Γ⊑) = lhs(Γ′′⊑) rhs(Γ′⊑) = rhs(Γ′′⊑)
Γ′′⊑ ⊢𝜎1⊑𝜎3 𝑀1 ⊑ 𝑀3 : 𝐴1 ⊑ 𝐴3

Γ ⊢𝜎 𝑀 : 𝐴

Γ ⊢𝜎⊑𝜎 ℧ ⊑ 𝑀 : 𝐴 ⊑ 𝐴
𝐸 [℧] ≡ ℧

Γ⊑, 𝑥 : 𝐴 ⊑ 𝐴′ ⊢𝜏⊑𝜏 ′ 𝑀 ⊑ 𝑀 ′
: 𝐵 ⊑ 𝐵′

Γ⊑ ⊢𝜎⊑𝜎 ′ 𝜆𝑥.𝑀 ⊑ 𝜆𝑥.𝑀 ′
: 𝐴 →𝜏 𝐵 ⊑ 𝐴′ →𝜏 ′ 𝐵

′

Γ⊑ ⊢𝜎⊑𝜎 ′ 𝑀 ⊑ 𝑀 ′
: 𝐴 →𝜎 𝐵 ⊑ 𝐴′ →𝜎 ′ 𝐵′

Γ⊑ ⊢𝜎⊑𝜎 ′ 𝑁 ⊑ 𝑁 ′
: 𝐴 ⊑ 𝐴′

Γ⊑ ⊢𝜎⊑𝜎 ′ 𝑀 𝑁 ⊑ 𝑀 ′ 𝑁 ′
: 𝐵 ⊑ 𝐵′

handle 𝑉 {ret 𝑦.𝑀 | 𝜙} ≡ 𝑀 [𝑉 /𝑦] handle (let 𝑜 = raise 𝜀 (𝑥) in 𝑁𝑘) {ret 𝑦.𝑀 | 𝜙}
≡ 𝜙 (𝜀) [𝜆𝑜.handle 𝑁𝑘 {ret 𝑦.𝑀 | 𝜙}/𝑘]

handle 𝑀 {ret 𝑥 .𝑁 | ∅}
≡ let 𝑥 = 𝑀 in 𝑁

∀𝜀 ∈ dom(𝜙). 𝜓 (𝜀) = 𝜙 (𝜀)
∀𝜀 ∈ dom(𝜓).𝜀 ∉ dom(𝜙) ⇒ 𝜓 (𝜀) = 𝑘 (raise 𝜀 (𝑥))
handle 𝑀 {ret 𝑦.𝑁 | 𝜙} ≡ handle 𝑀 {ret 𝑦.𝑁 | 𝜓 }

𝐴 ≤ 𝐴′ 𝐵 ≤ 𝐵′

Γ⊑ ⊢𝜎⊑𝜎 ′ 𝑀 ⊑ 𝑁 : 𝐴

Γ⊑ ⊢𝜎⊑𝜎 ′ ⟨𝐵 ↢ 𝐴⟩𝑀 ⊑ ⟨𝐵′ ↢ 𝐴′⟩𝑁 : 𝐵′ ⊑ 𝐵′

𝐴 ≤ 𝐴′ 𝐵 ≤ 𝐵′

Γ⊑ ⊢𝜎⊑𝜎 ′ 𝑀 ⊑ 𝑁 : 𝐵 ⊑ 𝐵

Γ⊑ ⊢𝜎⊑𝜎 ′ ⟨𝐴′
↞ 𝐵′⟩𝑀 ⊑ ⟨𝐴 ↞ 𝐵⟩𝑁 : 𝐴′ ⊑ 𝐴′

Γ⊑ ⊢𝜎⊑𝜎 ′ 𝑀 ⊑ 𝑁 : 𝐵 ⊑ 𝐵

Γ⊑ ⊢𝜎⊑𝜎 ′ ⟨𝐴 ↞ 𝐵⟩𝑀 ⊑ 𝑁 : 𝐴 ⊑ 𝐵

Γ⊑ ⊢𝜎⊑𝜎 ′ 𝑀 ⊑ 𝑁 : 𝐴 ⊑ 𝐵

Γ⊑ ⊢𝜎⊑𝜎 ′ 𝑀 ⊑ ⟨𝐴 ↞ 𝐵⟩𝑁 : 𝐴 ⊑ 𝐴

Fig. 10. Inequational Theory

value cast, is essential for proving the commutativity of value and effect casts, which is used in the

derivation of the operational semantics and also valid in our logical relations model.

4.2 Operational Semantics
Next, we show a selection of the rules of the operational semantics𝑀 ↦→ 𝑀 ′

in Figure 11, eliding the

standard call-by-value rules for booleans, functions and let-bindings. We capture the left-to-right,

call-by-value evaluation order by using evaluation contexts defined in Section 3.1. First, we have

the 𝛽 rules for handlers. When a handler encloses a value, we execute the return clause. When a

raise occurs, we search for the closest enclosing handler that handles the raised effect and capture

the intermediate evaluation context in the continuation passed to the appropriate handler. We

capture this with the relation 𝐸′
#𝜀 which says that the evaluation context does not handle the given

operation.

The next rules concern the behavior of effect casts. First, all effect casts are the identity on

values. Next, when upcasting a raise, we re-raise the effect, but upcast the request and downcast

the response according to the types in the output effect type. An effect downcast works dually

if the effect occurs in the result effect type. However, if the effect does not occur in the output

effect type (which can only occur if the input effect type is ?), then an error is raised. Finally, we

have the function downcast. Recall that a function cast applied to a value itself is a value, and only

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:19

𝐸 [handle 𝑉 {ret 𝑥 .𝑁 | 𝜙}] ↦→ 𝐸 [𝑁 [𝑉 /𝑥]]

𝜀 ∈ dom(𝜙) 𝐸′
#𝜀

𝐸 [handle 𝐸′ [raise 𝜀 (𝑉)] {ret 𝑥 .𝑁 | 𝜙}]
↦→ 𝐸 [𝜙 (𝜀) [𝑉 /𝑥] [(𝜆𝑦.handle (𝐸′ [𝑦]) {ret 𝑥 .𝑁 | 𝜙})/𝑘]]

𝐸 [(𝜆𝑥 .𝑀)𝑉] ↦→ 𝐸 [𝑀 [𝑉 /𝑥]] 𝐸 [let 𝑥 = 𝑉 in 𝑀] ↦→ 𝐸 [𝑀 [𝑉 /𝑥]]

𝐸 [⟨𝜎 ′ ↢ 𝜎⟩𝑉] ↦→ 𝐸 [𝑉]
𝜀 : 𝐴 { 𝐵 ∈ 𝜎 𝜀 : 𝐴′ { 𝐵′ ∈ 𝜎 ′ 𝐸′

#𝜀

𝐸 [⟨𝜎 ′ ↢ 𝜎⟩𝐸′ [raise 𝜀 (𝑉)]] ↦→
𝐸 [let 𝑥 = ⟨𝐵 ↞ 𝐵′⟩raise 𝜀 (⟨𝐴′ ↢ 𝐴⟩𝑉) in ⟨𝜎 ′ ↢ 𝜎⟩𝐸′ [𝑥]]

𝐸 [⟨𝜎 ↞ 𝜎 ′⟩𝑉] ↦→ 𝐸 [𝑉]
𝜀 : 𝐴 { 𝐵 ∈ 𝜎 𝜀 : 𝐴′ { 𝐵′ ∈ 𝜎 ′ 𝐸′

#𝜀

𝐸 [⟨𝜎 ↞ 𝜎 ′⟩𝐸′ [raise 𝜀 (𝑉)]] ↦→
𝐸 [let 𝑥 = ⟨𝐵′ ↢ 𝐵⟩raise 𝜀 (⟨𝐴 ↞ 𝐴′⟩𝑉) in ⟨𝜎 ↞ 𝜎 ′⟩𝐸′ [𝑥]]

𝜀 ∉ 𝜎 𝐸′
#𝜀

𝐸 [⟨𝜎 ↞ ?⟩𝐸′ [raise 𝜀 (𝑉)]] ↦→ ℧
𝐸 [(⟨(𝐴 →𝜎 𝐵) ↞ (𝐴′ →𝜎 ′ 𝐵′)⟩𝑉𝑓)𝑉] ↦→
𝐸 [⟨𝐵 ↞ 𝐵′⟩⟨𝜎 ↞ 𝜎 ′⟩(𝑉𝑓 ⟨𝐴′ ↢ 𝐴⟩𝑉)]

Fig. 11. Operational semantics of Core GrEff

reduces when applied to a value. When this occurs in a downcast, as shown, the result reduces

to applying the original function to an upcasted version of the input and downcast of the output,

where this time we cast both value and effect types. Note the order of the value and effect casts on

the output is arbitrarily chosen: because value casts only affect values and effect casts only affect

effect operations, the two possible orders are equivalent. The elided cast for function upcasts is

precisely dual, and finally there is a trivial cast rule for the identity cast on booleans.

We conclude the operational semantics with the following theorem, which establishes that

the operational rules are all valid equational reasoning principles in any system that models the

inequational theory.

Theorem 4.1. If · ⊢∅ 𝑀, 𝑁 : 𝐴 and𝑀 ↦→ 𝑁 then𝑀 ≡ 𝑁 is provable in the axiomatic semantics.

The full proof is in the appendix [New et al. 2023], but we give an overview of how the behavior

of effect casts ⟨𝜎 ↞ 𝜎 ′⟩𝑀 is derived in particular. The core of the argument is to show that the

downcast is equivalent to a particular handler, and then derive the operational reductions from

the 𝛽 reductions for handlers. The handler is ⟨𝜎 ↞ 𝜎 ′⟩𝑀 ≡ handle 𝑀 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜎 ↞𝜎 ′ ⟩} where
the 𝜙 ⟨𝜎 ↞𝜎 ′ ⟩ handles precisely the effects in 𝜎 ′

and for each such 𝜀 : 𝐴′
𝜎 { 𝐵′

𝜎 ∈ 𝜎 ′
, the handling

clause is defined as

𝜙 ⟨𝜎 ↞𝜎 ′ ⟩ (𝜀) =
{
℧ 𝜀 ∉ dom(𝜎)
𝑘 (⟨𝐵′

𝜎
↢ 𝐵𝜎 ⟩raise 𝜀 (⟨𝐴𝜎 ↞ 𝐴′

𝜎 ⟩𝑥)) 𝜀 : 𝐴𝜎 { 𝐵𝜎 ∈ 𝜎

That is, if the effect is not present in 𝜎 , the handler errors, and otherwise it re-raises the effect

to its context with mediating casts. The raising party raises a request value 𝑥 of type 𝐴𝜎 ′ and

expects a response of type 𝐵𝜎 ′ , but the ambient handler expects 𝜀 requests to have type 𝐴𝜎 and

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:20 Max S. New, Eric Giovannini, and Daniel R. Licata

𝐴ℎ 𝐷ℎ 𝐵

𝐴 𝐷𝑙 𝐵𝑙⊑ ⊒

⊑ ⊒

≤ ≤≤

Fig. 12. Situation derivable from 𝐴 ≲ 𝐵

responds with 𝐵𝜎 values, so when re-raising, we need to downcast the request and upcast the

resulting response which is then passed to the original continuation 𝑘 . Then we show that ⟨𝜎 ↞
𝜎 ′⟩𝑀 ≡ handle 𝑀 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜎 ↞𝜎 ′ ⟩} by showing an ordering each way. For the ⟨𝜎 ↞ 𝜎 ′⟩𝑀 ⊑
handle 𝑀 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜎 ↞𝜎 ′ ⟩} case, we apply the effect forwarding principle to transform the

left-hand side to handle ⟨𝜎 ↞ 𝜎 ′⟩𝑀 {ret 𝑥 .𝑥 | 𝜙𝜎 }. Then we apply congruence for handlers, with

the cases of the right-hand side that handle effects not in 𝜎 being irrelevant. Then the remaining

clauses are all of the same syntactic structure except for upcasts and downcasts, and so the proof

follows by congruence and the upcast/downcast rules. To show handle 𝑀 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜎 ↞𝜎 ′ ⟩} ⊑
⟨𝜎 ↞ 𝜎 ′⟩𝑀 , we first apply the downcast right rule to eliminate the cast on the right. Then to show

handle 𝑀 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜎 ↞𝜎 ′ ⟩} ⊑ 𝑀 we again use the effect forwarding principle to rewrite the

right-hand side as handle 𝑀 {ret 𝑥 .𝑥 | 𝜙𝜎 ′ }. We again apply handler congruence, with the cases

where 𝜀 ∈ 𝜎 analogous to the prior argument. In the remaining cases 𝜙 ⟨𝜎 ↞𝜎 ′ ⟩ (𝜀) ⊑ 𝜙𝜎 ′ (𝜀) where
𝜀 ∉ 𝜎 , we have the left hand side is an error, and so the argument follows by the fact that the error

is the minimum in the ordering.

While the converse of Theorem 4.1 is not literally true that equivalent terms reduce to each

other operationally, the graduality proof in Section 5 does imply that if𝑀 ≡ 𝑁 then𝑀 and 𝑁 are

contextually equivalent with respect to the operational semantics.

4.3 Subtyping, Gradual Subtyping and Coercions
The elaboration defined in Section 3.2 inserts casts of the form ⟨𝐴 ↞ |𝐴|⟩⟨|𝐵 | ↢ 𝐵⟩𝑀 when a

gradual subtyping 𝐴 ≲ 𝐵 is used in the type-checker. If we think of |𝐴| as the type of programs

in the untracked language, this says to cast a program from one type to another, we should cast

it to an untracked type and then to the other effect-tracking type, similar to prior work on cast

calculi based on upcasts and downcasts [New and Ahmed 2018]. This is a reasonable cast if we

think of the untracked language as our “operational ground truth”, and so we should prove that

any other translation is extensionally equivalent to this one. However, operationally, this can be

quite a wasteful translation, as a cast can result in proxying at runtime, while subtyping coercions

have no runtime behavior, and so are zero cost. For instance, if 𝐴 ≲ 𝐵 is true because in fact 𝐴 ≤ 𝐵,

then there need not be any runtime cast at all. For this reason, we would prefer to optimize the cast

based on the subtyping information in the proof of 𝐴 ≲ 𝐵. Since 𝐴 may be more imprecise than 𝐵

in some subterms and vice-versa, the structure of the cast should still be an upcast followed by a

downcast, but with the possibility that we use implicit subtyping coercions at some points. There

are three places we might insert the implicit subtyping coercion: before the upcast, between the

upcast and downcast and after the downcast. From the proof of 𝐴 ≲ 𝐵, we can extract types and

subtyping/precision derivations as in Figure 12.

On the left we have a “pure subtyping” component of the gradual subtpying proof coming from

𝐴, and on the right we we have the pure subtyping component coming from 𝐵. In the middle we

have two “dynamic” types also related by subtyping. There are then three paths from 𝐴 to 𝐵 in this

diagram, which generate three different potential casts with implicit subtyping coercions ensuring

they are well-typed as taking𝐴 to 𝐵: (1) Up and then right twice ⟨𝐵 ↞ 𝐷ℎ⟩⟨𝐷ℎ
↢ 𝐴ℎ⟩ (2) Right, up

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:21

and then right: ⟨𝐵 ↞ 𝐷ℎ⟩⟨𝐷𝑙
↢ 𝐴⟩ (3) Right twice and then up: ⟨𝐵𝑙 ↞ 𝐷𝑙 ⟩⟨𝐷𝑙

↢ 𝐴⟩. Fortunately
we can choose whichever is operationally preferable: each of these casts is equivalent as a function

from 𝐴 to 𝐵 and they are all equivalent to the ground truth cast ⟨𝐵 ↞ |𝐴|⟩⟨|𝐴| ↢ 𝐴⟩. The above
discussion applies equally well to effect casts, which are even simpler in that the “ground-truth”

always factors through the single most imprecise effect type: the dynamic effect type.

5 SOUNDNESS AND GRADUALITY
In this section we establish that the axiomatic semantics of core GrEff has a sound model in terms

of its operational semantics. This establishes two key properties: equivalent terms (𝑀 ≡ 𝑁) are

contextually equivalent in the operational semantics, and the graduality property holds. First, we

review the definition of the graduality property, and then we give a logical relations model and

prove that any provable inequality𝑀 ⊑ 𝑁 implies that the terms are related in the logical relation.

5.1 Static and Dynamic Gradual Guarantees
GrEff is designed to support a smoothmigration from imprecise to precise typing. The static gradual

guarantee [Siek et al. 2015] formalizes a syntactic element of this idea of a smooth migration. The

static gradual guarantee informally says that increasing the precision of type annotations on a

program can only make it harder to satisfy the static type checker, or viewed the other way around,

decreasing the precision of type annotations can only make it easier to satisfy the static type

checker. Then the dynamic gradual guarantee, also known as graduality, establishes the semantic

counterpart: increasing the precision of type annotations on a program should only make it harder

to terminate without a dynamic type error, and furthermore except where there are dynamic type

errors, the behavior of the program should match the original. These properties can be formalized

as a form of monotonicity of the elaboration of the syntactic programs of surface GrEff into the

semantically meaningful core GrEff programs as follows. First, we define a syntactic term precision

ordering ⊑syn
on untyped GrEff programs as the congruence closure of the type precision ordering.

Then the static gradual guarantee says that this is a monotone partial function from the syntactic

term precision ordering to the axiomatic inequality on core GrEff terms:

Theorem 5.1 (Static Gradual Guarantee). If 𝑃 ⊑syn 𝑃 ′
, then if · | · ⊢ 𝑃 ⇒ Σ ⊢𝜎 𝑀 : 𝐴, then

there exist𝑀 ′, 𝜎 ′, 𝐴′
such that · | · ⊢ 𝑃 ′ ⇒ Σ ⊢𝜎 ′ 𝑀 ′

: 𝐴′
such that · ⊢𝜎⊑𝜎 ′ 𝑀 ⊑ 𝑀 ′

: 𝐴 ⊑ 𝐴′
.

Then the dynamic gradual guarantee says that this extends to monotonicity in the following

semantic ordering on core GrEff terms:

Definition 5.2 (Error Ordering on Closed Programs). Given · ⊢∅ 𝑀,𝑀 ′
: bool, define𝑀 ⊑sem 𝑀 ′

to hold when one of the following is satisfied (1)𝑀 ↦→∗ ℧, (2)𝑀 ⇑ and𝑀 ′ ⇑, (3)𝑀 ↦→∗ true and
𝑀 ′ ↦→∗ true (4)𝑀 ↦→∗ false and𝑀 ′ ↦→∗ false.

Theorem 5.3 (Dynamic Gradual Guarantee). If Σ | · ⊢∅⊑∅ 𝑀 ⊑ 𝑀 ′
: bool, then𝑀 ⊑sem 𝑀 ′

.

This theorem is stated in terms of closed terms of a fixed type, but to prove it we need a

stronger inductive hypothesis, i.e., the logical relation for open terms. The resulting theorem that

any inequality provable in the theory implies the semantic ordering is called graduality, as it

is analogous in structure to the parametricity theorem in parametric polymorphism. Then the

dynamic gradual guarantee follows as a corollary.

5.2 Logical Relation
We begin by introducing the notion of precision derivations in Figure 13, which will be used

extensively in the definition of the logical relation. A derivation 𝑐 : 𝐴 ⊑ 𝐴′
represents a proof

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:22 Max S. New, Eric Giovannini, and Daniel R. Licata

Σ ⊢ bool : bool ⊑ bool
Σ ⊢ 𝑑𝑖 : 𝐴 ⊑ 𝐴′ Σ ⊢ 𝑑𝑒 : 𝜎 ⊑ 𝜎 ′ Σ ⊢ 𝑑𝑜 : 𝐵 ⊑ 𝐵′

Σ ⊢ 𝑑𝑖 →𝑑𝑒 𝑑𝑜 : 𝐴 →𝜎 𝐵 ⊑ 𝐴′ →𝜎 ′ 𝐵′

Σ ⊢ ? : ? ⊑ ?

supp(𝑑𝑐) = supp(𝜎𝑐) = supp(𝜎 ′
𝑐)

(∀𝜀 : 𝑐 { 𝑑 ∈ 𝑑𝑐 , 𝜀 : 𝐴 { 𝐵 ∈ 𝜎𝑐 , 𝜀 : 𝐴
′ { 𝐵′ ∈ 𝜎 ′

𝑐 .

Σ ⊢ 𝑐 : 𝐴 ⊑ 𝐴′ Σ ⊢ 𝑑 : 𝐵 ⊑ 𝐵′)
Σ ⊢ 𝑑𝑐 : 𝜎𝑐 ⊑ 𝜎 ′

𝑐

Σ ⊢ 𝑑𝑐 : 𝜎𝑐 ⊑ Σ|supp(𝜎𝑐)
Σ ⊢ inj(𝑑𝑐) : 𝜎𝑐 ⊑ ?

𝜀 : 𝑐 { 𝑑 ∈ Σ

Σ ⊢ 𝜀 : 𝑐 { 𝑑 ∈ ?

Σ ⊢ 𝜀 : 𝑐′ { 𝑑 ′ ∈ 𝑑𝑐 𝑐 = inj(𝑐′) 𝑑 = inj(𝑑 ′)
Σ ⊢ 𝜀 : 𝑐 { 𝑑 ∈ inj(𝑑𝑐)

Fig. 13. Type and Effect Precision Derivations

that 𝐴 ⊑ 𝐴′
, and is built up inductively using the rules in the figure. Likewise, 𝑑𝜎 : 𝜎 ⊑ 𝜎 ′

is an

inductively constructed proof witnessing the fact that 𝜎 is more precise than 𝜎 ′
. The benefit to

making these derivations explicit in the syntax is that we can perform induction over them. As

part of the definition of effect precision derivation, we use the notion of an effect operation being

“in" a precision derivation 𝜀 : 𝑐 { 𝑑 ∈ 𝑑𝑐 . For when 𝑑𝑐 itself is a partial function this is just as with

earlier usage, but when 𝑑𝑐 = ? or 𝑑𝑐 = inj(𝑑 ′𝑐) we use the definition at the bottom of the figure.

The assignment of derivations to type and effect precision given in Figure 13 is equivalent to the

definition of precision given in Figure 5, in the sense that the choice does not affect provability:

Lemma 5.4 (Correctness of Precision Derivation Assignment). Assuming Σ ⊢ 𝐴 and Σ ⊢ 𝐵,
the following are equivalent

• 𝐴 ⊑ 𝐴′
is provable in the system in Figure 5

• There exists a derivation Σ ⊢ 𝑐 : 𝐴 ⊑ 𝐴′
in the system in Figure 13.

Similarly, assuming Σ ⊢ 𝜎 and Σ ⊢ 𝜎 ′
, the following are equivalent

• 𝜎 ⊑ 𝜎 ′
is provable in the system in Figure 5

• There exists a derivation Σ ⊢ 𝑐𝑒 : 𝜎 ⊑ 𝜎 ′
in the system in Figure 13.

We also have that precision derivations are unique if they exist:

Lemma 5.5 (Uniqeness of Precision Derivations). If 𝐴 ⊑ 𝐵, then there is exactly one value

type precision derivation 𝑐 such that 𝑐 : 𝐴 ⊑ 𝐵. Likewise, if 𝜎 ⊑ 𝜎 ′
, then there is exactly one effect type

precision derivation 𝑑𝜎 such that 𝑑𝜎 : 𝜎 ⊑ 𝜎 ′
.

The definition of the logical relation is given in Figure 15. Following prior work on logical

relations for graduality, the relation is indexed not by types, but by type precision derivations. For

a type precision derivation 𝑐 , define 𝑐𝑙 and 𝑐𝑟 to be the types such that 𝑐 : 𝑐𝑙 ⊑ 𝑐𝑟 , and analogously

for effect types.

Figure 14 defines the notions of well typed value, term, and evaluation-context atoms. These

are used in the definition of the step-indexed logical relation for graduality. Given a value type

precision derivation 𝑐 , the set VAtom 𝑐 consists of pairs of values (𝑉1,𝑉2) such that 𝑉1 has type 𝑐
𝑙

and 𝑉2 has type 𝑐
𝑟
. Similarly, given types 𝐴𝑙

and 𝐴𝑟
and an effect type precision derivation 𝑑𝜎 , the

set TAtom𝐴𝑙 𝐴𝑟 𝑑𝜎 consists of pairs of terms (𝑀1, 𝑀2) with value types 𝐴𝑙
and 𝐴𝑟

and effect types

𝑑𝑙𝜎 and 𝑑𝑟𝜎 , respectively. An evaluation context can be thought of as a term with a hole, which when

filled yields another term. For our purposes, an evaluation context corresponds to a continuation

that accepts a value and returns a term. The type of the hole is the type of the input value to the

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:23

continuation. The set ECtxAtom 𝑐 (𝜎𝑙 !𝐴𝑙) (𝜎𝑟 !𝐴𝑟) consists of pairs of such evaluation contexts

whose input value types are 𝑐𝑙 and 𝑐𝑟 respectively, and whose output value and effect types are

𝐴𝑙 , 𝐴𝑟
and 𝜎𝑙 , 𝜎𝑟 , respectively.

VAtom 𝑐 := {(𝑉 𝑙 ,𝑉 𝑟) : val(𝑉 𝑙) ∧ val(𝑉 𝑟)∧
(Σ | · | · ⊢∅ 𝑉 𝑙

: 𝑐𝑙) ∧ (Σ | · | · ⊢∅ 𝑉 𝑟
: 𝑐𝑟)}

TAtom𝐴𝑙 𝐴𝑟 𝑑𝜎 := {(𝑀𝑙 , 𝑀𝑟) :
(Σ | · | · ⊢𝑑𝑙𝜎 𝑀𝑙

: 𝐴𝑙) ∧ (Σ | · | · ⊢𝑑𝑟𝜎 𝑀𝑟
: 𝐴𝑟)}

ECtxAtom 𝑐 (𝜎𝑙 !𝐴𝑙) (𝜎𝑟 !𝐴𝑟) := {(𝑥𝑙 .𝑀𝑙 , 𝑥𝑟 .𝑀𝑟) :
(Σ | 𝑥𝑙 : 𝑐𝑙 | · ⊢𝜎𝑙 𝑀𝑙

: 𝐴𝑙) ∧ (Σ | 𝑥𝑟 : 𝑐𝑟 | · ⊢𝜎𝑟 𝑀𝑟
: 𝐴𝑟)}

Fig. 14. Well typed atoms

(𝑀1, 𝑀2) ∈ (▶𝑅) 𝑗 ⇐⇒ 𝑗 = 0 ∨ (𝑗 = 𝑘 + 1 ∧ (𝑀1, 𝑀2) ∈ 𝑅𝑘)
(𝑉1,𝑉2) ∈ V∼

𝑗 ⟦bool⟧ ⇐⇒ (𝑉1,𝑉2) ∈ VAtom bool∧
(𝑉1 = 𝑉2 = true) ∨ (𝑉1 = 𝑉2 = false)

(𝑉1,𝑉2) ∈ V∼
𝑗 ⟦𝑑𝑖 →𝑑𝜎 𝑑𝑜⟧ ⇐⇒ (𝑉1,𝑉2) ∈ VAtom (𝑑𝑖 →𝑑𝜎 𝑑𝑜)∧

∀𝑘 ≤ 𝑗 .∀(𝑉𝑖1,𝑉𝑖2) ∈ V∼
𝑘
⟦𝑑𝑖⟧.

(𝑉1𝑉𝑖1,𝑉2𝑉𝑖2) ∈ E∼
𝑘
⟦𝑑𝜎⟧(V∼⟦𝑑𝑜⟧)

(𝑀1, 𝑀2) ∈ E⪯
𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟) ⇐⇒ (𝑀1, 𝑀2) ∈ TAtom𝐴𝑙 𝐴𝑟 𝑑𝜎 ∧ (𝑀1 ↦→𝑗+1

∨(∃𝑘 ≤ 𝑗 . (𝑀1 ↦→𝑗−𝑘 ℧)
∨(∃(𝑁1, 𝑁2) ∈ R⪯

𝑘
⟦𝑑𝜎⟧𝑅∧

𝑀1 ↦→𝑗−𝑘 𝑁1 ∧𝑀2 ↦→∗ 𝑁2)))
(𝑀1, 𝑀2) ∈ E⪰

𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟) ⇐⇒ (𝑀1, 𝑀2) ∈ TAtom𝐴𝑙 𝐴𝑟 𝑑𝜎 ∧ (𝑀2 ↦→𝑗+1

∨(∃𝑘 ≤ 𝑗 .(𝑀2 ↦→𝑗−𝑘 ℧ ∧𝑀1 ↦→∗ ℧)
∨(∃𝑁2 .𝑀2 ↦→𝑗−𝑘 𝑁2 ∧𝑀1 ↦→∗ ℧)
∨(∃(𝑁1, 𝑁2) ∈ R⪰

𝑘
⟦𝑑𝜎⟧𝑅∧

𝑀2 ↦→𝑗−𝑘 𝑁2 ∧𝑀1 ↦→∗ 𝑁1)))
(𝑀1, 𝑀2) ∈ R∼

𝑗 ⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟) ⇐⇒ (𝑀1, 𝑀2) ∈ TAtom𝐴𝑙 𝐴𝑟 𝑑𝜎∧
((val(𝑀1) ∧ val(𝑀2) ∧ (𝑀1, 𝑀2) ∈ 𝑅 𝑗)
∨(∃𝜖 : 𝑐 { 𝑑 ∈ 𝑑𝜎 , 𝐸

𝑙
#𝜖, 𝐸𝑟#𝜖,𝑉 𝑙 ,𝑉 𝑟 .

(𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝑐⟧) 𝑗∧
(𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈ (▶K∼⟦𝑑⟧) 𝑗
(E∼⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟), (𝑑𝑙𝜎 !𝐴𝑙), (𝑑𝑟𝜎 !𝐴𝑟))∧

𝑀1 = 𝐸𝑙 [raise 𝜖 (𝑉 𝑙)] ∧𝑀2 = 𝐸𝑟 [raise 𝜖 (𝑉 𝑟)]))
(𝑥𝑙 .𝑀𝑙 , 𝑥𝑟 .𝑀𝑟) ∈ ⇐⇒ (𝑀𝑙 , 𝑀𝑟) ∈ ECtxAtom 𝑐 (𝜎𝑙 !𝐴𝑙) (𝜎𝑟 !𝐴𝑟)∧

K∼
𝑗 ⟦𝑐⟧(𝑆, (𝜎𝑙 !𝐴𝑙), (𝜎𝑟 !𝐴𝑟)) ∀𝑘 ≤ 𝑗 .(𝑉 𝑙 ,𝑉 𝑟) ∈ V∼

𝑘
⟦𝑐⟧.

(𝑀𝑙 [𝑉 𝑙/𝑥𝑙], 𝑀𝑟 [𝑉 𝑟/𝑥𝑟]) ∈ 𝑆𝑘
(𝛾1, 𝛾2) ∈ G∼

𝑗 ⟦Γ⊑⟧ ⇐⇒ ∀(𝑥1 ⊑ 𝑥2 : 𝑐) ∈ Γ⊑ .(𝛾1 (𝑥1), 𝛾2 (𝑥2)) ∈ V∼
𝑗 ⟦𝑐⟧

Fig. 15. Logical Relation

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:24 Max S. New, Eric Giovannini, and Daniel R. Licata

At first glance, it may seem as though we do not need to employ step-indexing in the logical

relation. That is, it might seem that we could simply define the relation by induction on the structure

of the derivation of 𝐴 ⊑ 𝐴′
. However, this would not suffice — there is indeed recursion in the

logical relation, specifically in the result relation R∼⟦·⟧. This is discussed further below.

Given a step-indexed relation 𝑅, we define an operator ▶𝑅 (pronounced “later 𝑅”) as follows:

Terms𝑀1 and𝑀2 are related in ▶𝑅 at index 𝑛 if and only if either 𝑛 is zero, or 𝑛 ≥ 1 and𝑀1 and

𝑀2 are related in 𝑅 at index 𝑛 − 1.

Many of the details of the logical relation are similar to prior work, especially [New et al. 2020],

so we highlight the handling of effect types, which is novel. In addition to the usual expression

and value relations E∼⟦·⟧ and V∼⟦·⟧, we have a result relation R∼⟦·⟧ and a continuation relation

K∼⟦·⟧. In our language, a result is either a value, or an evaluation context 𝐸 wrapping a raise of

an operation 𝜀, such that 𝐸#𝜀. The result relation specifies the conditions for two such results to be

related.

Each of the relations is parameterized by a precision derivation. In the case of the expression

and result relations, this is an effect precision derivation, while for values and continuations, it is a

value type precision derivation. This is analogous to the usual approach whereby a logical relation

is indexed by a type. But instead of using types, we use precision derivations, i.e., the proof that

the type of the LHS term is more precise than the type of the RHS term. These derivations are used

implicitly to constrain the types of the LHS and RHS terms. For instance, in the value relation for

function types, the requirement that (𝑉1,𝑉2) ∈ VAtom𝑑𝑖 →𝑑𝜎 𝑑𝑜 ensures not only that 𝑉1 and 𝑉2
have function type, but that the type of 𝑉1 is more precise than the type of 𝑉2.

As in previous work on logical relations for graduality, the expression logical relation E∼⟦·⟧ is

split into two relations E⪯⟦·⟧ and E⪰⟦·⟧. The former counts the steps taken by the left-hand term,

while the latter counts steps taken by the right-hand term. This is captured by the quantitative

small-step reduction 𝑀 ↦→𝑗 𝑁 which means 𝑀 takes exactly 𝑗 steps to reduce to 𝑁 . The other

logical relations are also split into two versions in the same way. Despite needing two one-sided

versions of each relation, we are for the most part able to abstract over their differences: most of

the lemmas we prove hold for both versions with no adjustment needed. Notable exceptions are

transitivity and the anti- and forward reduction lemmas: these lemmas make crucial use of step

counting, so naturally the side whose steps we are counting makes a difference.

We note that in the definition of the value relation for function types, V∼⟦𝑑𝑜⟧ without the

step-index should be interpreted as a partial application, i.e., it is a function from step indices to

relations.

For the sake of clarity, we briefly outline the definition of the two one-sided expression relations.

In both relations, the first clause is a “time-out” condition. In the case when we’re counting steps

on the left (i.e., E⪯⟦·⟧), this states that if 𝑀1 takes 𝑗 + 1 or more steps, then it is automatically

related at step index 𝑗 to𝑀2. An analogous rule holds when counting steps on the right: if𝑀2 takes

𝑗 + 1 or more steps, then it is related to𝑀1 at step index 𝑗 . The next clauses relate to errors. In the

case of E⪯⟦·⟧, if𝑀1 errors in at most 𝑗 steps, then it is related to𝑀2 regardless of the behavior of

𝑀2. This models the axiom that error is the most precise term. In the case of E⪰⟦·⟧, if𝑀2 errors

in at most 𝑗 steps, we ensure that 𝑀1 also errors (in any number of steps, since we’re counting

steps on the right). We also allow for the case where𝑀2 reduces to a result in at most 𝑗 steps, and

𝑀1 errors. An equivalent way to phrase these rules that clarifies the similarity between the two

versions of the expression relation is that if 𝑀1 errors (in any number of steps), then it is related

to 𝑀2 in E⪰⟦·⟧ 𝑗 provided that 𝑀2 steps in at most 𝑗 steps to either an error, or a result. Finally,

the last clauses concern the case when both𝑀1 and𝑀2 step to results, where as usual in E⪯⟦·⟧ 𝑗
we require that𝑀1 takes at most 𝑗 steps and in E⪰⟦·⟧ 𝑗 we require that𝑀2 takes at most 𝑗 steps.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:25

In both cases, we check that the results to which they step are related in the result relation at the

appropriate step index.

One novel aspect of our logical relation is the result relation R∼⟦𝑑𝜎⟧. The result relation re-

lates terms 𝑀1 and 𝑀2 – of type 𝐴𝑙
and 𝐴𝑟

respectively – representing either two values or two

“evaluations” of raised operations. The result relation is parameterized by a step-indexed relation

𝑅 between values of type 𝐴𝑙
and 𝐴𝑟

(the types of 𝑀1 and 𝑀2). (Ultimately, 𝑅 will end up being

instantiated asV∼⟦𝑐⟧ for some 𝑐 .)𝑀1 and𝑀2 are related by R∼⟦𝑑𝜎⟧ at step index 𝑗 when either

(1) both terms are values and are related by 𝑅 at index 𝑗 , or (2) there exists an effect 𝜀 : 𝑐 { 𝑑 in 𝑑𝜎 ,

values 𝑉 𝑙
and 𝑉 𝑟

related later, and evaluation contexts (i.e., continuations – see below) 𝐸𝑙 and 𝐸𝑟

related later, such that𝑀1 is equal to raising the effect and then wrapping it in the continuation, and

likewise for𝑀2. Recall that 𝑑𝜎 is an effect precision derivation; “membership” in such a derivation is

defined inductively on the structure of the derivation (the formal definition is given in the appendix

[New et al. 2023]).

Observe that the result relation is recursive: If 𝑑𝜎 is the dynamic effect type ? then the definitions

of 𝑐 and 𝑑 may in general include ? in them. Thus, in order to maintain well-foundedness, when we

refer to the value and continuation relations in this part of the definition we need to “decrement

the step index" (hence the use of the later operator).

The relationK∼⟦·⟧ relates evaluation contexts 𝐸1 and 𝐸2, similar to prior work on logical relations

for continuations [Asai 2005]. As mentioned above, evaluation contexts represent continuations

that accept values. To enforce that the continuations accept values only, and not arbitrary terms,

the inputs to the continuation relation are actually terms 𝑀𝑙
and𝑀𝑟

with free variables 𝑥𝑙 and 𝑥𝑟 ,

respectively. 𝐸1 and 𝐸2 also have “output” types (𝐴𝑙
and 𝐴𝑟

) and “output” effect sets (𝜎𝑙 and 𝜎𝑟).

When values are plugged into 𝐸1 and 𝐸2, the result is two terms having types 𝐴𝑙
and 𝐴𝑟

and effect

sets 𝜎𝑙 and 𝜎𝑟 , respectively.

5.3 Proof of Graduality
Our goal is to prove that the inequational theory is sound with respect to the logical relation. First

we define the notion of two terms being related semantically:

Γ⊑ ⊨𝑑𝜎 𝑀1 ⊑ 𝑀2 ∈ 𝑐 := ∀ ∼ ∈ {⪯, ⪰}.∀𝑗 ∈ N.∀(𝛾1, 𝛾2) ∈ V∼
𝑗 ⟦Γ⟧.(𝑀1 [𝛾1], 𝑀2 [𝛾2]) ∈ E∼

𝑗 ⟦𝑑𝜎⟧V
∼⟦𝑐⟧.

That is, 𝑀1 and 𝑀2 are related if for all 𝑗 and all substitutions of values 𝛾1 and 𝛾2 related at 𝑗 ,

the resulting terms are related in E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐⟧, where this needs to hold both when ∼ is ⪯ and

when it is ⪰. Our goal is then to prove the following:

Theorem 5.6 (Graduality). If Γ⊑ ⊢𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑐 then Γ⊑ ⊨𝑑𝜎 𝑀 ⊑ 𝑁 ∈ 𝑐

We provide here a high-level overview of the proof; the complete proofs are in the appendix [New

et al. 2023]. We begin by establishing variants of standard anti- and forward-reduction lemmas

as well as monadic bind. We also prove a Löb induction principle to structure the induction over

step-indices. With these lemmas, we first prove soundness of each of the congruence rules for term

precision, by uses of the monadic bind lemma along with the reduction lemmas. Next, we prove

soundness of the rules of the equational theory, e.g., the 𝛽 and 𝜂 laws, and transitivity. Finally, we

prove soundness of the rules for casts and subtyping.

6 DISCUSSION
Prior Work on Gradual Effects. The most significant prior work on gradual effects is the work

of Bañados Schwerter and collaborators [Bañados Schwerter et al. 2014], who defined a gradual

effect system based on the generic effect calculus of Marino and Millstein [2009] using an early

version of the abstracting gradual typing (AGT) framework for gradual type systems[Garcia et al.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:26 Max S. New, Eric Giovannini, and Daniel R. Licata

2016]. While we based GrEff on effect handlers rather than the generic effect calculus, there are

significant similarities in the typing: function types and typing judgments are indexed by a set of

effect operations in each system. The most significant syntactic difference is that their framework

is parameterized by a fixed effect theory, whereas GrEff has explicit support for declaration of

new effects in the program. In particular, this means that their system does not need to support

modules containing different views of the same nominal effect as we did. They additionally support

a form of partially tracked functions, in GrEff syntax this would look like 𝐴 →𝜀,? 𝐵, a function

type where the function is known specifically to possibly raise the effect 𝜀 in addition to raising

other effects. In GrEff this partial tracking would ensure that any effects raised with the name 𝜀

match the module’s local view of the effect typing of 𝜀. Finally, on the semantic side, this prior

work proves only a type safety proof, whereas here we have proven graduality and the correctness

of type-based optimizations and handler optimizations.

Another related area of research is on gradual typing with delimited continuations, which are

mutually expressible with effect handlers [Forster et al. 2019; Piróg et al. 2019]. Takikawa and

co-authors propose a gradual type system and semantics via contracts for a language with delimited

continuations using typed prompts [Takikawa et al. 2013]. They consider only value types and

untracked function types that do not say which prompts are expected to be present. They show

that a naive contract based implementation is unsound because a dynamically typed program

can interact with a typed prompt and therefore the prompts themselves must be equipped with

contracts, even though it does not correspond to any value being imported. In core GrEff, this

unsoundness is ruled out by using intrinsic typing: the problem corresponds to raising an effect

operation with a different type than the type expected by the closest handler, which is precisely

what the effect type system tracks. Wrapping the prompt in contracts is behaviorally equivalent to

what is achieved by our effect type casts. Sekiyama, Ueda and Igarashi present a blame calculus for

a language with shift and reset [Sekiyama et al. 2015]. The blame calculus is analogous to our core

GrEff language, and uses a type and effect system for the answer types of shift/reset. They do not

develop a surface language that elaborates to this blame calculus like our GrEff, and there is no

analog of effect operations in shift/reset-based systems so there are no nominal aspects of their

language. Additionally, while they have an effect system to keep track of answer types, they do not

have effect casts.

Prior Approaches to Gradual Nominal Datatypes. We are also not the first to consider the combi-

nation of gradual and nominal typing. The closest match to our design is in Typed Racket’s support

for typed structs. In Racket, a struct is a kind of record type that (by default) is generative in that it

creates a new type tag distinct from all others. Typed Racket supports import of untyped Racket

structs into Typed Racket, where types are assigned to the fields, and values of the struct type

are then wrapped in contracts accordingly. This is quite close to our treatment of nominal effect

operations which can be thought of as adding new cases to the dynamic effect monad rather than

dynamic type. Our type system is more complex however, since in our system modules can use

dynamically typed effects whereas in Typed Racket, there is no syntactic type for dynamically

typed values, when imported into typed code the system must give a completely precise type.

Malewski and co-authors present a design for gradual typing with nominal algebraic datatypes

[Malewski et al. 2021]. Their focus is on the gradual migration from datatypes whose cases are

open-ended to datatypes with a fixed set of constructors. They do not consider the use-case we

have where different modules have different typings for the same nominal constructor.

Prior Work on Subtyping. Much prior work on incorporating subtyping with gradual types has

focused on the static typing aspects [Castagna et al. 2019; Garcia and Cimini 2015; Siek and Taha

2007; Wadler and Findler 2009]. The most significant prior semantic work on subtyping and gradual

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:27

typing is the Abstracting Gradual Typing work [Garcia et al. 2016] which proves the dynamic

gradual guarantee for a system with subtyping developed using the AGT methodology. In this

work we establish equivalence between multiple different ways to combine gradual type casts

and subtyping coercions, summarized in Figure 12, which are derivable from our newly identified

cast/coercion ordering principle in our equational theory (Figure 10).

Towards a Practical Language Design. GrEff is intended as a proof-of-concept language design to

provide the semantic foundation for extending a language such as OCaml 5 with gradual effect

typing. We discuss the current mismatches with OCaml’s design and how these might be rectified.

First, OCaml uses extensible variant types for effects and exceptions, whereas in GrEff effects are

not first-class values. This should not be difficult to support as the variant type can be treated

somewhat similarly to a dynamic type. Next, OCaml supports recursive effect types, meaning that

the request or response of an effect can refer to the effect being defined. For instance, this allows

for a variant of our coroutine example where forked threads can fork further threads. This would

complicate the metatheory of GrEff but should work in principle. The logical relation already

supports a form of recursive effect type in the form of the dynamic type, and so this could be

extended to arbitrary recursive definitions using step-indexing in a similar fashion. A final syntactic

difference is that OCaml is based on Hindley-Milner-style polymorphic type schemes, whereas

GrEff is based on a simple type system. It may be possible to adapt previous work for gradual

typing in unification-based type systems[Castagna et al. 2019; Garcia and Cimini 2015; Siek and

Vachharajani 2008].

Implementing gradual effects brings its own challenges. Our derivation of the operational seman-

tics is based on proving that effect casts can be implemented as handlers, and so can be implemented

by a source-to-source transformation. However, such an implementation may suffer from similar

performance issues as other naive wrapper semantics, which can be solved by defunctionalizing

the casts [Herman et al. 2010]. Additionally, strong gradual typing between fully dynamically typed

and static code can result in high performance penalties [Takikawa et al. 2016] even with space

efficient implementations. However since effect casts would not be as pervasive in typical programs

as value type casts, it is not obvious that the same pathological behaviors would arise in gradually

effect typed OCaml programs. This is a clear empirical question to be addressed in future work.

Guarded Recursion as an alternative to Explicit Step-Indexing. The later operator ▶ was originally

studied by Nakano [Nakano 2000] as a modality for expressing guarded recursive types and this has

been used along with the principle of Löb-induction ((▶𝑃 ⇒ 𝑃) ⇒ 𝑃) to develop domain-specific

logics for step-indexed logical relations [Dreyer et al. 2009]. This allows for proofs to be carried

out without explicit reference to step indices. More generally, the mathematical area of synthetic

guarded domain theory (SGDT) has extended this approach from higher-order logic to a full modal

dependent type theory [Bahr et al. 2017; Birkedal et al. 2011]. Such an approach might considerably

simplify the construction of a logical relations model by avoiding the explicit threading of steps,

at the cost of using a non-standard meta-logic, and so would be an interesting avenue for future

work. However, it is not clear how to adapt the final graduality property from Section 5.3, which

quantifies over all step indices to this setting.

REFERENCES
Kenichi Asai. 2005. Logical relations for call-by-value delimited continuations. In Revised Selected Papers from the Sixth

Symposium on Trends in Functional Programming, TFP 2005, Tallinn, Estonia, 23-24 September 2005 (Trends in Functional

Programming, Vol. 6), Marko C. J. D. van Eekelen (Ed.). 63–78.

Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. 2014. A Theory of Gradual Effect Systems. In Proceedings of

the 19th ACM SIGPLAN International Conference on Functional Programming (Gothenburg, Sweden) (ICFP ’14). 283–295.

https://doi.org/10.1145/2692915.2628149

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

https://doi.org/10.1145/2692915.2628149

284:28 Max S. New, Eric Giovannini, and Daniel R. Licata

Patrick Bahr, Hans Bugge Grathwohl, and Rasmus Ejlers Møgelberg. 2017. The clocks are ticking: No more delays!. In 2017

32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 1–12. https://doi.org/10.1109/LICS.2017.8005097

Lars Birkedal, Rasmus Ejlers Mogelberg, Jan Schwinghammer, and Kristian Stovring. 2011. First Steps in Synthetic Guarded

Domain Theory: Step-Indexing in the Topos of Trees. In lics11. https://doi.org/10.1109/LICS.2011.16

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. Effekt: Capability-passing style for type- and

effect-safe, extensible effect handlers in Scala. J. Funct. Program. 30 (2020), e8. https://doi.org/10.1017/S0956796820000027

Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek. 2019. Gradual Typing: A New Perspective.

Proc. ACM Program. Lang. 3, POPL, Article 16 (jan 2019), 32 pages. https://doi.org/10.1145/3290329

WasmFX Contributors. [n.d.]. WasmFX: Effect Handlers for WebAssembly. https://wasmfx.dev/ Accessed: 2020-11-10.

Ezra Cooper, Sam Lindley, PhilipWadler, and Jeremy Yallop. 2006. Links:Web ProgrammingWithout Tiers. In Formal Methods

for Components and Objects, 5th International Symposium, FMCO 2006, Amsterdam, The Netherlands, November 7-10, 2006,

Revised Lectures (Lecture Notes in Computer Science, Vol. 4709). 266–296. https://doi.org/10.1007/978-3-540-74792-5_12

Derek Dreyer, Amal Ahmed, and Lars Birkedal. 2009. Logical Step-Indexed Logical Relations. In 2009 24th Annual IEEE

Symposium on Logic In Computer Science. 71–80. https://doi.org/10.1109/LICS.2009.34

Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. 2019. On the expressive power of user-defined effects:

Effect handlers, monadic reflection, delimited control. J. Funct. Program. 29 (2019), e15. https://doi.org/10.1017/

S0956796819000121

Ronald Garcia and Matteo Cimini. 2015. Principal Type Schemes for Gradual Programs. In Proceedings of the 42nd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17,

2015, Sriram K. Rajamani and David Walker (Eds.). ACM, 303–315. https://doi.org/10.1145/2676726.2676992

Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual Typing. In ACM Symposium on Principles of

Programming Languages (POPL). https://doi.org/10.1145/2837614.2837670

David Herman, Aaron Tomb, and Cormac Flanagan. 2010. Space-Efficient Gradual Typing. Higher Order Symbol. Comput.

23, 2 (jun 2010), 167–189. https://doi.org/10.1007/s10990-011-9066-z

Oleg Kiselyov, Amr Sabry, and Cameron Swords. 2013. Extensible effects: an alternative to monad transformers. In

Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell, Boston, MA, USA, September 23-24, 2013. ACM, 59–70.

https://doi.org/10.1145/2503778.2503791

Nico Lehmann and Éric Tanter. 2017. Gradual Refinement Types. In ACM Symposium on Principles of Programming Languages

(POPL). https://doi.org/10.1145/3009837.3009856

Daan Leijen. 2014. Koka: Programming with Row Polymorphic Effect Types. In Proceedings 5th Workshop on Mathematically

Structured Functional Programming, MSFP@ETAPS 2014, Grenoble, France, 12 April 2014 (EPTCS, Vol. 153). 100–126.

https://doi.org/10.4204/EPTCS.153.8

Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do be do be do. In Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017. ACM, 500–514.

https://doi.org/10.1145/3009837.3009897

Stefan Malewski, Michael Greenberg, and Éric Tanter. 2021. Gradually structured data. Proc. ACM Program. Lang. 5, OOPSLA

(2021), 1–29. https://doi.org/10.1145/3485503

Daniel Marino and Todd D. Millstein. 2009. A generic type-and-effect system. In Proceedings of TLDI’09: 2009 ACM SIGPLAN

International Workshop on Types in Languages Design and Implementation, Savannah, GA, USA, January 24, 2009, Andrew

Kennedy and Amal Ahmed (Eds.). ACM, 39–50. https://doi.org/10.1145/1481861.1481868

H. Nakano. 2000. A modality for recursion. In Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science

(Cat. No.99CB36332). 255–266. https://doi.org/10.1109/LICS.2000.855774

Max S. New and Amal Ahmed. 2018. Graduality from Embedding-Projection Pairs. In International Conference on Functional

Programming (ICFP), St. Louis, Missouri. https://doi.org/10.1145/3236768

Max S. New, Eric Giovannini, and Daniel R. Licata. 2023. Gradual Typing for Effect Handlers (Extended Version). (2023).

https://maxsnew.com/docs/greff-extended.pdf

Max S. New, Dustin Jamner, and Amal Ahmed. 2020. Graduality and parametricity: together again for the first time. Proc.

ACM Program. Lang. 4, POPL (2020), 46:1–46:32. https://doi.org/10.1145/3371114

Max S. New and Daniel R. Licata. 2018. Call-by-name Gradual Type Theory. In Formal Structures for Computation and

Deduction, Oxford England. https://doi.org/10.4230/LIPIcs.FSCD.2018.24

Max S. New, Daniel R. Licata, and Amal Ahmed. 2019. Gradual Type Theory. InACM Symposium on Principles of Programming

Languages (POPL), Cascais, Portugal. https://doi.org/10.1145/3290328

Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019. Typed Equivalence of Effect Handlers and Delimited Control. In

4th International Conference on Formal Structures for Computation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund,

Germany (LIPIcs, Vol. 131), Herman Geuvers (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 30:1–30:16.

https://doi.org/10.4230/LIPIcs.FSCD.2019.30

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

https://doi.org/10.1109/LICS.2017.8005097
https://doi.org/10.1109/LICS.2011.16
https://doi.org/10.1017/S0956796820000027
https://doi.org/10.1145/3290329
https://wasmfx.dev/
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1109/LICS.2009.34
https://doi.org/10.1017/S0956796819000121
https://doi.org/10.1017/S0956796819000121
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1007/s10990-011-9066-z
https://doi.org/10.1145/2503778.2503791
https://doi.org/10.1145/3009837.3009856
https://doi.org/10.4204/EPTCS.153.8
https://doi.org/10.1145/3009837.3009897
https://doi.org/10.1145/3485503
https://doi.org/10.1145/1481861.1481868
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1145/3236768
https://maxsnew.com/docs/greff-extended.pdf
https://doi.org/10.1145/3371114
https://doi.org/10.4230/LIPIcs.FSCD.2018.24
https://doi.org/10.1145/3290328
https://doi.org/10.4230/LIPIcs.FSCD.2019.30

Gradual Typing for Effect Handlers (Extended Version) 284:29

Gordon D. Plotkin and Matija Pretnar. 2009. Handlers of Algebraic Effects. In Programming Languages and Systems, 18th

European Symposium on Programming, ESOP 2009, Held as Part of the Joint European Conferences on Theory and Practice

of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5502). 80–94.

https://doi.org/10.1007/978-3-642-00590-9_7

Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi. 2015. Shifting the Blame - A Blame Calculus with Delimited Control. In

Programming Languages and Systems - 13th Asian Symposium, APLAS 2015, Pohang, South Korea, November 30 - December

2, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9458), Xinyu Feng and Sungwoo Park (Eds.). Springer, 189–207.

https://doi.org/10.1007/978-3-319-26529-2_11

Jeremy Siek, Micahel Vitousek, Matteo Cimini, and John Tang Boyland. 2015. Refined Criteria for Gradual Typing. In 1st

Summit on Advances in Programming Languages (SNAPL 2015). https://doi.org/10.4230/LIPIcs.SNAPL.2015.274

Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In Scheme and Functional Programming

Workshop (Scheme). 81–92.

Jeremy G. Siek and Walid Taha. 2007. Gradual Typing for Objects. In European Conference on Object-Oriented Programming

(ECOOP). https://doi.org/10.1007/978-3-540-73589-2_2

Jeremy G. Siek and Manish Vachharajani. 2008. Gradual typing with unification-based inference. In Proceedings of the

2008 Symposium on Dynamic Languages, DLS 2008, July 8, 2008, Paphos, Cyprus, Johan Brichau (Ed.). ACM, 7. https:

//doi.org/10.1145/1408681.1408688

K. C. Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy. 2021. Retrofitting

effect handlers onto OCaml. In PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language Design

and Implementation, Virtual Event, Canada, June 20-25, 2021. ACM, 206–221. https://doi.org/10.1145/3453483.3454039

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias Felleisen. 2016. Is Sound Gradual

Typing Dead?. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (St. Petersburg, FL, USA) (POPL ’16). Association for Computing Machinery, New York, NY, USA, 456–468.

https://doi.org/10.1145/2837614.2837630

Asumu Takikawa, T. Stephen Strickland, and Sam Tobin-Hochstadt. 2013. Constraining Delimited Control with Contracts.

In Programming Languages and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings

(Lecture Notes in Computer Science, Vol. 7792), Matthias Felleisen and Philippa Gardner (Eds.). Springer, 229–248. https:

//doi.org/10.1007/978-3-642-37036-6_14

Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and Implementation of Typed Scheme. In ACM Symposium

on Principles of Programming Languages (POPL), San Francisco, California. https://doi.org/10.1145/1328438.1328486

Philip Wadler. 2021. GATE: Gradual Effect Types. In Leveraging Applications of Formal Methods, Verification and Validation -

10th International Symposium on Leveraging Applications of Formal Methods, ISoLA 2021, Rhodes, Greece, October 17-29,

2021, Proceedings (Lecture Notes in Computer Science, Vol. 13036), Tiziana Margaria and Bernhard Steffen (Eds.). Springer,

335–345. https://doi.org/10.1007/978-3-030-89159-6_21

PhilipWadler and Robert Bruce Findler. 2009. Well-typed programs can’t be blamed. In European Symposium on Programming

(ESOP) (York, UK). 1–16. https://doi.org/10.1007/978-3-642-00590-9_1

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-319-26529-2_11
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1145/1408681.1408688
https://doi.org/10.1145/1408681.1408688
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1007/978-3-642-37036-6_14
https://doi.org/10.1007/978-3-642-37036-6_14
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1007/978-3-030-89159-6_21
https://doi.org/10.1007/978-3-642-00590-9_1

284:30 Max S. New, Eric Giovannini, and Daniel R. Licata

A (IN)EQUATIONAL THEORY
In this section we describe the full inequational theory and then prove several derivable theorems

in the theory.

Note that for brevity, we use some shorthands: rather than writing out the full Σ | Γ⊑ ⊢𝜎⊑𝜏 𝑀 ⊑
𝑁 : 𝐴 ⊑ 𝐵, (1) we elide Σ | Γ⊑ , and all rules should be interpreted as holding under an arbitrary

such contexts (2) rather than write 𝜎 ⊑ 𝜏 and 𝐴 ⊑ 𝐵, we use instead precision derivations 𝑑𝜎 , 𝑐 and

(3) whenever it is clear, we elide the types as well, especially for equational rules.

First we need general call-by-value reasoning principles.

𝑀 [𝑥 : 𝐴] ≡ 𝑁 [𝑥 : 𝐴] 𝑉 ≡ 𝑉 ′
: 𝐴

𝑀 [𝑉 /𝑥] ≡ 𝑁 [𝑉 ′/𝑥]
ValSubst

let 𝑥 = 𝑦 in 𝑁 ≡ 𝑁 [𝑦/𝑥] MonadUnitL

let 𝑥 = 𝑀 in 𝑥 ≡ 𝑀 MonardUnitR

let 𝑦 = (let 𝑥 = 𝑀 in 𝑁) in 𝑃 ≡ let 𝑥 = 𝑀 in let 𝑦 = 𝑁 in 𝑃 MonadAssoc

𝑀 [𝑥 : bool] ≡ if 𝑥{𝑀 [true/𝑥]}{𝑀 [false/𝑥]} BoolEta

if true{𝑁𝑡 }{𝑁𝑓 } ≡ 𝑁𝑡 BoolBetaTru if false{𝑁𝑡 }{𝑁𝑓 } ≡ 𝑁𝑓 BoolBetaFalse

if 𝑀{𝑁𝑡 }{𝑁𝑓 } ≡ let 𝑥 = 𝑀 in if 𝑥{𝑁𝑡 }{𝑁𝑓 } IfEval (𝜆𝑥.𝑀)𝑉 ≡ 𝑀 [𝑉 /𝑥] FunBeta

(𝑉 : 𝐴 → 𝐵) ≡ 𝜆𝑥.𝑉𝑥 FunEta 𝑀 𝑁 ≡ let 𝑥 = 𝑀 in let 𝑦 = 𝑁 in 𝑥 𝑦 AppEval

Next, the rules specifically for raise and handlers:

handle 𝑥 {ret 𝑦.𝑀 | 𝜙} ≡ 𝑀 [𝑥/𝑦] HandleBetaRet

handle (let 𝑜 = raise 𝜀 (𝑥) in 𝑁𝑘) {ret 𝑦.𝑀 | 𝜙} ≡
𝜙 (𝜀) [𝜆𝑜.handle 𝑁𝑘 {ret 𝑦.𝑀 | 𝜙}/𝑘] HandleBetaRaise

raise 𝜀 (𝑀) ≡ let 𝑥 = 𝑀 in raise 𝜀 (𝑥) RaiseEval

handle 𝑀 {ret 𝑥 .𝑁 | ∅} ≡ let 𝑥 = 𝑀 in 𝑁 HandleEmpty

∀𝜀 ∈ dom(𝜙). 𝜓 (𝜀) = 𝜙 (𝜀) ∀𝜀 ∈ dom(𝜓).𝜀 ∉ dom(𝜙) ⇒ 𝜓 (𝜀) = 𝑘 (raise 𝜀 (𝑥))
handle 𝑀 {ret 𝑦.𝑁 | 𝜙} ≡ handle 𝑀 {ret 𝑦.𝑁 | 𝜓 }

HandleExt

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:31

Next, the congruence rules

𝑥1 ⊑ 𝑥2 : 𝑐 ∈ Γ⊑

Σ | Γ⊑ ⊢𝑑𝜎 𝑥1 ⊑ 𝑥2 : 𝑐
VarCong

⊢𝑑𝜎 true ⊑ true : bool
TrueCong

⊢𝑑𝜎 false ⊑ false : bool
FalseCong

𝑥1 ⊑ 𝑥2 : 𝑐 ⊢𝑑𝜎 ′ 𝑀1 ⊑ 𝑀2 : 𝑑

⊢𝑑𝜎 𝜆𝑥1.𝑀1 ⊑ 𝜆𝑥2.𝑀2 : 𝑐 →𝑑𝜎 ′ 𝑑
LambdaCong

⊢𝑑𝜎 𝑀1 ⊑ 𝑀2 : 𝑐 →𝑑𝜎 𝑑 ⊢𝑑𝜎 𝑁1 ⊑ 𝑁2 : 𝑐

⊢𝑑𝜎 𝑀1 𝑁1 ⊑ 𝑀2 𝑁2 : 𝑑
AppCong

⊢𝑑𝜎 𝑀1 ⊑ 𝑀2 : 𝑐

𝑥1 ⊑ 𝑥2 : 𝑐 ⊢𝑑𝜎 𝑁1 ⊑ 𝑁2 : 𝑑

⊢𝑑𝜎 let 𝑥1 = 𝑀1 in 𝑁1 ⊑ let 𝑥2 = 𝑀2 in 𝑁2 : 𝑑
LetCong

⊢𝑑𝜎 𝑀 ⊑ 𝑀 ′
: bool

⊢𝑑𝜎 𝑁𝑡 ⊑ 𝑁 ′
𝑡 : 𝑐 ⊢𝑑𝜎 𝑁𝑓 ⊑ 𝑁 ′

𝑓
: 𝑐

⊢𝑑𝜎 if 𝑀{𝑁𝑡 }{𝑁𝑓 } ⊑ if 𝑀 ′{𝑁 ′
𝑡 }{𝑁 ′

𝑓
} : 𝑐

IfCong

𝑐 : 𝐴1 ⊑ 𝐴2 𝑑 : 𝐵1 ⊑ 𝐵2

𝜀 : 𝑐 { 𝑑 ∈ 𝑑𝜎 ⊢𝑑𝜎 𝑀1 ⊑ 𝑀2 : 𝑐

⊢𝑑𝜎 raise 𝜀 (𝑀1) ⊑ raise 𝜀 (𝑀2) : 𝑑
RaiseCong

⊢𝑑𝜎 𝑀 ⊑ 𝑀 ′
: 𝑐 𝑦 : 𝑐 ⊢𝑑𝜏 𝑁 ⊑ 𝑁 ′

: 𝑑

∀𝜀 : 𝑑𝑖 { 𝑑𝑜 ∈ 𝑑𝜎 .(𝜀 ∉ dom(𝜙) ∧ 𝜀 ∉ dom(𝜙 ′) ∧ 𝜀 : 𝑑𝑖 { 𝑑𝑜 ∈ 𝑑𝜏)∨
𝑥 : 𝑑𝑖 , 𝑘 : 𝑑𝑜 →𝑑𝜏 𝑑 ⊢𝑑𝜏 𝜙 (𝜀) ⊑ 𝜙 ′ (𝜀) : 𝑑

⊢𝑑𝜏 handle 𝑀 {ret 𝑦.𝑁 | 𝜙} ⊑ handle 𝑀 ′ {ret 𝑦.𝑁 ′ | 𝜙 ′} : 𝑑
HandleCong

Next, the rules for errors

⊢𝑑𝜎𝑟 𝑀 : 𝑐𝑟

⊢𝑑𝜎 ℧ ⊑ 𝑀 : 𝑐
ErrBot

𝐸 [℧] ≡ ℧ ErrStrict

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:32 Max S. New, Eric Giovannini, and Daniel R. Licata

The generic rules for casts

⊢𝑑𝜎 𝑀 ⊑ 𝑁 : (𝑐 : 𝐴 ⊑ 𝐵) 𝑐 : 𝐴 ⊑ 𝐴

⊢𝑑𝜎 ⟨𝐵 ↢ 𝐴⟩𝑀 ⊑ 𝑁 : 𝐵
ValUpL

⊢𝜎 𝑀 : 𝐴 𝑐 : 𝐴 ⊑ 𝐵

⊢𝜎 𝑀 ⊑ ⟨𝐵 ↢ 𝐴⟩𝑀 : 𝑐
ValUpR

⟨𝐵 ↢ 𝐴⟩𝑀 ≡ let 𝑥 = 𝑀 in ⟨𝐵 ↢ 𝐴⟩𝑥 ValUpEval

𝑐 : 𝐴 ⊑ 𝐵 ⊢𝜎 𝑁 : 𝐵

⊢𝜎 ⟨𝐴 ↞ 𝐵⟩𝑁 ⊑ 𝑁 : 𝑐
ValDnL

⊢𝑑𝜎 𝑀 ⊑ 𝑁 : (𝑐 : 𝐴 ⊑ 𝐵)
⊢𝑑𝜎 𝑀 ⊑ ⟨𝐴 ↞ 𝐵⟩𝑁 : 𝐴

ValDnR

⟨𝐴 ↞ 𝐵⟩𝑀 ≡ let 𝑥 = 𝑀 in ⟨𝐴 ↞ 𝐵⟩𝑥 ValDnEval

⊢𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑐 𝑑𝜎 : 𝜎 ⊑ 𝜏

⊢𝜏 ⟨𝜏 ↢ 𝜎⟩𝑀 ⊑ 𝑁 : 𝑐
ValUpL

⊢𝜎 𝑀 : 𝐴 𝑑𝜎 : 𝜎 ⊑ 𝜏

⊢𝑑𝜎 𝑀 ⊑ ⟨𝜏 ↢ 𝜎⟩𝑀 : 𝑐
ValUpR

𝑑𝜎 : 𝜎 ⊑ 𝜏 ⊢𝜏 𝑁 : 𝐴

⊢𝑑𝜎 ⟨𝜎 ↞ 𝜏⟩𝑁 ⊑ 𝑁 : 𝐴
EffDnL

𝑑𝜎 : 𝜎 ⊑ 𝜏 ⊢𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑐

⊢𝜎 𝑀 ⊑ ⟨𝜎 ↞ 𝜏⟩𝑁 : 𝑐
EffDnR

And the subtyping rules

⊢𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑐 𝑑𝜎 : 𝜎 ⊑ 𝜏 𝑐 : 𝐴 ⊑ 𝐵

𝑑 ′𝜎 : 𝜎 ′ ⊑ 𝜏 ′ 𝑐′ : 𝐴′ ⊑ 𝐵′

𝜎 ≤ 𝜎 ′ 𝐴 ≤ 𝐴′ 𝜏 ≤ 𝜏 ′ 𝐵 ≤ 𝐵′

⊢𝑑 ′
𝜎
𝑀 ⊑ 𝑁 : 𝑐′

SubtyMon

𝑐 : 𝐴 ⊑ 𝐵 𝑐′ : 𝐴′ ⊑ 𝐵′ 𝑐 ≤ 𝑐′ ⊢𝜎 𝑀 : 𝐴

⊢𝜎 ⟨𝐵 ↢ 𝐴⟩𝑀 ≡ ⟨𝐵′ ↢ 𝐴′⟩𝑀 : 𝐵′ ValUpSub

𝑐 : 𝐴 ⊑ 𝐵 𝑐′ : 𝐴′ ⊑ 𝐵′ 𝑐 ≤ 𝑐′ ⊢𝜎 𝑁 : 𝐵

⊢𝜎 ⟨𝐴 ↞ 𝐵⟩𝑁 ≡ ⟨𝐴′
↞ 𝐵′⟩𝑁 : 𝜎 !𝐴′ ValDnSub

𝑐𝜎 : 𝜎 ⊑ 𝜏 𝑐′ : 𝜎 ′ ⊑ 𝜏 ′ 𝑐𝜎 ≤ 𝑐′𝜎 ⊢𝜎 𝑀 : 𝐴

⊢𝜏 ′ ⟨𝜏 ↢ 𝜎⟩𝑀 ≡ ⟨𝜏 ′ ↢ 𝜎 ′⟩𝑀 : 𝐴
EffUpSub

𝑐𝜎 : 𝜎 ⊑ 𝜏 𝑐′ : 𝜎 ′ ⊑ 𝜏 ′ 𝑐𝜎 ≤ 𝑐′𝜎 ⊢𝜏 𝑁 : 𝐴

⊢𝜎 ′ ⟨𝜎 ↞ 𝜏⟩𝑁 ≡ ⟨𝜎 ′
↞ 𝜏 ′⟩𝑁 : 𝐴

EffDnSub

In Figure 16, we list some derivable reasoning principles for our inequational theory, which

follow by analogous proofs to prior work.

We can show the following properties of the interaction between subtyping and casts axiomati-

cally:

Lemma A.1. The following hold:

(1) Σ | Γ⊑ ⊨𝑑𝜎 ⟨𝐵′ ↢ 𝐴′⟩𝑀 ⊑ ⟨𝐵 ↢ 𝐴⟩𝑁 : 𝐵′
.

(2) Σ | Γ⊑ ⊨𝑑𝜎 ⟨𝐴 ↞ 𝐵⟩𝑀 ⊑ ⟨𝐴′
↞ 𝐵′⟩𝑁 : 𝐴′

.

(3) Σ | Γ⊑ ⊨𝜎 ′
2

⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩𝑃 ⊑ ⟨𝜎2 ↢ 𝜎1⟩𝑄 : 𝑐 .

(4) Σ | Γ⊑ ⊨𝜎 ′
1

⟨𝜎1 ↞ 𝜎2⟩𝑃 ⊑ ⟨𝜎 ′
1 ↞ 𝜎 ′

2
⟩𝑄 : 𝑐 .

Proof.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:33

⟨𝐴 ↢ 𝐴⟩𝑀 ≡ 𝑀 ⟨𝜎 ↢ 𝜎⟩𝑀 ≡ 𝑀 ⟨𝐴 ↞ 𝐴⟩𝑀 ≡ 𝑀 ⟨𝜎 ↞ 𝜎⟩𝑀 ≡ 𝑀

⟨𝐶 ↢ 𝐵⟩⟨𝐵 ↢ 𝐴⟩𝑀 ≡ ⟨𝐶 ↢ 𝐴⟩𝑀 ⟨𝐴 ↞ 𝐵⟩⟨𝐵 ↞ 𝐶⟩𝑀 ≡ ⟨𝐴 ↞ 𝐶⟩𝑀

⟨𝜎 ′′ ↢ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝑀 ≡ ⟨𝜎 ′′ ↢ 𝜎⟩𝑀 ⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′
↞ 𝜎 ′′⟩𝑀 ≡ ⟨𝜎 ↞ 𝜎 ′′⟩𝑀

⟨𝐵 ↢ 𝐴⟩⟨𝜎 ′ ↢ 𝜎⟩𝑀 ≡ ⟨𝜎 ′ ↢ 𝜎⟩⟨𝐵 ↢ 𝐴⟩𝑀 ⟨𝐴 ↞ 𝐵⟩⟨𝜎 ↞ 𝜎 ′⟩𝑀 ≡ ⟨𝜎 ↞ 𝜎 ′⟩⟨𝐴 ↞ 𝐵⟩𝑀

Fig. 16. Provable Uniqueness Theorems

We have

⊢𝑑𝜎 𝑀 ⊑ 𝑁 : 𝐴

⊢𝑑𝜎 𝑀 ⊑ ⟨𝐵 ↢ 𝐴⟩𝑁 : 𝐴 ⊑ 𝐵
(ValUpR)

⊢𝑑𝜎 𝑀 ⊑ ⟨𝐵 ↢ 𝐴⟩𝑁 : 𝐴′ ⊑ 𝐵′ (Subtyping)

⊢𝑑𝜎 ⟨𝐵′ ↢ 𝐴′⟩𝑀 ⊑ ⟨𝐵 ↢ 𝐴⟩𝑁 : 𝐵′ (ValUpL)

Dual to the above.

We have

⊢𝜎1 𝑃 ⊑ 𝑄 : 𝑐

⊢𝑑𝜎 𝑃 ⊑ ⟨𝜎2 ↢ 𝜎1⟩𝑄 : 𝑐
(EffUpR)

⊢𝑑 ′
𝜎
𝑃 ⊑ ⟨𝜎2 ↢ 𝜎1⟩𝑄 : 𝑐

(Subtyping)

⊢𝜎 ′
2

⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩𝑃 ⊑ ⟨𝜎2 ↢ 𝜎1⟩𝑄 : 𝑐

(EffUpL)

Dual to the above. □

B OPERATIONAL SEMANTICS
An evaluation context 𝐸#𝜀 is one in which none of the handler clauses in the spine of the context

handles 𝜀.

B.1 Operational Semantics from First Principles
Now we show that every operational reduction is justified by our inequational theory.

Lemma B.1 (Effect Casts are Handlers). Let 𝜎 ⊑ 𝜏 where 𝜎 is a concrete effect set.

Then the upcast ⟨𝜏 ↢ 𝜎⟩ is equivalent to a handler in that for any𝑀 : 𝜎 !𝐴:

⟨𝜏 ↢ 𝜎⟩𝑀 ≡ handle 𝑀 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩}

where for each 𝜀 ∈ dom(𝜎)
𝑥, 𝑘 ⊢ 𝜙 ⟨𝜏↢ 𝜎 ⟩ (𝜀) = 𝑘 (⟨𝐵𝜎 ↞ 𝐵𝜏 ⟩raise 𝜀 (⟨𝐴𝜏

↢ 𝐴𝜎 ⟩))

where 𝜀 : 𝐴𝜎 { 𝐵𝜎 ∈ 𝜎 and 𝜀 : 𝐴𝜏 { 𝐵𝜏 ∈ 𝜏 .

Similarly, the downcast ⟨𝜎 ↞ 𝜏⟩ is equivalent to a handler in that for any 𝑁 : 𝜏 !𝐴:

⟨𝜎 ↞ 𝜏⟩𝑀 ≡ handle 𝑀 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜎 ↞𝜏 ⟩}

where for each 𝜀 ∈ dom(𝜏), if 𝜀 ∈ dom(𝜎), then
𝑥, 𝑘 ⊢ 𝜙 ⟨𝜎 ↞𝜏 ⟩ (𝜀) = 𝑘 (⟨𝐵𝜏 ↢ 𝐵𝜎 ⟩raise 𝜀 (⟨𝐴𝜎 ↞ 𝐴𝜏 ⟩))

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:34 Max S. New, Eric Giovannini, and Daniel R. Licata

𝜀 ∈ dom(𝜙) 𝐸′
#𝜀

𝐸 [handle 𝐸′ [raise 𝜀 (𝑉)] {ret 𝑥 .𝑁 | 𝜙}]
↦→ 𝐸 [𝜙 (𝜀) [𝑉 /𝑥] [(𝜆𝑦.handle (𝐸′ [𝑦]) {ret 𝑥 .𝑁 | 𝜙})/𝑘]]

𝐸 [handle 𝑉 {ret 𝑥 .𝑁 | 𝜙}] ↦→ 𝐸 [𝑁 [𝑉 /𝑥]]
HandleVal

𝐸 [(𝜆𝑥 .𝑀)𝑉] ↦→ 𝐸 [𝑀 [𝑉 /𝑥]]
Lam

𝐸 [let 𝑥 = 𝑉 in 𝑀] ↦→ 𝐸 [𝑀 [𝑉 /𝑥]]
Let

𝐸 [℧] ↦→ ℧
Err

𝐸 [if true{𝑁𝑡 }{𝑁𝑓 }] ↦→ 𝐸 [𝑁𝑡]
IfTrue

𝐸 [if false{𝑁𝑡 }{𝑁𝑓 }] ↦→ 𝐸 [𝑁𝑓]
IfFalse

𝐸 [⟨𝜎 ′ ↢ 𝜎⟩𝑉] ↦→ 𝐸 [𝑉]
EffUpDnCastVal

𝐸 [⟨𝜎 ↞ 𝜎 ′⟩𝑉] ↦→ 𝐸 [𝑉]
EffDnCastVal

𝜀 ∈ 𝜎 ′ 𝐸′
#𝜀

𝐸 [⟨𝜎 ′ ↢ 𝜎⟩𝐸′ [raise 𝜀 (𝑉)]] ↦→
𝐸 [let 𝑥 = ⟨𝐵 ↞ 𝐵′⟩raise 𝜀 (⟨𝐴′ ↢ 𝐴⟩𝑉) in ⟨𝜎 ′ ↢ 𝜎⟩𝐸′ [𝑥]]

EffUpCast

𝜀 ∈ 𝜎 𝐸′
#𝜀

𝐸 [⟨𝜎 ↞ 𝜎 ′⟩𝐸′ [raise 𝜀 (𝑉)]] ↦→
𝐸 [let 𝑥 = ⟨𝐵′ ↢ 𝐵⟩raise 𝜀 (⟨𝐴 ↞ 𝐴′⟩𝑉) in ⟨𝜎 ↞ 𝜎 ′⟩𝐸′ [𝑥]]

GoodEffDnCast

𝜀 ∉ 𝜎 𝐸′
#𝜀

𝐸 [⟨𝜎 ↞ ?⟩𝐸′ [raise 𝜀 (𝑉)]] ↦→ 𝐸 [℧]
BadEffDnCast

𝐸 [↕ bool𝑀] ↦→ 𝐸 [𝑀] BoolUpDnCast

𝐸 [(⟨(𝐴′ →𝜎 ′ 𝐵′) ↢ (𝐴 →𝜎 𝐵)⟩𝑉𝑓)𝑉] ↦→ 𝐸 [⟨𝐵′ ↢ 𝐵⟩⟨𝜎 ′ ↢ 𝜎⟩(𝑉𝑓 ⟨𝐴 ↞ 𝐴′⟩𝑉)]
FunUpCast

𝐸 [(⟨(𝐴 →𝜎 𝐵) ↞ (𝐴′ →𝜎 ′ 𝐵′)⟩𝑉𝑓)𝑉] ↦→ 𝐸 [⟨𝐵 ↞ 𝐵′⟩⟨𝜎 ↞ 𝜎 ′⟩(𝑉𝑓 ⟨𝐴′ ↢ 𝐴⟩𝑉)]
FunDnCast

Fig. 17. Full Operational Semantics

and if 𝜀 ∉ dom(𝜎), then
𝜙 ⟨𝜎 ↞𝜏 ⟩ (𝜀) = ℧

Proof. First for the upcast case

• We want to show

⟨𝜏 ↢ 𝜎⟩𝑀 ⊑ handle 𝑀 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩}

By UpL, it is sufficient to show

𝑀 ⊑ handle 𝑀 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩}

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:35

Δ ::= • : (𝜎 !𝐴)
Σ | Γ | Δ ⊢𝜎 𝐸 : 𝐴 →𝜎 𝐵 Σ | Γ | · ⊢𝜎 𝑁 : 𝐴

Σ | Γ | Δ ⊢𝜎 𝐸 𝑁 : 𝐵

Σ | Γ ⊢𝜎 𝑉 : 𝐴 →𝜎 𝐵 Σ | Γ | • : (𝜎𝑖 !𝐶) ⊢𝜎 𝐸 : 𝐴

Σ | Γ | • : (𝜎𝑖 !𝐶) ⊢𝜎 𝑉 𝐸 : 𝐵

Σ | Γ | Δ ⊢𝜎 𝐸 : bool Σ | Γ ⊢𝜎 𝑁𝑡𝐵 Σ | Γ ⊢𝜎 𝑁𝑓 𝐵

Σ | Γ | Δ ⊢𝜎 if 𝐸{𝑁𝑡 }{𝑁𝑓 } : 𝐵

Σ | Γ | Δ ⊢𝜎 𝐸 : 𝐴 𝜀 : 𝐴 { 𝐵 ∈ 𝜎

Σ | Γ | Δ ⊢𝜎 raise 𝜀 (𝐸) : 𝐵

Σ | Γ | Δ ⊢𝜎 𝐸 : 𝐴

Σ | Γ, 𝑥 : 𝐴 ⊢𝜏 𝑁 : 𝐵

(∀(𝜀 : 𝐴𝜀 { 𝐵𝜀) ∈ 𝜎. (𝜀 ∉ dom(𝜙) ∧ (𝜀 : 𝐴𝜀 { 𝐵𝜀) ∈ 𝜏)
∨(Σ | Γ, 𝑥 : 𝐴𝜀 , 𝑘 : 𝐵𝜀 →𝜏 𝐵 ⊢𝜏 𝜙 (𝜀) : 𝐵))
Σ | Γ ⊢𝜏 handle 𝐸 {ret 𝑥 .𝑁 | 𝜙} : 𝐵

Σ | Γ | Δ ⊢𝜎 𝐸 : 𝐴 Σ | Γ, 𝑥 : 𝐴 ⊢𝜎 𝑁 : 𝐵

Σ | Γ | Δ ⊢𝜎 let 𝑥 = 𝐸 in 𝑁 : 𝐵

Σ | Γ | Δ ⊢𝜎 𝐸 : 𝐴′ Σ | Γ ⊢ 𝐴′ ≤ 𝐴

Σ | Γ | Δ ⊢𝜎 𝐸 : 𝐴

Σ | Γ | Δ ⊢Δ 𝜎 ′
: 𝐸𝐴 Σ | Γ ⊢ 𝜎 ′ ≤ 𝜎

Σ | Γ | Δ ⊢𝜎 𝐸 : 𝐴

Σ | Γ | Δ ⊢𝜎 𝐸 : 𝐴 Σ ⊢ 𝐴 ⊑ 𝐵

Σ | Γ | Δ ⊢𝜎 ⟨𝐵 ↢ 𝐴⟩𝐸 : 𝐵

Σ | Γ | Δ ⊢𝜎 𝐸 : 𝐵 Σ ⊢ 𝐴 ⊑ 𝐵

Σ | Γ | Δ ⊢𝜎 ⟨𝐴 ↞ 𝐵⟩𝐸 : 𝐴

Σ | Γ | Δ ⊢𝜎 𝐸 : 𝐴 Σ ⊢ 𝜎 ⊑ 𝜎 ′

Σ | Γ | Δ ⊢𝜎 ′ ⟨𝜎 ′ ↢ 𝜎⟩𝐸 : 𝐴

Σ | Γ | Δ ⊢𝜎 ′ 𝐸 : 𝐴 Σ ⊢ 𝜎 ⊑ 𝜎 ′

Σ | Γ | Δ ⊢𝜎 ⟨𝜎 ↞ 𝜎 ′⟩𝐸 : 𝐴

Fig. 18. Typing Rules for Evaluation Contexts

𝜀#•
𝜀#𝐸

𝜀#(⟨𝐵 ↢ 𝐴⟩𝐸)
𝜀#𝐸

𝜀#(⟨𝐴 ↞ 𝐵⟩𝐸)
𝜀#𝐸 𝜀 ∉ 𝜎 𝜀 ∉ 𝜎 ′

𝜀#(⟨𝜎 ′ ↢ 𝜎⟩𝐸)

𝜀#𝐸 𝜀 ∉ 𝜎 ′

𝜀#(⟨𝜎 ↞ 𝜎 ′⟩𝐸)
𝜀#𝐸 𝜀′ any effect

𝜀#(raise 𝜀′ (𝐸))
𝜀#𝐸 ∧ 𝜀 ∉ dom(𝜙)

𝜀#(handle 𝐸 {ret 𝑥 .𝑁 | 𝜙})
𝜀#𝐸

𝜀#(𝐸 𝑀)

𝜀#𝐸

𝜀#(𝑉 𝐸)
𝜀#𝐸

𝜀#(if 𝐸{𝑁𝑡 }{𝑁𝑓 })
𝜀#𝐸

𝜀#(let 𝑥 = 𝐸 in 𝑁)

Fig. 19. Apartness of Effect from an Evaluation Context

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:36 Max S. New, Eric Giovannini, and Daniel R. Licata

But by the handler 𝜂 rule, this is equivalent to showing

handle 𝑀 {ret 𝑥 .𝑥 | 𝜙𝜎 } ⊑ handle 𝑀 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩}

where dom(𝜙𝜎) = dom(𝜎) and 𝜙𝜎 (𝜀) = 𝑘 (raise 𝜀 (𝑥)). Then by congruence, we need to

show that for each 𝜀 ∈ dom(𝜎),
𝑘 (raise 𝜀 (𝑥)) ⊑ 𝑘 (⟨𝐵𝜎 ↞ 𝐵𝜏 ⟩raise 𝜀 (⟨𝐴𝜎

↢)⟩𝐴𝜏𝑥)
which follows from UpR/DnR and congruence rules

• We want to show

handle 𝑀 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩} ⊑ ⟨𝜏 ↢ 𝜎⟩𝑀

By handler 𝜂 it is sufficient to show

handle 𝑀 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩} ⊑ handle ⟨𝜏 ↢ 𝜎⟩𝑀 {ret 𝑥 .𝑥 | 𝜙𝜏 }

where dom(𝜙𝜏) = dom(𝜏) and 𝜙𝜏 (𝜀) = 𝑘 (raise 𝜀 (𝑥)). Then𝑀 ⊑ ⟨𝜏 ↢ 𝜎⟩𝑀 by UpR and so

by congruence we need only to show for each 𝜀 ∈ 𝜎 that

𝜙 ⟨𝜏↢ 𝜎 ⟩ (𝜀) ⊑ 𝜙𝜏 (𝜀)

which follows by a similar argument to the previous case.

Next, the downcast cases.

• We want to show

handle 𝑁 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜎 ↞𝜏 ⟩} ⊑ ⟨𝜎 ↞ 𝜏⟩𝑁

By DnR, it is sufficient to show

handle 𝑁 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜎 ↞𝜏 ⟩} ⊑ 𝑁

By handler 𝜂 this is equivalent to showign

handle 𝑁 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜎 ↞𝜏 ⟩} ⊑ handle 𝑁 {ret 𝑥 .𝑥 | 𝜙𝜏 }

That is, for any 𝜀 ∈ dom(𝜏) that
𝜙 ⟨𝜎 ↞𝜏 ⟩ (𝜀) ⊑ 𝜙𝜏 (𝜀)

There are two cases

(1) If 𝜀 ∈ dom(𝜎), then we need to show

𝑘 (⟨𝐵𝜏 ↢ 𝐵𝜎 ⟩raise 𝜀 (⟨𝐴𝜏
↢ 𝐴𝜎 ⟩𝑥)) ⊑ 𝑘 (raise 𝜀 (𝑥))

which follows by congruence and DnL/UpL rules.

(2) If 𝜀 ∉ dom(𝜎), then we need to show

℧ ⊑ 𝑘 (raise 𝜀 (𝑥))
which is immediate.

• We want to show

⟨𝜎 ↞ 𝜏⟩𝑁 ⊑ handle 𝑁 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜎 ↞𝜏 ⟩}

By handler 𝜂 this is equivalent to showing

handle (⟨𝜎 ↞ 𝜏⟩𝑁) {ret 𝑥 .𝑥 | 𝜙𝜎 } ⊑ handle 𝑁 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜎 ↞𝜏 ⟩}

By congruence and DnL this reduces to showing for each 𝜀 ∈ dom(𝜎) that
𝜙𝜎 (𝜀) ⊑ 𝜙 ⟨𝜎 ↞𝜏 ⟩ (𝜀)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:37

since 𝜀 ∈ dom(𝜎), these are each of the form:

𝑘 (raise 𝜀 (𝑥)) ⊑ 𝑘 (⟨𝐵𝜏 ↢ 𝐵𝜎 ⟩raise 𝜀 (⟨𝐴𝜏
↢ 𝐴𝜎 ⟩𝑥))

which follows by congruence and DnR/UpR rules.

□

Lemma B.2 (Derivation of Function Casts).

⟨𝐴′ →𝜏 𝐵
′ ↢ 𝐴 →𝜎 𝐵⟩𝑓 ≡ 𝜆𝑥.⟨𝐵′ ↢ 𝐵⟩⟨𝜏 ↢ 𝜎⟩(𝑓 (⟨𝐴 ↞ 𝐴′⟩𝑥))

And similarly,

⟨𝐴 →𝜎 𝐵 ↞ 𝐴′ →𝜏 𝐵
′⟩𝑓 ≡ 𝜆𝑥.⟨𝐵 ↞ 𝐵′⟩⟨𝜎 ↞ 𝜏⟩(𝑓 (⟨𝐴′ ↢ 𝐴⟩𝑥))

Proof. We show the upcast cases, the downcast cases are precisely dual.

(1) We want to show

⟨𝐴′ →𝜏 𝐵
′ ↢ 𝐴 →𝜎 𝐵⟩𝑓 ⊑ 𝜆𝑥 .⟨𝐵′ ↢ 𝐵⟩⟨𝜏 ↢ 𝜎⟩(𝑓 (⟨𝐴 ↞ 𝐴′⟩𝑥))

By UpL, it is sufficient to show

𝑓 ⊑ 𝜆𝑥.⟨𝐵′ ↢ 𝐵⟩⟨𝜏 ↢ 𝜎⟩(𝑓 (⟨𝐴 ↞ 𝐴′⟩𝑥))
By 𝜂 equivalence for functions it is sufficient to show

𝜆𝑥.𝑓 𝑥 ⊑ 𝜆𝑥.⟨𝐵′ ↢ 𝐵⟩⟨𝜏 ↢ 𝜎⟩(𝑓 (⟨𝐴 ↞ 𝐴′⟩𝑥))
Which follows by congruence rules and UpR/DnR rules.

(2) We want to show

𝜆𝑥 .⟨𝐵′ ↢ 𝐵⟩⟨𝜏 ↢ 𝜎⟩(𝑓 (⟨𝐴 ↞ 𝐴′⟩𝑥)) ⊑ ⟨𝐴′ →𝜏 𝐵
′ ↢ 𝐴 →𝜎 𝐵⟩𝑓

By function 𝜂 it is sufficient to show

𝜆𝑥 .⟨𝐵′ ↢ 𝐵⟩⟨𝜏 ↢ 𝜎⟩(𝑓 (⟨𝐴 ↞ 𝐴′⟩𝑥)) ⊑ 𝜆𝑦.(⟨𝐴′ →𝜏 𝐵
′ ↢ 𝐴 →𝜎 𝐵⟩𝑓)𝑦

Which follows by congruence and UpL/DnL/UpR rules.

□

Lemma B.3. If 𝑥, 𝑘 ⊢ 𝜙 (𝜀) = 𝑘 (raise 𝜀 (𝑥)), then
handle raise 𝜀 (𝑥) {ret 𝑦.𝑁 | 𝜙} ≡ let 𝑜 = (raise 𝜀 (𝑥)) in handle 𝑜 {ret 𝑦.𝑁 | 𝜙}

Proof.

handle raise 𝜀 (𝑥) {ret 𝑦.𝑁 | 𝜙} ≡ handle (let 𝑜 = raise 𝜀 (𝑥) in 𝑜 {ret 𝑦.𝑁 | 𝜙}
≡ (𝜆𝑜.handle 𝑜 {ret 𝑦.𝑁 | 𝜙})(raise 𝜀 (𝑥))
≡ let 𝑜 = (raise 𝜀 (𝑥)) in handle 𝑜 {ret 𝑦.𝑁 | 𝜙}

□

This lemma is useful for the cast cases of the following, as it reduces to showing the cast is

equivalent to one whose 𝜀 case is just a re-raise.

Lemma B.4. If 𝐸#𝜀, then

𝐸 [raise 𝜀 (𝑥)] ≡ let 𝑦 = raise 𝜀 (𝑥) in 𝐸 [𝑦]

Proof. By induction on 𝜀#𝐸

• 𝜀#•
raise 𝜀 (𝑥) ≡ let 𝑦 = raise 𝜀 (𝑥) in 𝑦

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:38 Max S. New, Eric Giovannini, and Daniel R. Licata

•
𝜀#𝐸

𝜀#(⟨𝐵 ↢ 𝐴⟩𝐸)

⟨𝐵 ↢ 𝐴⟩𝐸 [raise 𝜀 (𝑥)] ≡ let 𝑦 = 𝐸 [raise 𝜀 (𝑥)] in ⟨𝐵 ↢ 𝐴⟩𝑦
≡ let 𝑦 = (let 𝑧 = (raise 𝜀 (𝑥)) in 𝐸 [𝑧]) in ⟨𝐵 ↢ 𝐴⟩𝑦
≡ let 𝑧 = (raise 𝜀 (𝑥)) in let 𝑦 = 𝐸 [𝑧] in ⟨𝐵 ↢ 𝐴⟩𝑦
≡ let 𝑧 = (raise 𝜀 (𝑥)) in ⟨𝐵 ↢ 𝐴⟩𝐸 [𝑧]

•
𝜀#𝐸

𝜀#(⟨𝐴 ↞ 𝐵⟩𝐸)
Similar to previous.

•
𝜀#𝐸

𝜀#(raise 𝜀′ (𝐸))

raise 𝜀′ (𝐸 [raise 𝜀′ (𝑥)]) ≡ raise 𝜀′ ((let 𝑧 = raise 𝜀′ (𝑥) in 𝐸 [𝑧]))
≡ let 𝑧 = raise 𝜀′ (𝑥) in 𝐸 [𝑧]raise 𝜀′ (())

•
𝜀#𝐸 𝜀 ∉ dom(𝜙)

𝜀#(handle 𝐸 {ret 𝑦.𝑁 | 𝜙})
Define𝜓 to be the extension of 𝜙 with the case𝜓 (𝜀) = 𝑘 (raise 𝜀 (𝑥)).

handle 𝐸 [raise 𝜀 (𝑥)] {ret 𝑦.𝑁 | 𝜙} ≡ handle 𝐸 [raise 𝜀 (𝑥)] {ret 𝑦.𝑁 | 𝜓 }
≡ handle (let 𝑧 = (raise 𝜀 (𝑥)) in 𝐸 [𝑧]) {ret 𝑦.𝑁 | 𝜓 }
≡ (𝜆𝑜.handle 𝐸 [𝑜] {ret 𝑦.𝑁 | 𝜓 })(raise 𝜀 (𝑥))
≡ (let 𝑜 = (raise 𝜀 (𝑥)) in handle 𝐸 [𝑜] {ret 𝑦.𝑁 | 𝜓 })
≡ (let 𝑜 = (raise 𝜀 (𝑥)) in handle 𝐸 [𝑜] {ret 𝑦.𝑁 | 𝜙})

•
𝜀#𝐸

𝜀#(𝐸 𝑀)

(𝐸 [raise 𝜀 (𝑥)])𝑀 ≡ let 𝑓 = 𝐸 [raise 𝜀 (𝑥)] in let 𝑦 = 𝑀 in 𝑓 𝑦

≡ let 𝑓 = (let 𝑧 = raise 𝜀 (𝑥) in 𝐸 [𝑧]) in let 𝑦 = 𝑀 in 𝑓 𝑦

≡ let 𝑧 = raise 𝜀 (𝑥) in let 𝑓 = 𝐸 [𝑧] in let 𝑦 = 𝑀 in 𝑓 𝑦

≡ let 𝑧 = raise 𝜀 (𝑥) in (𝐸 [𝑧])𝑀

•
𝜀#𝐸

𝜀#(𝑉 𝐸)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:39

(𝑉 𝐸 [raise 𝜀 (𝑥)]) ≡ let 𝑓 = 𝑉 in let 𝑦 = 𝐸 [raise 𝜀 (𝑥)] in 𝑓 𝑦

≡ let 𝑓 = 𝑉 in let 𝑦 = (let 𝑧 = raise 𝜀 (𝑥) in 𝐸 [𝑧]) in 𝑓 𝑦

≡ let 𝑦 = (let 𝑧 = raise 𝜀 (𝑥) in 𝐸 [𝑧]) in 𝑉 𝑦

≡ let 𝑧 = raise 𝜀 (𝑥) in let 𝑦 = (𝐸 [𝑧]) in 𝑉 𝑦

≡ let 𝑧 = raise 𝜀 (𝑥) in 𝑉 (𝐸 [𝑧])

•
𝜀#𝐸

𝜀#(if 𝐸{𝑁𝑡 }{𝑁𝑓 })

if 𝐸 [raise 𝜀 (𝑥)]{𝑁𝑡 }{𝑁𝑓 } ≡ let 𝑦 = (𝐸 [raise 𝜀 (𝑥)]) in if 𝑦{𝑁𝑡 }{𝑁𝑓 }
≡ let 𝑦 = (let 𝑧 = raise 𝜀 (𝑥) in 𝐸 [𝑧]) in if 𝑦{𝑁𝑡 }{𝑁𝑓 }
≡ let 𝑧 = raise 𝜀 (𝑥) in let 𝑦 = (𝐸 [𝑧]) in if 𝑦{𝑁𝑡 }{𝑁𝑓 }
≡ let 𝑧 = raise 𝜀 (𝑥) in if 𝐸 [𝑧]{𝑁𝑡 }{𝑁𝑓 }

•
𝜀#𝐸

𝜀#(let 𝑥 = 𝐸 in 𝑁)

let 𝑦 = 𝐸 [raise 𝜀 (𝑥)] in 𝑁 ≡ let 𝑦 = let 𝑧 = (raise 𝜀 (𝑥)) in 𝐸 [𝑧] in 𝑁

≡ let 𝑧 = (raise 𝜀 (𝑥)) in let 𝑦 = 𝐸 [𝑧] in 𝑁

□

Theorem B.5 (Soundness of Operational Semantics). If𝑀 ↦→∗ 𝑀 ′
then𝑀 ≡ 𝑀 ′

is derivable

in the inequational theory.

Proof. (1) The value handle, boolean/function 𝛽 reductions and error reduction are immediate

by axioms.

(2)

𝐸#𝜀

handle 𝐸 [raise 𝜀 (𝑉)] {ret 𝑦.𝑁 | 𝜙} ≡ 𝜙 (𝜀) [𝑉 /𝑥, 𝜆𝑜.handle 𝐸 [𝑜] {ret 𝑦.𝑁 | 𝜙}/𝑘]

handle 𝐸 [raise 𝜀 (𝑉)] {ret 𝑦.𝑁 | 𝜙} ≡ handle (let 𝑧 = raise 𝜀 (𝑉) in 𝐸 [𝑧]) {ret 𝑦.𝑁 | 𝜙}
(LemmaB.4)

≡ 𝜙 (𝜀) [𝑉 /𝑥, 𝜆𝑜.handle 𝐸 [𝑜] {ret 𝑦.𝑁 | 𝜙}/𝑘]

(3)

⟨𝜏 ↢ 𝜎⟩𝑉 ≡ 𝑉

By the following:

⟨𝜏 ↢ 𝜎⟩𝑉 ≡ handle 𝑉 {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩} (Lemma B.1)

≡ 𝑉 (Handle 𝛽)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:40 Max S. New, Eric Giovannini, and Daniel R. Licata

(4)

⟨𝜎 ↞ 𝜏⟩𝑉 ≡ 𝑉

is similar to the previous.

(5)

𝜀 : 𝐴 { 𝐵 ∈ 𝜎 𝜀 : 𝐴′ { 𝐵′ ∈ 𝜏 𝐸#𝜀

⟨𝜏 ↢ 𝜎⟩𝐸 [raise 𝜀 (𝑉)] ≡ let 𝑥 = ⟨𝐵 ↞ 𝐵′⟩raise 𝜀 (⟨𝐴′ ↢ 𝐴⟩𝑉) in ⟨𝜏 ↢ 𝜎⟩𝐸 [𝑥]

⟨𝜏 ↢ 𝜎⟩𝐸 [raise 𝜀 (𝑉)] ≡ handle (𝐸 [raise 𝜀 (𝑉)]) {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩} (LemmaB.1)

≡ handle (let 𝑧 = raise 𝜀 (𝑉) in 𝐸 [𝑧]) {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩}
(LemmaB.4)

≡ 𝜙 ⟨𝜏↢ 𝜎 ⟩ (𝜀) [𝑉 /𝑥, 𝜆𝑜.handle 𝐸 [𝑜] {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩}]
= (𝜆𝑜.handle 𝐸 [𝑜] {ret 𝑥 .𝑥 | 𝜙 ⟨𝜏↢ 𝜎 ⟩})(⟨𝐵 ↞ 𝐵′⟩raise 𝜀 (⟨𝐴′ ↢ 𝐴⟩𝑉))
≡ (𝜆𝑜.⟨𝜏 ↢ 𝜎⟩𝐸 [𝑜]) (⟨𝐵 ↞ 𝐵′⟩raise 𝜀 (⟨𝐴′ ↢ 𝐴⟩𝑉))
≡ let 𝑜 = (⟨𝐵 ↞ 𝐵′⟩raise 𝜀 (⟨𝐴′ ↢ 𝐴⟩𝑉)) in ⟨𝜏 ↢ 𝜎⟩𝐸 [𝑜]

(6)

𝜀 : 𝐴 { 𝐵 ∈ 𝜎 𝜀 : 𝐴′ { 𝐵′ ∈ 𝜏 𝐸#𝜀

⟨𝜎 ↞ 𝜏⟩𝐸 [raise 𝜀 (𝑉)] ≡ let 𝑥 = ⟨𝐵′ ↢ 𝐵⟩raise 𝜀 (⟨𝐴 ↞ 𝐴′⟩𝑉) in ⟨𝜎 ↞ 𝜏⟩𝐸 [𝑥]
Similar to previous

(7)

𝜀 ∉ 𝜎 𝐸#𝜀

⟨𝜎 ↞ ?⟩𝐸 [raise 𝜀 (𝑉)] ≡ ℧

⟨𝜎 ↞ ?⟩𝐸 [raise 𝜀 (𝑉)] ≡ handle (𝐸 [raise 𝜀 (𝑉)]) {ret 𝑥 .𝑥 | 𝜙 ⟨𝜎 ↞?⟩} (LemmaB.1)

≡ handle (let 𝑧 = (raise 𝜀 (𝑉)) in 𝐸 [𝑧]) {ret 𝑥 .𝑥 | 𝜙 ⟨𝜎 ↞?⟩}
(LemmaB.4)

≡ ℧
(8)

⟨bool↢ bool⟩𝑉 ≡ 𝑉

By the identity rule.

(9)

⟨bool ↞ bool⟩𝑉 ≡ 𝑉

By the identity rule.

(10)

(⟨(𝐴′ →𝜏 𝐵
′) ↢ (𝐴 →𝜎 𝐵)⟩𝑉𝑓)𝑉 ≡ ⟨𝐵′ ↢ 𝐵⟩⟨𝜏 ↢ 𝜎⟩(𝑉𝑓 ⟨𝐴 ↞ 𝐴′⟩𝑉)

By the following:

(⟨(𝐴′ →𝜏 𝐵
′) ↢ (𝐴 →𝜎 𝐵)⟩𝑉𝑓)𝑉 ≡ ((𝜆𝑥.⟨𝐵′ ↢ 𝐵⟩⟨𝜏 ↢ 𝜎⟩(𝑉𝑓 (⟨𝐴 ↞ 𝐴′)⟩𝑥)))𝑉 (LemmaB.2)

≡ ⟨𝐵′ ↢ 𝐵⟩⟨𝜏 ↢ 𝜎⟩(𝑉𝑓 (⟨𝐴 ↞ 𝐴′)⟩𝑉) (𝛽 →)

(11) Similar to previous.

□

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:41

bool ≤ bool
𝑑𝑖 ≤ 𝑐𝑖 𝑐𝑒 ≤ 𝑑𝑒 𝑐𝑜 ≤ 𝑑𝑜

𝑐𝑖 →𝑐𝑒 𝑐𝑜 ≤ 𝑑𝑖 →𝑑𝑒 𝑑𝑜
? ≤ ?

𝑐 ≤ 𝑑

inj(𝑐) ≤ inj(𝑑)

dom(𝑑𝑐) ⊆ dom(𝑑 ′𝑐)
∀𝜀 : 𝑐 { 𝑑 ∈ 𝑑𝑐 .𝜀 : 𝑐

′ { 𝑑 ′ ∈ 𝑑 ′𝑐 ∧ 𝑐 ≤ 𝑐′ ∧ 𝑑 ′ ≤ 𝑑

𝑑𝑐 ≤ 𝑑 ′𝑐

𝑐 ≤ inj(Σ)
𝑐 ≤ ?

𝑐 ≤ 𝑑

𝑐 ≤ inj(𝑑)

Fig. 20. Subtyping of Precision Derivations

Theorem B.6 (Adeqacy). If · ⊢∅ 𝑀 ≡ 𝑀 ′
: bool is derivable in the equational theory than for

any 𝑅 ∈ {true, false,℧}
𝑀 ↦→∗ 𝑅 ⇐⇒ 𝑀 ′ ↦→∗ 𝑅

Corollary B.7 (Consistency). true ≡ false is not derivable.

Theorem B.8 (Graduality). If · ⊢∅ 𝑀 ⊑ 𝑀 ′
: bool Then for any 𝑅 ∈ {true, false},

𝑀 ↦→∗ 𝑅 ⇒ 𝑀 ′ ↦→∗ 𝑅

and for any 𝑅′ ∈ {true, false,℧},
𝑀 ′ ↦→∗ 𝑅′ =⇒ 𝑀 ↦→∗ 𝑅′

C ELABORATION OF GRADUAL SUBTYPING
First, we define in Figure 20 a subtyping of precision derivations.

Lemma C.1. If 𝐴 ≲ 𝐵 then there exist types 𝐴ℎ, 𝐷ℎ, 𝐷𝑙 , 𝐵𝑙 with

(1) 𝑐𝑙 : 𝐴 ⊑ 𝐷𝑙 and 𝑐ℎ : 𝐴ℎ ⊑ 𝐷ℎ satisfying 𝑐𝑙 ≤ 𝑐ℎ
(2) 𝑑𝑙 : 𝐵𝑙 ⊑ 𝐷𝑙 and 𝑑ℎ : 𝐵 ⊑ 𝐷ℎ satisfying 𝑑𝑙 ≤ 𝑑ℎ
(3) 𝑒𝑙 : 𝐷𝑙 ⊑ 𝐷 and 𝑒ℎ : 𝐷ℎ ⊑ 𝐷 with 𝑒𝑙 ≤ 𝑒ℎ where 𝐷 = |𝐴| = |𝐵 |.

Proof. By induction on the proof of 𝐴 ≲ 𝐴′
. □

Then the four different choices of cast are all equivalent in the inequational theory:

Lemma C.2. Given 𝐴,𝐴ℎ, 𝐵, 𝐵𝑙 , 𝐷𝑙 , 𝐷ℎ, 𝐷, 𝑐𝑙 , 𝑐ℎ, 𝑑𝑙 , 𝑑ℎ, 𝑒𝑙 , 𝑒ℎ as in the output of the previous lemma,

for any Γ ⊢ 𝑀 : 𝜎 !𝐴, the following four terms are equivalent at type 𝐵.

(1) ⟨𝐵 ↞ 𝐷ℎ⟩⟨𝐷ℎ
↢ 𝐴ℎ⟩𝑀

(2) ⟨𝐵 ↞ 𝐷ℎ⟩⟨𝐷𝑙
↢ 𝐴⟩𝑀

(3) ⟨𝐵𝑙 ↞ 𝐷𝑙 ⟩⟨𝐷𝑙
↢ 𝐴⟩𝑀

(4) ⟨𝐵 ↞ 𝐷⟩⟨𝐷 ↢ 𝐴⟩𝑀

Proof. (1) To show (1) is equivalent to (2), it suffices to show

⟨𝐷ℎ
↢ 𝐴ℎ⟩𝑀 ≡ ⟨𝐷𝑙

↢ 𝐴⟩𝑀
which is an instance of the subtyping/cast rule since 𝑐𝑙 ⊑ 𝑐ℎ .

(2) Similarly to show (2) is equivalent to (3) follows from 𝑑𝑙 ≤ 𝑑ℎ
(3) Lastly we show (4) is equivalent to (2). By cast functoriality,

⟨𝐵 ↞ 𝐷⟩⟨𝐷 ↢ 𝐴⟩𝑀 ≡ ⟨𝐵 ↞ 𝐷ℎ⟩⟨𝐷ℎ ↞ 𝐷⟩⟨𝐷 ↢ 𝐷𝑙 ⟩⟨𝐷𝑙
↢ 𝐴⟩𝑀

And by retraction the middle cast ⟨𝐷ℎ ↞ 𝐷⟩⟨𝐷 ↢ 𝐷𝑙 ⟩ is the identity.
□

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:42 Max S. New, Eric Giovannini, and Daniel R. Licata

D GRADUALITY
Our main goal is to prove the soundness of the inequational theory with respect to the logical

relation. That is

Theorem D.1 (Graduality). If Γ⊑ ⊢𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑐 then Γ⊑ ⊨𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑐

Proof. By induction on the term precision derivation.

(1) (ValSubst) Lemma D.29

(2) (MonadUnitL) Lemma D.30

(3) (MonadUnitR) Lemma D.31

(4) (MonadAssoc) Lemma D.32

(5) (BoolBeta) Lemmas D.34 and D.35

(6) (BoolEta) Lemma D.33

(7) (IfEval) Lemma D.36

(8) (FunBeta) Lemma D.37

(9) (FunEta) Lemma D.38

(10) (AppEval) Lemma D.39

(11) (HandleBetaRet) Lemma D.40

(12) (HandleBetaRaise) Lemma D.41

(13) (HandleEmpty) Lemma D.43

(14) (HandleExt) Lemma D.44

(15) (RaiseEval) Lemma D.42

(16) (Variable) Lemma D.21

(17) (Let) Lemma D.25

(18) (Boolean) Lemma D.20

(19) (If) Lemma D.24

(20) (Lambda) Lemma D.22

(21) (App) Lemma D.23

(22) (Raise) Lemma D.26

(23) (HandleCong) Lemma D.27

(24) (Transitivity) Lemma D.67

(25) (ErrBot) Lemma D.45

(26) (ErrStrict) Lemma D.46

(27) (SubtyMon) Lemma D.47

(28) (ValUpSub) Lemma D.59

(29) (ValDnSub) Lemma D.59

(30) (EffUpSub) Lemma D.59

(31) (EffDnSub) Lemma D.59

(32) (ValUpL) Follows from Lemma D.49.

(33) (ValUpR) Follows from Lemma D.48.

(34) (ValUpEval) Lemma D.56

(35) (ValDnR) Follows from Lemma D.51.

(36) (ValDnL) Follows from Lemma D.50.

(37) (ValDnEval) Lemma D.57

(38) (ValRetract) Lemma D.58.

(39) (EffUpL) Follows from Lemma D.53

(40) (EffUpR) Follows from Lemma D.52

(41) (EffDnR) Follows from Lemma D.55

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:43

(42) (EffDnL) Follows from Lemma D.54

(43) (EffRetract) Lemma D.58.

□

We begin with a few lemmas that will be useful in our proofs.

D.0.1 Lemmas.

Lemma D.2. If (𝑉1,𝑉2) ∈ 𝑅, and𝑉1 and𝑉2 are values of type 𝐴
𝑙
and 𝐴𝑟

respectively, then (𝑉1,𝑉2) ∈
R∼

𝑗 ⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟).

Proof. We will establish the first disjunct in the definition of R∼⟦·⟧. This follows by assumption.

□

Lemma D.3. If (𝑉1,𝑉2) ∈ R∼
𝑗 ⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟), then (𝑉1,𝑉2) ∈ E∼

𝑗 ⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟).

Proof. Let ∼ ∈ {<, >}, and suppose (𝑉1,𝑉2) ∈ R∼
𝑗 ⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟). Notice that regardless of

whether ∼ is < or >, we will be able to show the last clause in the definition of E⪯
𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟)

or E⪰
𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟). In particular, we can take 𝑘 = 𝑗 , 𝑉1 = 𝑉1, and 𝑉2 = 𝑉2, noting that 𝑉1 steps to

itself in 0 steps, as does𝑉2. Thus, it remains to show that𝑉1 and𝑉2 are related by R⪯
𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟)

or R⪰
𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟). This is true by assumption. □

Lemma D.4. If (𝑉1,𝑉2) ∈ V∼
𝑗 ⟦𝑐⟧, then (𝑉1,𝑉2) ∈ E∼

𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐⟧.

Proof. By Lemma D.3 (with 𝑅 = V∼⟦𝑐⟧), it suffices to show that (𝜎1𝑉1, 𝜎1𝑉2) ∈ R∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐⟧.

This is true by Lemma D.2, again with 𝑅 = V∼⟦𝑐⟧. □

Lemma D.5 (anti-reduction, one-sided). Suppose𝑀1 ↦→𝑖1 𝑀 ′
1
and𝑀2 ↦→𝑖2 𝑀 ′

2
.

If (𝑀 ′
1
, 𝑀 ′

2
) ∈ E⪰

𝑗−𝑖2⟦𝑑𝜎⟧(𝑅,𝐴
𝑙 , 𝐴𝑟), then (𝑀1, 𝑀2) ∈ E⪰

𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟).

Similarly, if (𝑀 ′
1
, 𝑀 ′

2
) ∈ E⪯

𝑗−𝑖1⟦𝑑𝜎⟧(𝑅,𝐴
𝑙 , 𝐴𝑟), then (𝑀1, 𝑀2) ∈ E⪯

𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟).

Proof. We prove the first statement; the second is analogous (and in fact easier). The assumption

that (𝑀 ′
1
, 𝑀 ′

2
) ∈ E⪰

𝑗−𝑖2⟦𝑑𝜎⟧(𝑅,𝐴
𝑙 , 𝐴𝑟) has four cases:

(1) 𝑀 ′
2
↦→𝑗−𝑖2+1

. In this case, 𝑀2 ↦→𝑖2 𝑀 ′
2
↦→𝑗−𝑖2+1

, i.e, 𝑀2 ↦→𝑗+1
. Thus, we may assert the first

disjunct in the definition of E⪰
𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟).

(2) There exists 𝑘 ≤ 𝑗 − 𝑖2 such that 𝑀 ′
1
↦→𝑗−𝑖2−𝑘 ℧, and furthermore 𝑀 ′

1
↦→∗ ℧. In this case,

we have that 𝑀2 ↦→𝑖2 𝑀 ′
2
↦→𝑗−𝑖2−𝑘 ℧, so 𝑀2 ↦→𝑗−𝑘 ℧. Also, 𝑀1 ↦→𝑖1 𝑀 ′

1
↦→∗ ℧, so 𝑀1 ↦→∗ ℧.

Thus, we may assert the second disjunct.

(3) There exists 𝑘 ≤ 𝑗 − 𝑖2 and 𝑁2 such that𝑀 ′
2
↦→𝑗−𝑖2−𝑘 𝑁2 and𝑀

′
1
↦→∗ ℧. In this case we have

𝑀2 ↦→𝑖2 𝑀 ′
2
↦→𝑗−𝑖2−𝑘 𝑁2, so𝑀2 ↦→𝑗−𝑘 𝑁2. Thus, we may assert the third disjunct.

(4) Similar to previous case.

□

Lemma D.6 (anti-reduction). Suppose 𝑀1 ↦→𝑖1 𝑀 ′
1
and 𝑀2 ↦→𝑖2 𝑀 ′

2
, and that (𝑀 ′

1
, 𝑀 ′

2
) ∈

E∼
𝑗−𝑚⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟), where𝑚 = min{𝑖1, 𝑖2}. Then (𝑀1, 𝑀2) ∈ E∼

𝑗 ⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟).

Proof. Follows from one-sided anti-reduction (Lemma D.5) and downward closure. □

Lemma D.7 (forward reduction, one-sided). Suppose𝑀1 ↦→𝑖1 𝑀 ′
1
and𝑀2 ↦→𝑖2 𝑀 ′

2
.

If (𝑀1, 𝑀2) ∈ E⪰
𝑗+𝑖2⟦𝑑𝜎⟧(𝑅,𝐴

𝑙 , 𝐴𝑟), then (𝑀 ′
1
, 𝑀 ′

2
) ∈ E⪰

𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟).

Similarly, if (𝑀1, 𝑀2) ∈ E⪯
𝑗+𝑖1⟦𝑑𝜎⟧(𝑅,𝐴

𝑙 , 𝐴𝑟), then (𝑀 ′
1
, 𝑀 ′

2
) ∈ E⪯

𝑗
⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:44 Max S. New, Eric Giovannini, and Daniel R. Licata

Proof. Follows from determinism of evaluation and a case analysis on the assumption that𝑀1

and𝑀2 are related. □

Lemma D.8 (forward reduction). Suppose 𝑀1 ↦→𝑖1 𝑀 ′
1
and 𝑀2 ↦→𝑖2 𝑀 ′

2
, and that (𝑀1, 𝑀2) ∈

E∼
𝑗+𝑚⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟), where𝑚 = max{𝑖1, 𝑖2}. Then (𝑀 ′

1
, 𝑀 ′

2
) ∈ E∼

𝑗 ⟦𝑑𝜎⟧(𝑅,𝐴𝑙 , 𝐴𝑟).
Proof. Follows from one-sided forward reduction (Lemma D.7) and downward closure. □

Frequently in our proofs we will encounter a situation where we know that two evaluation

contexts are related in the K∼⟦·⟧ relation, that is, substituting related values gives related outputs.

On the other hand, as a cast applied to a value is not necessarily itself a value, we cannot reason

directly about what happens when such semantic values are substituted into related evaluation

contexts. We therefore introduce the following lemma.

Lemma D.9. Suppose 𝐸1 and 𝐸2 are evaluation contexts that take values to values. Let 𝑉1 and 𝑉2 be

values (not necessarily related) such that

(𝐸1 [𝑉1], 𝐸2 [𝑉2]) ∈ E∼
𝑗 ⟦𝑑 ′𝜎⟧V∼⟦𝑐⟧.

Furthermore, let (𝐸𝑙 [𝑥𝑙], 𝐸𝑟 [𝑥𝑟] ∈ K∼
𝑗 ⟦𝑐⟧E∼⟦𝑑𝜎⟧V∼⟦𝑑⟧).

Then

(𝐸𝑙 [𝐸1 [𝑉1]], 𝐸𝑟 [𝐸2 [𝑉2]]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑑⟧.

Proof. We show the proof for ∼=>.

By assumption, we have that there exist values𝑉 ′
1
and𝑉 ′

2
such that 𝐸1 [𝑉1] ↦→𝑖1 𝑉 ′

1
and 𝐸2 [𝑉2] ↦→𝑖2

𝑉 ′
2
, for some 𝑖1 and 𝑖2.

Thus, 𝐸𝑙 [𝐸1 [𝑉1]] ↦→𝑖1 𝐸𝑙 [𝑉 ′
1
] and likewise 𝐸𝑟 [𝐸2 [𝑉2]] ↦→𝑖2 𝐸𝑟 [𝑉 ′

2
].

By one-sided anti-reduction (Lemma D.5), it suffices to show that

(𝐸𝑙 [𝑉 ′
1
], 𝐸𝑟 [𝑉 ′

2
]) ∈ E⪰

𝑗−𝑖2⟦𝑑𝜎⟧V
⪰⟦𝑑⟧.

By assumption on 𝐸𝑙 and 𝐸𝑟 being related, it suffices to show that (𝑉 ′
1
,𝑉 ′

2
) ∈ V⪰

𝑗−𝑖2⟦𝑐⟧.
Now by one-sided forward reduction (Lemma D.7), it suffices to show

(𝐸1 [𝑉1], 𝐸2 [𝑉2]) ∈ E⪰
(𝑗−𝑖2)+𝑖2⟦𝑑𝜎⟧V

∼⟦𝑐⟧.
But this is precisely our assumption, so we are finished.

□

Remark: The reason why we needed to consider cases on ∼ separately is that the more

“generic”/two-sided anti-reduction and forward-reduction lemmas involve the min or max of the

number of steps taken by the two terms. These may not be equal, in which case the arithmetic

wouldn’t work out. But this doesn’t mean the above lemma is false. Conceptually, what is happening

is that in the two-sided variants of the lemmas, ∼ could be either > or <. On the other hand, the key

here is that ∼ stays the same throughout the application of anti-reduction and forward reduction,

so we are able to use the more specific, one-sided lemmas.

Lemma D.10 (time-out). If𝑀1 ↦→(𝑖+1)
, then (𝑀1, 𝑀2) ∈ E⪯

𝑖
⟦𝑑𝜎⟧𝑅. Similarly, if𝑀2 ↦→(𝑖+1)

, then

(𝑀1, 𝑀2) ∈ E⪰
𝑖
⟦𝑑𝜎⟧𝑅.

Proof. Suppose𝑀1 ↦→(𝑖+1)
. Then we may assert the first disjunct in the definition of E⪯

𝑖
⟦𝑑𝜎⟧𝑅

to conclude that (𝑀1, 𝑀2) ∈ E⪯
𝑖
⟦𝑑𝜎⟧𝑅. Likewise, if𝑀2 ↦→(𝑖+1)

, then we may assert the first disjunct

in the definition of E⪰
𝑖
⟦𝑑𝜎⟧𝑅 to conclude that (𝑀1, 𝑀2) ∈ E⪰

𝑖
⟦𝑑𝜎⟧𝑅. □

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:45

We present two trivial lemmas about the later modality. We do this to cut down on tedious

reasoning about step indices within other proofs.

Lemma D.11. Let 𝑅 be a monotone step-indexed relation. If (𝑀1, 𝑀2) ∈ 𝑅 𝑗 , then (𝑀1, 𝑀2) ∈ (▶𝑅) 𝑗 .

Proof. Suppose (𝑀1, 𝑀2) ∈ 𝑅 𝑗 . If 𝑗 = 0, then (𝑀1, 𝑀2) ∈ (▶𝑅)0 trivially.
Otherwise, let 𝑗 = 𝑗 ′ + 1. By monotonicity of 𝑅, we have (𝑀1, 𝑀2) ∈ 𝑅 𝑗 ′ , from which it follows

that (𝑀1, 𝑀2) ∈ (▶𝑅) 𝑗 . □

Lemma D.12. Let 𝑅 be a monotone step-indexed relation, and let 𝑗 be of the form 𝑗 = 𝑗 ′ + 1. If

(𝑀1, 𝑀2) ∈ (▶𝑅) 𝑗 , then (𝑀1, 𝑀2) ∈ (▶𝑅) 𝑗 ′ .

Proof. Suppose (𝑀1, 𝑀2) ∈ (▶𝑅) 𝑗 . Since 𝑗 = 𝑗 ′ + 1, by definition of ▶ we must have that

(𝑀1, 𝑀2) ∈ 𝑅 𝑗 ′ . By the previous lemma (Lemma D.11), we conclude (𝑀1, 𝑀2) ∈ (▶𝑅) 𝑗 ′ , which is

what we needed to show. □

Lemma D.13 (Reasoning with “later” when both sides step). Suppose𝑀 ↦→1 𝑀 ′
and 𝑁 ↦→1

𝑁 ′
, and that (𝑀 ′, 𝑁 ′) ∈ (▶E∼⟦𝑑𝜎⟧)𝑘𝑅. Then (𝑀, 𝑁) ∈ E∼

𝑘
⟦𝑑𝜎⟧𝑅.

Proof. First suppose 𝑘 = 0. Then by the time-out lemma (Lemma D.10), regardless of whether ∼
is < or >, we have (𝑀, 𝑁) ∈ E∼

0
⟦𝑑𝜎⟧𝑅.

Now suppose 𝑘 ≥ 1. Then by the definition of later, we have that (𝑀 ′, 𝑁 ′) ∈ E∼
𝑘−1⟦𝑑𝜎⟧𝑅, so by

anti-reduction we have that (𝑀, 𝑁) ∈ E∼
𝑘
⟦𝑑𝜎⟧𝑅. □

Lemma D.14 (Löb-induction). Let 𝑃 (𝑛) be a predicate indexed by a natural number 𝑛. Suppose

for all natural numbers 𝑛, we have that (▶𝑚𝑃) (𝑛) implies 𝑃 (𝑛) for all𝑚 ≥ 1. Then 𝑃 (𝑛) is true for
all natural numbers 𝑛.

Proof. The proof is by induction on 𝑛. When 𝑛 = 0, the assumption says that (▶𝑃) (0) implies

𝑃 (0) (we have taken𝑚 = 1). So, it suffices to show that (▶𝑃) (0) holds. This is true by the definition

of later.

Now let𝑛 ≥ 1 be fixed, and suppose 𝑃 (𝑛) is true. We claim that 𝑃 (𝑛+1) is true. By our assumption,

it will suffice to show that (▶𝑃) (𝑛 + 1) is true. (We have again chosen𝑚 = 1.) By definition of later,

we must show 𝑃 (𝑛) is true. But 𝑃 (𝑛) is true by assumption. □

We now introduce a key lemma about evaluation contexts.

Note: In the below, we omit explicit mention of the types associated to the relations that

parameterize E∼⟦·⟧ and R∼⟦·⟧.

Lemma D.15. If

(1) (𝑀1, 𝑀2) ∈ E∼
𝑗 ⟦𝑑 ′𝜎⟧𝑆 ′

(2) For all 𝑘 ≤ 𝑗 and (𝑁1, 𝑁2) ∈ R∼
𝑘
⟦𝑑 ′𝜎⟧𝑆 ′, we have (𝐸1 [𝑁1], 𝐸2 [𝑁2]) ∈ E∼

𝑘
⟦𝑑𝜎⟧𝑆 ,

then (𝐸1 [𝑀1], 𝐸2 [𝑀2]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧𝑆 .

Proof. We prove the lemma for ∼=>; the other case is similar. Based on assumption (1), there

are four cases:

(1) Case𝑀2 ↦→𝑗+1
. We have 𝐸2 [𝑀2] ↦→𝑗+1

, so we may assert the first disjunct in the definition of

E∼
𝑗 ⟦𝑑𝜎⟧𝑆 to conclude that (𝐸1 [𝑀1], 𝐸2 [𝑀2]) ∈ E∼

𝑗 ⟦𝑑𝜎⟧𝑆 .
(2) Case ∃𝑘 ≤ 𝑗 such that𝑀2 ↦→𝑗−𝑘 ℧ and𝑀1 ↦→∗ ℧. We have 𝐸2 [𝑀2] ↦→𝑗−𝑘+1 ℧. If 𝑘 = 0, then

we have 𝐸2 [𝑀2] ↦→𝑗+1
, so we may assert the first disjunct. Otherwise, if 𝑘 ≥ 1, then we may

take 𝑘 ′ = 𝑘 − 1 and observe that 𝐸2 [𝑀2] ↦→𝑗−𝑘 ′
℧.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:46 Max S. New, Eric Giovannini, and Daniel R. Licata

(3) Case ∃𝑘 ≤ 𝑗 , ∃𝑉2 such that 𝑀2 ↦→𝑗−𝑘 𝑁2 and 𝑀1 ↦→∗ ℧. We have 𝐸2 [𝑀2] ↦→𝑗−𝑘 𝐸2 [𝑁2], so
we may assert the third disjunct with 𝑘 = 𝑘 and 𝑁2 = 𝐸2 [𝑁2].

(4) Case ∃𝑘 ≤ 𝑗, ∃(𝑁1, 𝑁2) ∈ R⪰
𝑘
⟦𝑑𝜎⟧𝑆 ′ such that 𝑀2 ↦→𝑗−𝑘 𝑁2 and 𝑀1 ↦→∗ 𝑁1. We have

𝐸1 [𝑀1] ↦→𝑖1 𝐸1 [𝑁1] for some 𝑖1, and 𝐸2 [𝑀2] ↦→𝑗−𝑘 𝐸2 [𝑁2]. By assumption (2), we have

(𝐸1 [𝑁1], 𝐸2 [𝑁2]) ∈ E∼
𝑘
⟦𝑑𝜎⟧𝑆 . Thus, we may assert the fourth disjunct with 𝑉1 = 𝐸1 [𝑁1] and

𝑉2 = 𝐸2 [𝑁2].
□

Lemma D.16 (“Semantic bind”). Let 𝑐 : 𝐴 ⊑ 𝐴′
and 𝑑 : 𝐵 ⊑ 𝐵′

. Let 𝐸1 and 𝐸2 be evaluation

contexts such that Σ | Γ | • : (𝑑 ′𝑙𝜎 !𝐴) ⊢𝑑𝑙𝜎 𝐸1 : 𝐵 and Σ | Γ | • : (𝑑 ′𝑟𝜎 !𝐴′) ⊢𝑑𝑟𝜎 𝐸2 : 𝐵
′
. Suppose

(1) (𝑀1, 𝑀2) ∈ E∼
𝑗 ⟦𝑑 ′𝜎⟧(𝑆 ′, 𝐴,𝐴′).

(2) For all 𝑘 ≤ 𝑗 and (𝑉1,𝑉2) ∈ 𝑆 ′
𝑘
, we have (𝐸1 [𝑉1], 𝐸2 [𝑉2]) ∈ E∼

𝑘
⟦𝑑𝜎⟧(𝑆, 𝐵, 𝐵′).

(3) For all 𝑘 ≤ 𝑗 and for all 𝜀 : 𝑐𝜀 { 𝑑𝜀 ∈ 𝑑 ′𝜎 , if 𝐸1 catches 𝜀 or 𝐸2 catches 𝜀, then for all 𝑉 𝑙 ,𝑉 𝑟 ∈
(▶V∼⟦𝑐𝜀⟧)𝑘 and all evaluation contexts 𝐸𝑙#𝜀 and 𝐸𝑟#𝜀 such that (𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈
(▶K∼⟦𝑑𝜀⟧)𝑘 (E∼⟦𝑑 ′𝜎⟧(𝑆 ′, 𝐴,𝐴′), (𝑑 ′𝑙𝜎 !𝐴), (𝑑 ′𝑟𝜎 !𝐴′)), we have
(𝐸1 [𝐸𝑙 [raise 𝜀 (𝑉 𝑙)]], 𝐸2 [𝐸𝑟 [raise 𝜀 (𝑉 𝑟)]]) ∈ E∼

𝑘
⟦𝑑𝜎⟧(𝑆, 𝐵, 𝐵′).

Then (𝐸1 [𝑀1], 𝐸2 [𝑀2]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧(𝑆, 𝐵, 𝐵′).

Proof. We use Löb induction (Lemma D.14). We assume that if the premises of the lemma are

satisfied “later”, then the conclusion holds later. We show under this assumption that the lemma

holds “now".

We first apply Lemma D.15. The first hypothesis is immediate. Now let 𝑘 ≤ 𝑗 and let (𝑁1, 𝑁2) ∈
R∼
𝑘
⟦𝑑 ′𝜎⟧(𝑆 ′, 𝐴,𝐴′). We need to show that

(𝐸1 [𝑁1], 𝐸2 [𝑁2]) ∈ E∼
𝑘
⟦𝑑𝜎⟧(𝑆, 𝐵, 𝐵′).

There are two cases to consider. In the first case, 𝑁1 and 𝑁2 are values and (𝑁1, 𝑁2) ∈ V∼
𝑗 ⟦𝑐⟧.

Then by assumption (2) with 𝑘 = 𝑗 , we have (𝐸1 [𝑁1], 𝐸2 [𝑁2]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧(𝑆, 𝐵, 𝐵′), as needed.

In the second case, there exist 𝜀′ : 𝑐′ { 𝑑 ′ ∈ 𝑑 ′𝜎 , 𝐸
𝑙
#𝜀′, 𝐸𝑟#𝜀′, and 𝑉 𝑙 ,𝑉 𝑟

such that (𝑉 𝑙 ,𝑉 𝑟) ∈
(▶V∼⟦𝑐′⟧) 𝑗 , and (𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈
(▶K∼⟦𝑑 ′⟧) 𝑗 (E∼⟦𝑑 ′𝜎⟧(𝑆 ′, 𝐴,𝐴′), (𝑑 ′𝑙𝜎 !𝐴), (𝑑 ′𝑟𝜎 !𝐴′)), and𝑁1 = 𝐸𝑙 [raise 𝜀′ (𝑉 𝑙)] and𝑁2 = 𝐸𝑟 [raise 𝜀′ (𝑉 𝑟)].
Let 𝑁 ′

1
= 𝐸1 [𝑁1] = 𝐸1 [𝐸𝑙 [raise 𝜀′ (𝑉 𝑙)]] and 𝑁 ′

2
= 𝐸2 [𝑁2] = 𝐸2 [𝐸𝑟 [raise 𝜀′ (𝑉 𝑟)]].

We need to show that

(𝑁 ′
1
, 𝑁 ′

2
) ∈ E∼

𝑗 ⟦𝑑𝜎⟧(𝑆, 𝐵, 𝐵′).
We now consider whether one of 𝐸1 or 𝐸2 catches 𝜀

′
, or whether neither catches it. In the former

case, assumption (3) immediately implies the desired result.

Now suppose neither 𝐸1 nor 𝐸2 catches 𝜀. In this case, note that since 𝜀′#𝐸𝑙 and 𝜀′#𝐸1, we have
𝜀′#𝐸1 [𝐸𝑙]. Likewise, we have 𝜀′#𝐸2 [𝐸𝑟]. It follows that 𝑁 ′

1
and 𝑁 ′

2
are stuck terms, i.e., they do not

step. Thus, it suffices to show that

(𝑁 ′
1
, 𝑁 ′

2
) ∈ R∼

𝑗 ⟦𝑑𝜎⟧(𝑆, 𝐵, 𝐵′).
We first claim (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝑐′⟧) 𝑗 . Since (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝑐′⟧) 𝑗 , this follows by Lemma

D.12.

We now claim that

(𝑥𝑙 .(𝐸1 [𝐸𝑙 [𝑥𝑙]]), 𝑥𝑟 .(𝐸2 [𝐸𝑟 [𝑥𝑟]])) ∈ (▶K∼⟦𝑑 ′⟧) 𝑗 (E∼⟦𝑑𝜎⟧(𝑆, 𝐵, 𝐵′), (𝑑𝑙𝜎 !𝐵), (𝑑𝑟𝜎 !𝐵′)).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:47

To this end, let 𝑘 ≤ 𝑗 and let (𝑉 ′𝑙 ,𝑉 ′𝑟) ∈ (▶V∼⟦𝑑 ′⟧)𝑘 . We need to show that

(𝐸1 [𝐸𝑙 [𝑉 ′𝑙]], 𝐸2 [𝐸𝑟 [𝑉 ′𝑟]]) ∈ (▶E∼⟦𝑑𝜎⟧)𝑘 (𝑆, 𝐵, 𝐵′).
By the Löb induction hypothesis, it suffices to show that the three hypotheses of the lemma hold

later. We claim that (𝐸𝑙 [𝑉 ′𝑙], 𝐸𝑟 [𝑉 ′𝑟]) ∈ (E∼
𝑘
⟦𝑑 ′𝜎⟧V∼⟦𝑐⟧). To see this, recall our assumption that

(𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈ (▶K∼⟦𝑑 ′⟧) 𝑗 (E∼⟦𝑑 ′𝜎⟧V∼⟦𝑐⟧) .
Thus, we have that (𝐸𝑙 [𝑉 ′𝑙], 𝐸𝑟 [𝑉 ′𝑟]) ∈ (▶E∼⟦𝑑 ′𝜎⟧)𝑘 (V∼⟦𝑐⟧), which is what we needed to

show.

□

We now introduce a few lemmas about precision derivations. We first show how we may

“compose” precision derivations:

Lemma D.17 (cut admissibility for precision derivations). • If 𝑐 : 𝐴 ⊑ 𝐵 and 𝑑 : 𝐵 ⊑ 𝐶

then 𝑐 ◦ 𝑑 : 𝐴 ⊑ 𝐶 .

• If 𝑑𝜎 : 𝜎 ⊑ 𝜎 ′
and 𝑑 ′𝜎 : 𝜎 ′ ⊑ 𝜎 ′′

then 𝑑𝜎 ◦ 𝑑 ′𝜎 : 𝜎 ⊑ 𝜎 ′′
.

Proof. We prove these statements simultaneously by induction on 𝑑 and 𝑑 ′𝜎 .

• Case 𝑑 = bool. We have 𝐵 = 𝐶 = bool, so 𝑐 = bool (the reflexivity derivation). Thus, we

may take 𝑐 ◦ 𝑑 = bool.
• Case 𝑑 = 𝑑𝑖 →𝑑𝜎 𝑑𝑜 . Inspecting the rules in figure 13, we see that 𝐵 = 𝐵𝑖 →𝐵𝜎

𝐵𝑜 and

𝐶 = 𝐶𝑖 →𝐶𝜎
𝐶𝑜 . Thus, we must have 𝐴 = 𝐴𝑖 →𝐴𝜎

𝐴𝑜 , which means that 𝑐 = 𝑐𝑖 →𝑐𝜎 𝑐𝑜 .

We may take 𝑐 ◦ 𝑑 = (𝑐𝑖 ◦ 𝑑𝑖) →𝑐𝜎◦𝑑𝜎 (𝑐𝑜 ◦ 𝑑𝑜). By our inductive hypotheses, we have (1)

𝑐𝑖 ◦𝑑𝑖 : 𝐴𝑖 ⊑ 𝐶𝑖 , (2) 𝑐𝜎 ◦𝑑𝜎 : 𝐴𝜎 ⊑ 𝐶𝜎 , and (3) 𝑐𝑜 ◦𝑑𝑜 : 𝐴𝑜 ⊑ 𝐶𝑜 . Now, using the type precision

formation rule for functions, we get that (𝑐𝑖 ◦ 𝑑𝑖) →𝑐𝜎◦𝑑𝜎 (𝑐𝑜 ◦ 𝑑𝑜) : (𝐴𝑖 →𝐴𝜎
𝐴𝑜 ⊑ 𝐶𝑖 →𝐶𝜎

𝐶𝑜).
• Case 𝑑 ′𝜎 = ?. Define ? ◦ ? = ?. Define Inj(𝑑) ◦ ? = Inj(𝑑). An concrete effect set cannot be

composed with ?.

• Case 𝑑 ′𝜎 = Inj(𝑑). Note that 𝜎 ′′ = ?. We define 𝑑𝜎 ◦ Inj(𝑑) = Inj(𝑑𝜎 ◦ 𝑑).
• Case 𝑑 ′𝜎 = 𝑑 ′𝑐 : Define (𝑑𝑐 ◦𝑑 ′𝑐) by 𝜀 : 𝑐 { 𝑑 ∈ (𝑑𝑐 ◦𝑑 ′𝑐) if and only if 𝑐 = 𝑐1 ◦ 𝑐2 and 𝑑 = 𝑑1 ◦𝑑2
with 𝜀 : 𝑐 {1 𝑑1 ∈ 𝑑𝑐 and 𝜀 : 𝑐 {2 𝑑2 ∈ 𝑑 ′𝑐 .

□

Lemma D.18 (reflexivity of composition). Let 𝑐 : 𝐴 ⊑ 𝐵 and 𝑑𝜎 : 𝜎 ⊑ 𝜎 ′
. The following hold.

• 𝑐 ◦ 𝐵 = 𝐴 ◦ 𝑐 = 𝑐 .

• 𝑑𝜎 ◦ 𝜎 ′ = 𝜎 ◦ 𝑑𝜎 = 𝑑𝜎 .

Proof. Follows from the uniqueness of precision derivations. That is, 𝑐 ◦ 𝐵, 𝐴 ◦ 𝑐 , and 𝑐 all are
all proofs of 𝐴 ⊑ 𝐵, hence are equal. □

Lemma D.19 (decomposition). Suppose 𝜀 : 𝑐 { 𝑑 ∈ 𝑑𝜎 ◦𝑑 ′𝜎 . Then there exist 𝑐1, 𝑐2 and 𝑑1, 𝑑2 such

that 𝜀 : 𝑐1 { 𝑑1 ∈ 𝑑𝜎 and 𝜀 : 𝑐2 { 𝑑2 ∈ 𝑑 ′𝜎 and 𝑐 = 𝑐1 ◦ 𝑐2 and 𝑑 = 𝑑1 ◦ 𝑑2.

Proof. By induction on 𝑑 ′𝜎 .

• Case 𝑑 ′𝜎 = ?. If 𝑑𝜎 = ?, then our assumption becomes 𝜀 : 𝑐 { 𝑑 ∈ ? ◦ ? = ?. By definition of

membership in ?, this means that 𝜀 : 𝑐𝑟 { 𝑑𝑟 ∈ Σ.
We may take 𝑐1 = 𝑐 and take 𝑐2 to be the reflexivity derivation for 𝑐𝑟 ⊑ 𝑐𝑟 . Likewise, we

take 𝑑1 = 𝑑 and 𝑑2 to be the reflexivity derivation for 𝑑𝑟 ⊑ 𝑑𝑟 . Note that 𝜀 : 𝑐2 { 𝑑2 ∈ ?,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:48 Max S. New, Eric Giovannini, and Daniel R. Licata

because 𝑐𝑟
2
= 𝑐𝑟 and 𝑑𝑟

2
= 𝑑𝑟 , and we know 𝜀 : 𝑐𝑟 { 𝑑𝑟 ∈ Σ. We also have that 𝑐 = 𝑐1 ◦ 𝑐2 and

𝑑 = 𝑑1 ◦ 𝑑2, using Lemma D.18.

If 𝑑𝜎 = inj(𝑑𝜎), then our assumption becomes 𝜀 : 𝑐 { 𝑑 ∈ inj(𝑑𝜎). By definition of

membership in Inj(,), we have that 𝜀 : 𝑐 { 𝑑 ∈ 𝑑𝜎 . We may again take 𝑐1 = 𝑐 and 𝑐2 to be

the reflexivity derivation for 𝑐𝑟 ⊑ 𝑐𝑟 , and likewise for 𝑑1 and 𝑑2. The same reasoning as above

applies.

• Case 𝑑 ′𝜎 = inj(𝑑𝜎). By definition of composition, our assumption becomes 𝜀 : 𝑐 { 𝑑 ∈
(𝑑𝜎 ◦ inj(𝑑𝜎)) = inj(𝑑𝜎 ◦ 𝑑𝜎).
By the induction hypothesis, there are 𝑐1, 𝑐2 and 𝑑1, 𝑑2 such that 𝜀 : 𝑐1 { 𝑑1 ∈ 𝑑𝜎 and

𝜀 : 𝑐2 { 𝑑2 ∈ 𝑑𝜎 and 𝑐 = 𝑐1 ◦ 𝑐2 and 𝑑 = 𝑑1 ◦ 𝑑2. By definition of membership in Inj(,), we
have 𝜀 : 𝑐2 { 𝑑2 ∈ inj(𝑑𝜎) = 𝑑 ′𝜎 .

• Case 𝑑 ′𝜎 = 𝑑 ′𝑐 (concrete effect set). Similar to previous case.

□

D.0.2 Congruence Rules. With these lemmas, we can prove the soundness of the term precision

congruence rules. The proofs are by induction on the term precision derivation.

Lemma D.20 (Congruence for Booleans).

Proof. We need to show that Γ⊑ ⊨𝑑𝜎 ⟦true⟧ ⊑ ⟦true⟧ ∈ bool, and likewise for false (we will
show this for true only; the reasoning for false is exactly the same.)

Let ∼ ∈ {<, >} and let (𝛾1, 𝛾2) ∈ G∼
𝑖 ⟦Γ⊑⟧. We need to show

(true[𝛾1], true[𝛾2]) ∈ E∼
𝑖 ⟦𝑑𝜎⟧V∼⟦bool⟧,

i.e.,

(true, true) ∈ E∼
𝑖 ⟦𝑑𝜎⟧V∼⟦bool⟧.

By Lemma D.4, it suffices to show that (true, true) ∈ V∼
𝑖 ⟦bool⟧. This is true according to the

definition of the logical relation.

□

Lemma D.21 (Congruence for Variables).

Proof. We need to show that Γ⊑, 𝑥1 ⊑ 𝑥2 : 𝑐, Γ
′⊑ ⊨𝑑𝜎 𝑥1 ⊑ 𝑥2 ∈ 𝑐 .

Let ∼ ∈ {<, >}, and let Γ̂⊑ = Γ⊑, 𝑥1 ⊑ 𝑥2 : 𝑐, Γ
′⊑
. Let (𝛾1, 𝛾2) ∈ G∼

𝑖 ⟦Γ̂⊑⟧. We need to show

(𝑥1 [𝛾1], 𝑥2 [𝛾2]) ∈ E∼
𝑖 ⟦𝑑𝜎⟧V∼⟦𝑐⟧.

By Lemma D.4, it suffices to show that (𝛾1 (𝑥1), 𝛾2 (𝑥2)) ∈ V∼
𝑖 ⟦𝑐⟧. But this follows from the fact

that (𝛾1, 𝛾2) ∈ G∼
𝑖 ⟦Γ̂⊑⟧. In particular, by the definition of the logical relation, since (𝑥1 ⊑ 𝑥2 : 𝑐) ∈

Γ̂⊑ , we have (𝛾1 (𝑥1), 𝛾2 (𝑥2)) ∈ V∼
𝑖 ⟦𝑐⟧. □

Lemma D.22 (Congruence for Lambdas).

Proof. Suppose Γ⊑, 𝑥 ⊑ 𝑦 : 𝑐 ⊨𝑑𝜎 ′ 𝑀 ⊑ 𝑁 ∈ 𝑑 . We need to show that Γ⊑ ⊨𝑑𝜎 𝜆𝑥.𝑀 ⊑ 𝜆𝑦.𝑁 ∈
𝑐 →𝑑𝜎 ′ 𝑑 .

Let ∼ ∈ {<, >} and let (𝛾1, 𝛾2) ∈ G∼
𝑖 ⟦Γ⊑⟧. We need to show

((𝜆𝑥.𝑀) [𝛾1], (𝜆𝑦.𝑁) [𝛾2]) ∈ E∼
𝑖 ⟦𝑑𝜎⟧V∼⟦𝑐 →𝑑𝜎 ′ 𝑑⟧.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:49

Let 𝑉1 = 𝜆𝑥 .𝑀 [𝛾1] and 𝑉2 = 𝜆𝑦.𝑁 [𝛾2]. By Lemma D.4, it will suffice to show that (𝑉1,𝑉2) ∈
V∼

𝑖 ⟦𝑐 →𝑑𝜎 ′ 𝑑⟧. To this end, let 𝑘 ≤ 𝑖 and let (𝑉𝑖1,𝑉𝑖2) ∈ V∼
𝑘
⟦𝑐⟧. We will show that (𝑉1𝑉𝑖1,𝑉2𝑉𝑖2) ∈

E∼
𝑘
⟦𝑑𝜎 ′⟧V∼⟦𝑑⟧.
Let𝑀 ′ = (𝑀 [𝛾1]) (𝑉𝑖1/𝑥) and let 𝑁 ′ = (𝑁 [𝛾2]) (𝑉𝑖2/𝑦). Note that (𝑉1𝑉𝑖1) ↦→1 𝑀 ′

, and similarly

(𝑉2𝑉𝑖2) ↦→1 𝑁 ′
. Thus, if 𝑘 = 0, then by the Time-out Lemma (Lemma D.10), we conclude that

(𝑉1𝑉𝑖1,𝑉2𝑉𝑖2) ∈ E∼
𝑘
⟦𝑑𝜎 ′⟧V∼⟦𝑑⟧.

Hence, from now on, we assume 𝑘 ≥ 1. By the Anti-reduction lemma (Lemma D.6) (with

𝑖1 = 𝑖2 = 1 and 𝑗 = 𝑘), it will suffice to show that (𝑀 ′, 𝑁 ′) ∈ E∼
𝑘−1⟦𝑑𝜎 ′⟧V∼⟦𝑑⟧.

This will follow by our inductive hypothesis, which says that for any ∼ ∈ {<, >}, any natural

number 𝑛, and any (𝛾 ′
1
, 𝛾 ′

2
) ∈ G∼

𝑛 ⟦Γ⊑, 𝑥 ⊑ 𝑦 : 𝑐⟧, we have

(𝑀 [𝛾 ′
1
], 𝑁 [𝛾 ′

2
]) ∈ E∼

𝑛 ⟦𝑑𝜎 ′⟧V∼⟦𝑑⟧.
Let 𝛾 ′

1
= 𝛾1,𝑉𝑖1/𝑥 , let 𝛾 ′2 = 𝛾2,𝑉𝑖2/𝑦. It is easily verified that (𝛾 ′1, 𝛾 ′2) ∈ G∼

𝑘−1⟦Γ
⊑, 𝑥 ⊑ 𝑦 : 𝑐⟧. (Doing

so requires the monotonicity lemma, combined with the fact that (𝛾1, 𝛾2) ∈ G∼
𝑖 ⟦Γ⊑⟧ and that

𝑘 − 1 < 𝑘 ≤ 𝑖). Taking 𝑛 = 𝑘 − 1 above, and noting that 𝑀 ′ = 𝑀 [𝛾 ′
1
] and 𝑁 ′ = 𝑁 [𝛾 ′

2
], it follows

that (𝑀 ′, 𝑁 ′) ∈ E∼
𝑘−1⟦𝑑𝜎 ′⟧V∼⟦𝑑⟧, as we wanted to show.

□

Lemma D.23 (Congruence for Function Application).

Proof. Suppose Γ⊑ ⊨𝑑𝜎 𝑀1 ⊑ 𝑀2 ∈ 𝑐 →𝑑𝜎 𝑑 , and that Γ⊑ ⊨𝑑𝜎 𝑁1 ⊑ 𝑁2 ∈ 𝑐 .

We need to show that Γ⊑ ⊨𝑑𝜎 𝑀1 𝑁1 ⊑ 𝑀2 𝑁2 ∈ 𝑑 .

Let ∼ ∈ {<, >} and let (𝛾1, 𝛾2) ∈ G∼
𝑖 ⟦Γ⊑⟧. We need to show

(𝑀1 𝑁1 [𝛾1], 𝑀2 𝑁2 [𝛾2]) ∈ E∼
𝑖 ⟦𝑑𝜎⟧V∼⟦𝑑⟧.

By Lemma D.16, it will suffice to show that

(1) (𝑀1 [𝛾1], 𝑀2 [𝛾2]) ∈ E∼
𝑖 ⟦𝑑𝜎⟧V∼⟦𝑐 →𝑑𝜎 𝑑⟧, and that (2) for all 𝑘 ≤ 𝑖 and (𝑉1,𝑉2) ∈ V∼

𝑘
⟦𝑐 →𝑑𝜎

𝑑⟧, we have (𝑉1 𝑁1,𝑉1 𝑁2) ∈ E∼
𝑘
⟦𝑑𝜎⟧V∼⟦𝑑⟧.

(1) follows immediately from our first top-level assumption.

To show (2), we again apply Lemma D.16. It follows from our second top-level assumption that

(𝑁1 [𝛾1], 𝑁2 [𝛾2]) ∈ E∼
𝑘
⟦𝑑𝜎⟧V∼⟦𝑐⟧. Now let 𝑘 ′ ≤ 𝑘 and (𝑉 ′

1
,𝑉 ′

2
) ∈ V∼

𝑘 ′⟦𝑐⟧. We claim that

(𝑉1𝑉 ′
1
,𝑉2𝑉

′
2
) ∈ E∼

𝑘 ′⟦𝑑𝜎⟧V∼⟦𝑑⟧.
This holds since (𝑉1,𝑉2) ∈ V∼

𝑘
⟦𝑐 →𝑑𝜎 𝑑⟧ and (𝑉 ′

1
,𝑉 ′

2
) ∈ V∼

𝑘 ′⟦𝑐⟧.
□

Lemma D.24 (Congruence for If).

Proof. Suppose:

(1) Γ⊑ ⊨𝑑𝜎 ⟦𝑀⟧ ⊑ ⟦𝑀 ′⟧ ∈ bool
(2) Γ⊑ ⊨𝑑𝜎 ⟦𝑁𝑡⟧ ⊑ ⟦𝑁 ′

𝑡 ⟧ ∈ 𝑐

(3) Γ⊑ ⊨𝑑𝜎 ⟦𝑁𝑓 ⟧ ⊑ ⟦𝑁 ′
𝑓
⟧ ∈ 𝑐

Let ∼ ∈ {<, >} and let (𝛾1, 𝛾2) ∈ G∼
𝑖 ⟦Γ⊑⟧. We need to show(

if 𝑀{𝑁𝑡 }{𝑁𝑓 }[𝛾1], if 𝑀 ′{𝑁 ′
𝑡 }{𝑁 ′

𝑓
}[𝛾2]

)
∈ E∼

𝑖 ⟦𝑑𝜎⟧V∼⟦𝑐⟧.

By Lemma D.16, it will suffice to show that (1) (⟦𝑀⟧[𝛾1], ⟦𝑀 ′⟧[𝛾2]) ∈ E∼
𝑖 ⟦𝑑𝜎⟧V∼⟦bool⟧, and

(2) for all 𝑘 ≤ 𝑖 and (𝑉1,𝑉2) ∈ V∼
𝑘
⟦bool⟧, we have

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:50 Max S. New, Eric Giovannini, and Daniel R. Licata

(if 𝑉1{𝑁𝑡 [𝛾1]}{𝑁𝑓 [𝛾1]}), (if 𝑉2{𝑁 ′
𝑡 [𝛾2]}{𝑁 ′

𝑓
[𝛾2]}) ∈ E∼

𝑘
⟦𝑑𝜎⟧V∼⟦𝑐⟧.

We note that (1) follows by our first top-level assumption. For (2), the assumption (𝑉1,𝑉2) ∈
V∼

𝑘
⟦bool⟧ has two cases. If 𝑉1 = 𝑉2 = true, then by anti-reduction (Lemma D.6), it will suffice to

show (𝑁𝑡 [𝛾1], 𝑁 ′
𝑡 [𝛾2]) ∈ E∼

𝑘
⟦𝑑𝜎⟧V∼⟦𝑐⟧. But this follows from our second top-level assumption.

Similarly, if 𝑉1 = 𝑉2 = false, then it suffices to show that (𝑁𝑓 [𝛾1], 𝑁 ′
𝑓
[𝛾2]) ∈ E∼

𝑘
⟦𝑑𝜎⟧V∼⟦𝑐⟧,

which follows from our third top-level assumption.

□

Lemma D.25 (Congruence for Let).

Proof. This proof is similar to the function abstraction proof and is hence omitted. □

Lemma D.26 (Congruence for Raise).

Proof. Let 𝑐 : 𝐴1 ⊑ 𝐴2 and 𝑑 : 𝐵1 ⊑ 𝐵2. Suppose 𝜀 : 𝑐 { 𝑑 ∈ 𝑑𝜎 and

Γ⊑ ⊨𝑑𝜎 𝑀1 ⊑ 𝑀2 ∈ 𝑐.

We need to show that

Γ⊑ ⊨𝑑𝜎 raise 𝜀 (𝑀1) ⊑ raise 𝜀 (𝑀2) ∈ 𝑑.

Let ∼ ∈ {<, >} and (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We will show

(raise 𝜀 (𝑀1) [𝛾1], raise 𝜀 (𝑀2) [𝛾2]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑑⟧.

We apply Lemma D.16. We first claim that (𝑀1 [𝛾1], 𝑀2 [𝛾2]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐⟧. This follows by

assumption. Now, let 𝑘 ≤ 𝑗 and (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝑐⟧. We claim that

(raise 𝜀 (𝑉1) [𝛾1], raise 𝜀 (𝑉2) [𝛾2]) ∈ E∼
𝑘
⟦𝑑𝜎⟧V∼⟦𝑑⟧.

By Lemma D.3, it suffices to show that

(raise 𝜀 (𝑉1) [𝛾1], raise 𝜀 (𝑉2) [𝛾2]) ∈ R∼
𝑘
⟦𝑑𝜎⟧V∼⟦𝑑⟧.

We assert the second disjunct in the definition of R∼⟦·⟧, where we take 𝜀 to be 𝜀 (which we

know by assumption is in 𝑑𝜎), and we take 𝐸𝑙 = 𝐸𝑟 = • and 𝑉 𝑙 = 𝑉1, 𝑉
𝑟 = 𝑉2.

We need to show that (𝑉1,𝑉2) ∈ (▶V∼⟦𝑐⟧)𝑘 , and that

(𝑥𝑙 .(•[𝑥𝑙]), 𝑥𝑟 .(•[𝑥𝑟])) ∈ (▶K∼⟦𝑑⟧)𝑘 (E∼⟦𝑑𝜎⟧V∼⟦𝑑⟧)
To this end, let 𝑘 ′ ≤ 𝑘 and let (𝑉 𝑙 ,𝑉 𝑟) ∈ V∼

𝑘 ′⟦𝑐⟧. We need to show

(𝑉 𝑙 ,𝑉 𝑟) ∈ E∼
𝑘 ′⟦𝑑𝜎⟧V∼⟦𝑑⟧.

But this follows by Lemma D.4.

□

Lemma D.27 (Congruence for Handle).

𝑀 ⊑ 𝑀 ′
: 𝑑𝜎 ! 𝑐 𝑦 : 𝑐 ⊢ 𝑁 ⊑ 𝑁 ′

: 𝑑𝜏 !𝑑

∀𝜀 : 𝑑𝑖 { 𝑑𝑜 ∈ 𝑑𝜎 .(𝜀 ∉ dom(𝜙) ∧ 𝜀 ∉ dom(𝜙 ′) ∧ 𝜀 : 𝑑𝑖 { 𝑑𝑜 ∈ 𝑑𝜏)∨
𝑥 : 𝑑𝑖 , 𝑘 : 𝑑𝑜 →𝑑𝜏 𝑑 ⊢ 𝜙 (𝜀) ⊑ 𝜙 ′ (𝜀) : 𝑑𝜏 !𝑑

handle 𝑀 {ret 𝑦.𝑁 | 𝜙} ⊑ handle 𝑀 ′ {ret 𝑦.𝑁 ′ | 𝜙 ′} : 𝑑𝜏 !𝑑

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:51

Proof. We use Löb induction (Lemma D.14). Assume that for all 𝑘 ≤ 𝑗 and all (𝛾1, 𝛾2) ∈
(▶G∼⟦Γ⊑⟧)𝑘 and all (𝑀,𝑀 ′) ∈ (▶E∼⟦𝑑𝜎⟧)𝑘 (V∼⟦𝑐⟧), we have

(handle 𝑀 {ret 𝑥 .𝑁 | 𝜙}[𝛾1],
handle 𝑀 ′ {ret 𝑥 ′ .𝑁 ′ | 𝜙 ′}[𝛾2])

∈ (▶E∼
𝑗 ⟦𝑑𝜏⟧𝑘 (V∼⟦𝑑⟧) .

Let (𝑀,𝑀 ′) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐⟧.

Let ∼ ∈ {<, >} and let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⊑⟧. We need to show that

(handle 𝑀 {ret 𝑥 .𝑁 | 𝜙}[𝛾1],
handle 𝑀 ′ {ret 𝑥 ′ .𝑁 ′ | 𝜙 ′}[𝛾2])

∈ E∼
𝑗 ⟦𝑑𝜏⟧V∼⟦𝑑⟧.

By monadic bind (Lemma D.16), it suffices to consider the following cases:

• Let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝑐⟧. We need to show that

(handle 𝑉1 {ret 𝑥 .𝑁 [𝛾1] | 𝜙 [𝛾1]},
handle 𝑉2 {ret 𝑥 ′ .𝑁 ′ [𝛾2] | 𝜙 ′ [𝛾2]})

∈ E∼
𝑗 ⟦𝑑𝜏⟧V∼⟦𝑑⟧.

By anti-reduction (Lemma D.6), it suffices to show that

(𝑁 [𝛾1] [𝑉1/𝑥], 𝑁 ′ [𝛾2] [𝑉2/𝑥 ′]) ∈ E∼
𝑘
⟦𝑑𝜏⟧V∼⟦𝑑⟧.

This follows from the premise: if we let 𝛾 ′
1
= 𝛾1,𝑉1/𝑥 and 𝛾 ′

2
= 𝛾2,𝑉2/𝑥 ′, then it is eas-

ily checked that (𝛾 ′
1
, 𝛾 ′

2
) ∈ G∼

𝑗 ⟦Γ⊑, 𝑥 ⊑ 𝑥 ′ : 𝑐⟧. Furthermore, 𝑁 [𝛾1] [𝑉1/𝑥] = 𝑁 [𝛾 ′
1
] and

likewise for 𝑁 [𝛾2] [𝑉2/𝑥 ′]. The premise then implies that (𝑁 [𝛾1] [𝑉1/𝑥], 𝑁 ′ [𝛾2] [𝑉2/𝑥 ′]) ∈
E∼
𝑘
⟦𝑑𝜏⟧V∼⟦𝑑⟧, as needed.

• Let 𝑘 ≤ 𝑗 and let 𝜀 : 𝑑𝑖 { 𝑑𝑜 ∈ 𝑑𝜎 be an effect that is caught by either handler – i.e.,

𝜀 ∈ dom(𝜙) or 𝜀 ∈ dom(𝜙 ′). By the premise, it follows that 𝜀 is in both dom(𝜙) and dom(𝜙 ′).
Let (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝑐𝑖⟧)𝑘 . Let 𝐸𝑙#𝜀 and 𝐸𝑟#𝜀 be evaluation contexts such that

(𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈ (▶K∼⟦𝑑𝑜⟧)𝑘 (E∼⟦𝑑𝜎⟧V∼⟦𝑐⟧) .
We need to show that

(handle 𝐸𝑙 [raise 𝜀 (𝑉 𝑙) {ret 𝑥 .𝑁 [𝛾1] | 𝜙 [𝛾1]},
handle 𝐸𝑟 [raise 𝜀 (𝑉 𝑟) {ret 𝑥 ′ .𝑁 ′ [𝛾2] | 𝜙 ′ [𝛾2]})

∈ E∼
𝑘
⟦𝑑𝜏⟧V∼⟦𝑑⟧.

By anti-reduction, it suffices to show that

(𝜙 (𝜀) [𝛾1] [𝑉 𝑙/𝑥] [(𝜆𝑦.handle 𝐸𝑙 [𝑦] {ret 𝑥 .𝑁 [𝛾1] | 𝜙 [𝛾1]})/𝑘],
𝜙 ′ (𝜀) [𝛾2] [𝑉 𝑟/𝑥 ′] [(𝜆𝑦.handle 𝐸𝑟 [𝑦] {ret 𝑥 ′ .𝑁 ′ [𝛾2] | 𝜙 ′ [𝛾2]})/𝑘 ′])

∈ (▶E∼⟦𝑑𝜏⟧)𝑘 (V∼⟦𝑑⟧) .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:52 Max S. New, Eric Giovannini, and Daniel R. Licata

To show this, we apply the premise, as follows. Let𝐻1 = handle 𝐸𝑙 [𝑦] {ret 𝑥 .𝑁 [𝛾1] | 𝜙 [𝛾1]}
and 𝐻2 = handle 𝐸𝑟 [𝑦] {ret 𝑥 ′ .𝑁 ′ [𝛾2] | 𝜙 ′ [𝛾2]}. Let 𝛾 ′1 = 𝛾1,𝑉

𝑙/𝑥𝑖 , (𝜆𝑦.𝐻1)/𝑘𝑖 and let

𝛾 ′
2
= 𝛾2,𝑉

𝑟/𝑥 ′𝑖 , (𝜆𝑦.𝐻2)/𝑘 ′𝑖 . In order to apply the premise, we must prove that (𝛾 ′
1
, 𝛾 ′

2
) ∈

G∼
𝑘 ′⟦Γ⊑, 𝑥𝑖 ⊑ 𝑥 ′𝑖 : 𝑑𝑖 , 𝑘𝑖 ⊑ 𝑘 ′𝑖 : 𝑑𝑜 →𝑑𝜏 𝑑⟧.

We first need to show that (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝑐𝑖⟧)𝑘 . This holds by assumption. We now need

to show that

((𝜆𝑦.𝐻1), (𝜆𝑦.𝐻2)) ∈ (▶V∼⟦𝑑𝑜 →𝑑𝜏 𝑑⟧)𝑘 .
To this end, let 𝑘 ′ ≤ 𝑘 and let (𝑉𝐴,𝑉𝐵) ∈ (▶V∼⟦𝑑𝑜⟧)𝑘 ′ . We need to show that

((𝜆𝑦.𝐻1)𝑉𝐴, (𝜆𝑦.𝐻2)𝑉𝐵)
∈ (▶E∼⟦𝑑𝜏⟧)𝑘 ′ (V∼⟦𝑑⟧)

By anti-reduction, it suffices to show that

(handle 𝐸𝑙 [𝑉𝐴] {ret 𝑥 .𝑁 | 𝜙}, handle 𝐸𝑟 [𝑉𝐵] {ret 𝑥 ′ .𝑁 ′ | 𝜙 ′})
∈ (▶E∼⟦𝑑𝜏⟧)𝑘 ′ (V∼⟦𝑑⟧).

By the Löb induction hypothesis, it will suffice to show that

(𝐸𝑙 [𝑉𝐴], 𝐸𝑟 [𝑉𝐵]) ∈ (▶E∼⟦𝑑𝜎⟧)𝑘 ′ (V∼⟦𝑐⟧) .
Recall that by assumption, we have

(𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈ (▶K∼⟦𝑑𝑜⟧)𝑘 (E∼⟦𝑑𝜎⟧V∼⟦𝑐⟧).
Thus, it suffices to show that (𝑉𝐴,𝑉𝐵) ∈ (▶V∼⟦𝑑𝑜⟧)𝑘 ′ , which is precisely our assumption.

□

Note that we do not need to show soundness of the term precision congruence rules involving

casts. This will follow from the soundness of the upper and lower bound rules for casts.

Corollary D.28 (reflexivity). Let𝑀 be a term such that Σ | Γ | Δ ⊢𝜎 𝑀 : 𝐴. We have Σ | Γ⊑ ⊨𝜎
𝑀 ⊑ 𝑀 : 𝐴.

Proof. By induction on𝑀 , using the soundness of the term precision relation already proven. □

D.0.3 Equational Rules.

Lemma D.29 (Value substitution).

𝑥1 ⊑ 𝑥2 : 𝑐 ⊨𝑑𝜎 𝑀 ≡ 𝑁 : 𝑑 𝑉 ≡ 𝑉 ′
: 𝑐

𝑀 [𝑉 /𝑥1] ≡ 𝑁 [𝑉 ′/𝑥2]

Proof. Suppose for all 𝑗 and all (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⊑, 𝑥𝑙 ⊑ 𝑥𝑟 : 𝑐⟧, that

(𝑥1.𝑀, 𝑥2 .𝑁) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑑⟧

and

(𝑥2 .𝑁 , 𝑥1 .𝑀) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑑⟧.

Further suppose that for all 𝑗 ,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:53

(𝑉 ,𝑉 ′) ∈ V∼
𝑗 ⟦𝑐⟧

and

(𝑉 ′,𝑉) ∈ V∼
𝑗 ⟦𝑐⟧.

Let 𝑗 be arbitrary, and let (𝛾1, 𝛾2) ∈ G∼⟦Γ⊑⟧. We need to show

(𝑀 [𝑉 /𝑥1], 𝑁 [𝑉 ′/𝑥2]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑑⟧

and

(𝑁 [𝑉 ′/𝑥2], 𝑀 [𝑉 /𝑥1]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑑⟧.

The second statement is symmetric to the first, so we show only the first.

Let 𝛾 ′
1
= (𝛾1, 𝑥1 = 𝑉) and let 𝛾 ′

2
= (𝛾2, 𝑥2 = 𝑉 ′).

Note that we have𝑀 [𝛾 ′
1
] = 𝑀 [𝛾1] [𝑉 /𝑥1] and 𝑁 [𝛾 ′

2
] = 𝑁 [𝛾2] [𝑉 ′/𝑥2], by definition of substitu-

tion.

By our assumption, it is sufficient to show that (𝛾 ′
1
, 𝛾 ′

2
) ∈ G∼

𝑗 ⟦Γ⊑, 𝑥1 ⊑ 𝑥2 : 𝑐⟧.
For this, it suffices to show that (𝛾 ′

1
(𝑥1), 𝛾 ′2 (𝑥2)) ∈ V∼

𝑗 ⟦𝑐⟧. But 𝛾 ′1 (𝑥1) = 𝑉 and 𝛾 ′
2
(𝑥2)𝑉 ′

, so we

are finished.

□

Lemma D.30 (Monad Unit Left).

let 𝑥 = 𝑦 in 𝑁 ≡ 𝑁 [𝑦/𝑥]

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

(let 𝑥 = 𝑦 in 𝑁, 𝑁 [𝑦/𝑥]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

Since 𝑦 is a variable and hence a value, we have by the operational semantics that

let 𝑥 = 𝑦 in 𝑁 ↦→1 𝑁 [𝑦/𝑥] .
Thus, by anti-reduction, it suffices to show that

(𝑁 [𝑦/𝑥], 𝑁 [𝑦/𝑥]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

But this follows by reflexivity (Corollary D.28).

□

Lemma D.31 (Monad Unit Right).

let 𝑥 = 𝑀 in 𝑥 ≡ 𝑀

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

(let 𝑥 = 𝑀 in 𝑥,𝑀) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

Since 𝑥 is a variable and hence a value, we have by the operational semantics that

let 𝑥 = 𝑀 in 𝑥 ↦→1 𝑀 [𝑥/𝑥] .
By definition of substitution,𝑀 [𝑥/𝑥] = 𝑀 . Thus, by anti-reduction, it suffices to show that

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:54 Max S. New, Eric Giovannini, and Daniel R. Licata

(𝑀,𝑀) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

This follows by reflexivity (Corollary D.28).

□

Lemma D.32 (Monad Associativity).

let 𝑦 = (let 𝑥 = 𝑀 in 𝑁) in 𝑃 ≡ let 𝑥 = 𝑀 in let 𝑦 = 𝑁 in 𝑃

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

(let 𝑦 = (let 𝑥 = 𝑀 in 𝑁) in 𝑃, let 𝑥 = 𝑀 in let 𝑦 = 𝑁 in 𝑃) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

We apply Lemma D.16, taking 𝐸1 = let 𝑦 = (let 𝑥 = • in 𝑁) in 𝑃 and 𝐸2 = let 𝑥 =

• in let 𝑦 = 𝑁 in 𝑃 .

We first need to show that (𝑀,𝑀) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧, which is true by reflexivity (Corollary D.28).

Now, let 𝑘 ≤ 𝑗 and (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧. We need to show that

(let 𝑦 = (let 𝑥 = 𝑉1 in 𝑁) in 𝑃, let 𝑥 = 𝑉2 in let 𝑦 = 𝑁 in 𝑃) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

According to the operational semantics, we have

(let 𝑥 = 𝑉1 in 𝑁) ↦→1 𝑁 [𝑉1/𝑥] .
Thus,

let 𝑦 = (let 𝑥 = 𝑉1 in 𝑁) in 𝑃 ↦→1 let 𝑦 = 𝑁 [𝑉1/𝑥] in 𝑃 .

Similarly, we have

let 𝑥 = 𝑉2 in let 𝑦 = 𝑁 in 𝑃 ↦→1 (let 𝑦 = 𝑁 in 𝑃) [𝑉2/𝑥] = let 𝑦 = 𝑁 [𝑉2/𝑥] in 𝑃 [𝑉2/𝑥] .
Note that since 𝑥 does not occur in 𝑃 , we have 𝑃 [𝑉2/𝑥] = 𝑃 .

Now, by anti-reduction, it suffices to show

(let 𝑦 = 𝑁 [𝑉1/𝑥] in 𝑃, let 𝑦 = 𝑁 [𝑉2/𝑥] in 𝑃) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

We again apply Lemma D.16, this time with 𝐸1 = let 𝑦 = • in 𝑃 and 𝐸2 = let 𝑦 = • in 𝑃 .

We first need to show that (𝑁 [𝑉1/𝑥], 𝑁 [𝑉2/𝑥]) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧. This follows from reflexivity

(Corollary D.28) and value substitution (Lemma D.29) applied to our assumption on 𝑉1 and 𝑉2.

Now let 𝑘 ′ ≤ 𝑘 and (𝑉 ′
1
,𝑉 ′

2
) ∈ V∼

𝐴
⟦𝑘 ′⟧. We need to show that

(let 𝑦 = 𝑉 ′
1
in 𝑃, let 𝑦 = 𝑉 ′

2
in 𝑃) ∈ E∼

𝑘 ′⟦𝜎⟧V∼⟦𝐵⟧.
By anti-reduction, it suffices to show

(𝑃 [𝑉 ′
1
/𝑦], 𝑃 [𝑉 ′

2
/𝑦]) ∈ E∼

𝑘 ′⟦𝜎⟧V∼⟦𝐵⟧.
This again follows from reflexivity and value substitution.

□

Lemma D.33 (𝜂-expansion for Booleans).

𝑀 [𝑥 : bool] ≡ if 𝑥{𝑀 [true/𝑥]}{𝑀 [false/𝑥]}

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:55

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ, 𝑥1 ⊑ 𝑥2 : bool⟧. We need to show

(𝑀 [𝛾1], (if 𝑥{𝑀 [true/𝑥]}{𝑀 [false/𝑥]}) [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

By definition of substitution, this is equivalent to

(𝑀 [𝛾1], (if 𝛾{}{2}(𝑥)𝑀 [true/𝑥] [𝛾2]𝑀 [false/𝑥] [𝛾2])) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

By our assumption on 𝛾1 and 𝛾2, we have that either 𝛾1 (𝑥1) = 𝛾2 (𝑥2) = true or 𝛾1 (𝑥1) = 𝛾2 (𝑥2) =
false.
We show only the former case; the latter is symmetric. In the former case, we need to show

(𝑀 [true/𝑥] [𝛾1], (if true{𝑀 [true/𝑥] [𝛾2]}{𝑀 [false/𝑥] [𝛾2]})) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

By anti-reduction, it is sufficient to show

(𝑀 [true/𝑥] [𝛾1], 𝑀 [true/𝑥] [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

This follows by reflexivity.

□

Lemma D.34 (Boolean 𝛽 reduction - true).

if true{𝑁𝑡 }{𝑁𝑓 } ≡ 𝑁𝑡

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

((if true{𝑁𝑡 }{𝑁𝑓 }) [𝛾1], 𝑁𝑡 [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

By anti-reduction, it suffices to show

(𝑁𝑡 [𝛾1], 𝑁𝑡 [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

This holds by reflexivity.

□

Lemma D.35 (Boolean 𝛽 reduction - false).

if false{𝑁𝑡 }{𝑁𝑓 } ≡ 𝑁𝑓

Proof. Precisely dual to the above proof. □

Lemma D.36 (Eval for If).

if 𝑀{𝑁𝑡 }{𝑁𝑓 } ≡ let 𝑥 = 𝑀 in if 𝑥{𝑁𝑡 }{𝑁𝑓 } IfEval

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

((if 𝑀{𝑁𝑡 }{𝑁𝑓 }) [𝛾1], (let 𝑥 = 𝑀 in if 𝑥{𝑁𝑡 }{𝑁𝑓 }) [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

Weapply LemmaD.16, with𝐸1 = if •{𝑁𝑡 [𝛾1]}{𝑁𝑓 [𝛾1]} and𝐸2 = let 𝑥 = • in if 𝛾2 (𝑥){𝑁𝑡 [𝛾2]}{𝑁𝑓 [𝛾2]}.
We first need to show that (𝑀 [𝛾1], 𝑀 [𝛾2]) ∈ E∼

𝑗 ⟦𝜏⟧V∼⟦bool⟧. This follows by reflexivity

(Corollary D.28).

Now let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦bool⟧. We need to show that

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:56 Max S. New, Eric Giovannini, and Daniel R. Licata

((if 𝑉1{𝑁𝑡 [𝛾1]}{𝑁𝑓 [𝛾1]}), (let 𝑥 = 𝑉2 in if 𝛾2 (𝑥){𝑁𝑡 [𝛾2]}{𝑁𝑓 [𝛾2]})) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

By definition of V∼⟦bool⟧, either 𝑉1 = 𝑉2 = true or 𝑉1 = 𝑉2 = false. We consider the first

case; the second is symmetric.

We need to show

((if true{𝑁𝑡 [𝛾1]}{𝑁𝑓 [𝛾1]}), (let 𝑥 = true in if 𝛾2 (𝑥){𝑁𝑡 [𝛾2]}{𝑁𝑓 [𝛾2]})) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

By anti-reduction, it suffices to show

(𝑁𝑡 [𝛾1], 𝑁𝑡 [𝛾2]) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

This follows by reflexivity.

□

Lemma D.37 (𝛽-reduction for functions).

(𝜆𝑥 .𝑀)𝑉 ≡ 𝑀 [𝑉 /𝑥] FunBeta

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

(((𝜆𝑥 .𝑀)𝑉) [𝛾1], (𝑀 [𝑉 /𝑥]) [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

Since 𝑉 is a value, it suffices by anti-reduction to show that

(𝑀 [𝑉 /𝑥] [𝛾1], 𝑀 [𝑉 /𝑥] [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

This follows by reflexivity.

□

Lemma D.38 (𝜂-expansion for functions). Let𝑉𝑓 be a value such that Σ | Γ | Δ ⊢∅ 𝑉 : 𝐴 →𝜎 ′ 𝐵.

We have Σ | Γ⊑ ⊨𝜎 𝑉𝑓 ≡ (𝜆𝑥 .𝑉𝑓 𝑥) : (𝐴 →𝜎 ′ 𝐵).

Proof. Let 𝑗 be arbitrary. We need to show

(𝑉𝑓 , (𝜆𝑥 .𝑉𝑓 𝑥)) ∈ E∼
𝑗 ⟦∅⟧V∼⟦𝐴 →𝜎 ′ 𝐵⟧.

As these are values, it suffices by Lemma D.4 to show that they are related in V∼
𝑗 ⟦𝐴 →𝜎 ′ 𝐵⟧. To

this end, let 𝑘 ≤ 𝑗 and let (𝑉𝑖1,𝑉𝑖2) ∈ V∼
𝑘
⟦𝐴⟧. We claim that

(𝑉𝑓 𝑉𝑖1, (𝜆𝑥 .𝑉𝑓 𝑥)𝑉𝑖2) ∈ E∼
𝑘
⟦𝜎 ′⟧V∼⟦𝐵⟧.

By anti-reduction, it will suffice to show that

(𝑉𝑓 𝑉𝑖1,𝑉𝑓 𝑉𝑖2) ∈ E∼
𝑘
⟦𝜎 ′⟧V∼⟦𝐵⟧.

By reflexivity (Corollary D.28), we know that (𝑉𝑓 ,𝑉𝑓) ∈ E∼
𝑘
⟦∅⟧𝐴 →𝜎 ′ 𝐵, and since 𝑉𝑓 is a value,

this means that (𝑉𝑓 ,𝑉𝑓) ∈ V∼
𝑘
⟦𝐴 →𝜎 ′ 𝐵⟧. This immediately implies the desired result, since

(𝑉𝑖1,𝑉𝑖2) ∈ V∼
𝑘
⟦𝐴⟧.

□

Lemma D.39 (AppEval).

𝑀 𝑁 ≡ let 𝑥 = 𝑀 in let 𝑦 = 𝑁 in 𝑥 𝑦

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:57

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

((𝑀 𝑁) [𝛾1], (let 𝑥 = 𝑀 in let 𝑦 = 𝑁 in 𝑥 𝑦) [𝛾2]) ∈ E∼
𝑗 ⟦𝜏𝐴⟧V∼⟦𝐴𝑜⟧.

We apply Lemma D.16, with 𝐸1 = (•𝑁 [𝛾2]) and 𝐸2 = let 𝑥 = • in let 𝑦 = 𝑁 [𝛾2] in 𝑥 𝑦.

We first need to show that (𝑀 [𝛾1], 𝑀 [𝛾2]) ∈ E∼
𝑗 ⟦𝜏⟧V∼⟦𝐴𝑖 →𝜏𝐴 𝐴𝑜⟧. This follows by reflexivity.

Now let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴𝑖 →𝜎𝐴 𝐴𝑜⟧. We need to show that

((𝑉1 𝑁 [𝛾1]), (let 𝑥 = 𝑉2 in let 𝑦 = 𝑁 [𝛾2] in 𝑥 𝑦)) ∈ E∼
𝑘
⟦𝜏𝐴⟧V∼⟦𝐴𝑜⟧.

By anti-reduction, it suffices to show

((𝑉1 𝑁 [𝛾1]), (let 𝑦 = 𝑁 [𝛾2] in 𝑉2 𝑦)) ∈ E∼
𝑘
⟦𝜏𝐴⟧V∼⟦𝐴𝑜⟧.

We again apply Lemma D.16, this time with 𝐸1 = (𝑉1 •) and 𝐸2 = let 𝑦 = • in 𝑉2 𝑦.

We need to show (𝑁 [𝛾1], 𝑁 [𝛾2]) ∈ E∼
𝑘
⟦𝜏⟧V∼⟦𝐴𝑖⟧, which holds by reflexivity. Now let 𝑘 ′ ≤ 𝑘

and let (𝑉 ′
1
,𝑉 ′

2
) ∈ V∼

𝑘 ′⟦𝐴𝑖⟧. We need to show that

((𝑉1𝑉 ′
1
), (let 𝑦 = 𝑉 ′

2
in 𝑉2 𝑦)) ∈ E∼

𝑘 ′⟦𝜏𝐴⟧V∼⟦𝐴𝑜⟧.
By anti-reduction, it suffices to show

((𝑉1𝑉 ′
1
), (𝑉2𝑉 ′

2
)) ∈ E∼

𝑘 ′⟦𝜏𝐴⟧V∼⟦𝐴𝑜⟧.
This follows from our assumptions on 𝑉1 and 𝑉2 and on 𝑉 ′

1
and 𝑉 ′

2
.

□

Lemma D.40 (HandleBetaRet).

handle 𝑥 {ret 𝑦.𝑀 | 𝜙} ≡ 𝑀 [𝑥/𝑦]

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

((handle 𝑥 {ret 𝑦.𝑀 | 𝜙}) [𝛾1], (𝑀 [𝑥/𝑦]) [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

Since 𝑥 is a value, the above handle term steps, and by anti-reduction it is sufficient to show

((𝑀 [𝑥/𝑦] [𝛾1]), (𝑀 [𝑥/𝑦]) [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

This follows by reflexivity.

□

Lemma D.41 (HandleBetaRaise).

handle (let 𝑜 = raise 𝜀 (𝑥) in 𝑁𝑘) {ret 𝑦.𝑀 | 𝜙} ≡ 𝜙 (𝜀) [𝜆𝑜.handle 𝑁𝑘 {ret 𝑦.𝑀 | 𝜙}/𝑘]

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

((handle (let 𝑜 = raise 𝜀 (𝑥) in 𝑁𝑘) {ret 𝑦.𝑀 | 𝜙}) [𝛾1],
(𝜙 (𝜀) [𝜆𝑜.handle 𝑁𝑘 {ret 𝑦.𝑀 | 𝜙}/𝑘]) [𝛾2])

∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

Let 𝐸 = let 𝑜 = • in 𝑁𝑘 [𝛾1]. Our goal is to show

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:58 Max S. New, Eric Giovannini, and Daniel R. Licata

((handle 𝐸 [raise 𝜀 (𝑥)] {ret 𝑦.𝑀 [𝛾1] | 𝜙 [𝛾1]}),
(𝜙 (𝜀) [𝛾2] [𝜆𝑜.handle 𝑁𝑘 [𝛾2] {ret 𝑦.𝑀 [𝛾2] | 𝜙 [𝛾2]}/𝑘]))

∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

Note that 𝐸#𝜀. By anti-reduction, it suffices to show

((𝜙 (𝜀) [𝛾1] [𝜆𝑜 ′ .handle 𝐸 [𝑜 ′] {ret 𝑦.𝑀 [𝛾1] | 𝜙 [𝛾1]}/𝑘]),
(𝜙 (𝜀) [𝛾2] [𝜆𝑜.handle 𝑁𝑘 [𝛾2] {ret 𝑦.𝑀 [𝛾2] | 𝜙 [𝛾2]}/𝑘]))

∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

That is, we need to show

((𝜙 (𝜀) [𝛾1] [𝜆𝑜 ′ .handle let 𝑜 = 𝑜 ′ in 𝑁𝑘 [𝛾1] {ret 𝑦.𝑀 [𝛾1] | 𝜙 [𝛾1]}/𝑘]),
(𝜙 (𝜀) [𝛾2] [𝜆𝑜.handle 𝑁𝑘 [𝛾2] {ret 𝑦.𝑀 [𝛾2] | 𝜙 [𝛾2]}/𝑘]))

∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

By ValSubst, it suffices to show (1) for all related (𝑉𝑓 1,𝑉𝑓 2) ∈ V∼
𝑗 ⟦𝐴𝑖 →𝜎 𝐵⟧ and 𝛾 ′

1
= 𝛾1,𝑉𝑓 1/𝑘

and 𝛾 ′
2
= 𝛾2,𝑉𝑓 2/𝑘 , we have

(𝜙 (𝜀) [𝛾 ′
1
], 𝜙 (𝜀) [𝛾 ′

2
]) ∈ E∼

𝑗 ⟦𝜎⟧V∼⟦𝐵⟧,
and (2),

((𝜆𝑜 ′ .handle let 𝑜 = 𝑜 ′ in 𝑁𝑘 [𝛾1] {ret 𝑦.𝑀 [𝛾1] | 𝜙 [𝛾1]}),
(𝜆𝑜.handle 𝑁𝑘 [𝛾2] {ret 𝑦.𝑀 [𝛾2] | 𝜙 [𝛾2]}))

∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴𝑖 →𝜎 𝐵⟧.

(1) follows from reflexivity. To show (2), we will use transitivity (Lemma D.64). If ∼ is <, then

note that by MonadUnitL we have

(let 𝑜 = 𝑜 ′ in 𝑁𝑘 [𝛾1], 𝑁𝑘 [𝛾2] [𝑜 ′/𝑜]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧,

and by soundness of the congruence rules we have

((𝜆𝑜 ′ .handle let 𝑜 = 𝑜 ′ in 𝑁𝑘 [𝛾1] {ret 𝑦.𝑀 [𝛾1] | 𝜙 [𝛾1]}),
(𝜆𝑜 ′ .handle 𝑁𝑘 [𝛾2] [𝑜 ′/𝑜] {ret 𝑦.𝑀 [𝛾2] | 𝜙 [𝛾2]}))

∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴𝑖 →𝜎 𝐵⟧.

Then by transitivity, it will suffice to show that

((𝜆𝑜 ′ .handle 𝑁𝑘 [𝛾2] [𝑜 ′/𝑜] {ret 𝑦.𝑀 [𝛾2] | 𝜙 [𝛾2]}),
(𝜆𝑜.handle 𝑁𝑘 [𝛾2] {ret 𝑦.𝑀 [𝛾2] | 𝜙 [𝛾2]}))

∈ E∼
𝜔⟦𝜎⟧V∼⟦𝐴𝑖 →𝜎 𝐵⟧.

By congruence for lambdas, it suffices to show that, given related values (𝑉1,𝑉2) ∈ V∼
𝜔 ⟦𝐴𝑖⟧, we

have

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:59

((handle 𝑁𝑘 [𝛾2] [𝑜 ′/𝑜] [𝑉1/𝑜 ′] {ret 𝑦.𝑀 [𝛾2] | 𝜙 [𝛾2]}),
(handle 𝑁𝑘 [𝛾2] [𝑉2/𝑜] {ret 𝑦.𝑀 [𝛾2] | 𝜙 [𝛾2]}))

∈ E∼
𝜔⟦𝜎⟧V∼⟦𝐴𝑖 →𝜎 𝐵⟧.

This follows from the soundness of the congruence rules.

On the other hand, if ∼ is >, then similarly by MonadUnitL we have

(let 𝑜 = 𝑜 ′ in 𝑁𝑘 [𝛾1], 𝑁𝑘 [𝛾1] [𝑜 ′/𝑜]) ∈ E∼
𝜔⟦𝜎⟧V∼⟦𝐵⟧.

It then suffices to show that

((𝜆𝑜 ′ .handle 𝑁𝑘 [𝛾1] [𝑜 ′/𝑜] {ret 𝑦.𝑀 [𝛾1] | 𝜙 [𝛾1]}),
(𝜆𝑜.handle 𝑁𝑘 [𝛾2] {ret 𝑦.𝑀 [𝛾2] | 𝜙 [𝛾2]}))

∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴𝑖 →𝜎 𝐵⟧,

which again follows from the soundness of the congruence rules.

□

Lemma D.42 (RaiseEval).

raise 𝜀 (𝑀) ≡ let 𝑥 = 𝑀 in raise 𝜀 (𝑥)
Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

((raise 𝜀 (𝑀)) [𝛾1], (let 𝑥 = 𝑀 in raise 𝜀 (𝑥)) [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

We apply Monadic Bind (Lemma D.16), with 𝐸1 = raise 𝜀 (•) and 𝐸2 = let 𝑥 = • in raise 𝜀 (𝑥).
We first need to show that (𝑀 [𝛾1], 𝑀 [𝛾2]) ∈ E∼

𝑗 ⟦𝜏⟧V∼⟦𝐴⟧. This follows from reflexivity (Corol-

lary D.28).

Now let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧. We need to show that

((raise 𝜀 (𝑉1)) [𝛾1], (let 𝑥 = 𝑉2 in raise 𝜀 (𝑥)) [𝛾2]) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

As 𝑉2 is a value, the above let term steps. By anti-reduction, it suffices to show

((raise 𝜀 (𝑉1)), (raise 𝜀 (𝑉2))) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

This follows from our assumption on 𝑉1 and 𝑉2 and the soundness of the term congruence rule

for raise (Lemma D.26).

□

Lemma D.43 (HandleEmpty).

handle 𝑀 {ret 𝑥 .𝑁 | ∅} ≡ let 𝑥 = 𝑀 in 𝑁

Proof. We show one direction of the equivalence; the other is symmetric.

Let 𝑗 be arbitrary and let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

((handle 𝑀 {ret 𝑥 .𝑁 | ∅}) [𝛾1],
(let 𝑥 = 𝑀 in 𝑁) [𝛾2])

∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:60 Max S. New, Eric Giovannini, and Daniel R. Licata

By Monadic Bind (Lemma D.16) and the fact that neither evaluation context catches any effects,

it suffices to show that

(handle 𝑉1 {ret 𝑥 .𝑁 [𝛾1] | ∅},
let 𝑥 = 𝑉2 in 𝑁 [𝛾2])

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧,

where 𝑘 ≤ 𝑗 and (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐵⟧. By anti-reduction, it will suffice to show that

(𝑁 [𝛾1] [𝑉1/𝑥], 𝑁 [𝛾2] [𝑉2/𝑥]) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

Using ValSubst, the result follows by reflexivity and our assumption on 𝑉1 and 𝑉2.

□

Lemma D.44.

∀𝜀 ∈ dom(𝜙). 𝜓 (𝜀) = 𝜙 (𝜀) ∀𝜀 ∈ dom(𝜓) .𝜀 ∉ dom(𝜙) ⇒ 𝜓 (𝜀) = 𝑘 (raise 𝜀 (𝑥))
handle 𝑀 {ret 𝑦.𝑁 | 𝜙} ≡ handle 𝑀 {ret 𝑦.𝑁 | 𝜓 } : 𝜎 !𝐵

HandleExt

Proof. We show one direction of the equivalence; the other is symmetric.

The proof is by Löb induction. We assume that

((handle 𝑀 {ret .1 | ′}𝑦𝑁𝜙) [𝛾1], (handle 𝑀 {ret .2 | ′}𝑦𝑁𝜓) [𝛾2]) ∈ (▶E∼⟦𝜎⟧) 𝑗 (V∼⟦𝐵⟧) .

for all 𝑘 ≤ 𝑗 , (𝛾1, 𝛾2) ∈ (▶G∼⟦Γ⟧)𝑘 and (𝑀 ′
1
, 𝑀 ′

2
) ∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧).

Let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

((handle 𝑀 {ret .1 | 𝑦}𝑁𝜙) [𝛾1], (handle 𝑀 {ret .2 | 𝑦}𝑁𝜓) [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧

for all (𝑀1, 𝑀2) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧.

We apply Monadic Bind (Lemma D.16). It suffices to consider the following cases:

• Let 𝑘 ≤ 𝑗 and (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧. We need to show that

((handle 𝑉1 {ret 𝑦.𝑁 [𝛾1] | 𝜙 [𝛾1]}), (handle 𝑉2 {ret 𝑦.𝑁 [𝛾2] | 𝜓 [𝛾2]})) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

This follows by anti-reduction and reflexivity.

• Let 𝑘 ≤ 𝑗 and let 𝜀 ∈ 𝜎 be an effect caught by either handler, i.e., 𝜀 is in dom(𝜙) or

dom(𝜓). Let (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝑐𝜀⟧)𝑘 , and let 𝐸𝑙#𝜀 and 𝐸𝑟#𝜀 such that (𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈
(▶K∼⟦𝑑𝜀⟧)𝑘 (E∼⟦𝜎⟧V∼⟦𝐵⟧).
We need to show

((handle 𝐸𝑙 [raise 𝜀 (𝑉 𝑙)] {ret 𝑦.𝑁 [𝛾1] | 𝜙 [𝛾1]}),
(handle 𝐸𝑟 [raise 𝜀 (𝑉 𝑟)] {ret 𝑦.𝑁 [𝛾2] | 𝜓 [𝛾2]}))

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

If 𝜀 ∈ dom(𝜙), then by the premise, we have𝜓 (𝜀) = 𝜙 (𝜀), so both sides step, and it suffices

by anti-reduction to show

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:61

(𝜙 (𝜀) [𝛾1] [𝑉 𝑙/𝑥] [(𝜆𝑧.handle 𝐸𝑙 [𝑧] {ret 𝑦.𝑁 [𝛾1] | 𝜙 [𝛾1]})/𝑘],
𝜙 (𝜀) [𝛾2] [𝑉 𝑟/𝑥] [(𝜆𝑧.handle 𝐸𝑟 [𝑧] {ret 𝑦.𝑁 [𝛾2] | 𝜓 [𝛾2]})/𝑘])

∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐵⟧) .

By ValSubst, it suffices to show that (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝑐𝜀⟧)𝑘 , which is true by assumption,

and that

((𝜆𝑧.handle 𝐸𝑙 [𝑧] {ret 𝑦.𝑁 [𝛾1] | 𝜙 [𝛾1]}),
(𝜆𝑧.handle 𝐸𝑟 [𝑧] {ret 𝑦.𝑁 [𝛾2] | 𝜓 [𝛾2]}))

∈ (▶V∼⟦𝑑𝜀 →𝜎 𝐵⟧)𝑘 .
By congruence for lambdas, it suffices to show that, given values (𝑉1,𝑉2) ∈ (▶V∼⟦𝑑𝜀⟧)𝑘 , we
have

(handle 𝐸𝑙 [𝑉1] {ret 𝑦.𝑁 [𝛾1] | 𝜙 [𝛾1]},
handle 𝐸𝑟 [𝑉2] {ret 𝑦.𝑁 [𝛾2] | 𝜓 [𝛾2]})

∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐵⟧).

This follows by the Löb induction hypothesis and our assumption on 𝐸𝑙 and 𝐸𝑟 .

Now assume that 𝜀 ∉ dom(𝜙). Then note that the first handle term does not step, while the

second handle term steps to

𝜓 (𝜀) [𝛾2] [𝑉 𝑟/𝑥] [(𝜆𝑧.handle 𝐸𝑟 [𝑧] {ret 𝑦.𝑁 [𝛾2] | 𝜓 [𝛾2]})/𝑘] .
By the premise, we have𝜓 (𝜀) = 𝑘 (raise 𝜀 (𝑥)). Thus, by anti-reduction, it suffices to show

((handle 𝐸𝑙 [raise 𝜀 (𝑉 𝑙)] {ret 𝑦.𝑁 [𝛾1] | 𝜙 [𝛾1]}),
(𝑘 (raise 𝜀 (𝑥)) [𝛾2) [𝑉 𝑟/𝑥] [(𝜆𝑧.handle 𝐸𝑟 [𝑧] {ret 𝑦.𝑁 [𝛾2] | 𝜓 [𝛾2]})/𝑘])

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

That is, it will suffice to show

((handle 𝐸𝑙 [raise 𝜀 (𝑉 𝑙)] {ret 𝑦.𝑁 [𝛾1] | 𝜙 [𝛾1]}),
((𝜆𝑧.handle 𝐸𝑟 [𝑧] {ret 𝑦.𝑁 [𝛾2] | 𝜓 [𝛾2]}) (raise 𝜀 (𝑉)𝑟)))

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

Neither term steps, so it suffices to show they are related in R∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

We need to show that (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝑐𝜀⟧)𝑘 , which is true by assumption, and that given

𝑘 ′ ≤ 𝑘 and related values (𝑉1,𝑉2) ∈ (▶V∼⟦𝑑𝜀⟧)𝑘 ′ , we have

((handle 𝐸𝑙 [𝑉1] {ret 𝑦.𝑁 [𝛾1] | 𝜙 [𝛾1]}),
((𝜆𝑧.handle 𝐸𝑟 [𝑧] {ret 𝑦.𝑁 [𝛾2] | 𝜓 [𝛾2]})𝑉2))

∈ (▶E∼⟦𝜎⟧)𝑘 ′ (V∼⟦𝐵⟧) .
By anti-reduction, it suffices to show

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:62 Max S. New, Eric Giovannini, and Daniel R. Licata

((handle 𝐸𝑙 [𝑉1] {ret 𝑦.𝑁 [𝛾1] | 𝜙 [𝛾1]}),
(handle 𝐸𝑟 [𝑉2] {ret 𝑦.𝑁 [𝛾2] | 𝜓 [𝛾2]}))

∈ (▶E∼⟦𝜎⟧)𝑘 ′ (V∼⟦𝐵⟧) .

This follows by the Löb induction hypothesis and our assumption on 𝐸𝑙 and 𝐸𝑟 .

□

D.0.4 Cast, Error, and Subtyping Properties.

Lemma D.45 (Err-bot).

𝑀 : 𝑑𝜎
𝑟
! 𝑐𝑟

℧ ⊑ 𝑀 : 𝑑𝜎 ! 𝑐

Proof. Let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⊑⟧. We need to show

(℧[𝛾1], 𝑀 [𝛾2]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐⟧.

This follows from the definition of the logical relation: If ∼ is < (counting steps on the left), then

we are finished by the definition of the E⪯⟦⟧ relation, because ℧ ↦→0 ℧.
If ∼ is > (counting steps on the right), then we are similarly finished, because𝑀 ↦→0 𝑀 and the

left-hand term is ℧.
□

Lemma D.46 (Err-strict). 𝐸 [℧] ≡ ℧

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 , 𝑑𝜎 , and 𝑐 be

arbitrary. We need to show

(𝐸 [℧],℧) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐⟧.

By anti-reduction, it is sufficient to show

(℧,℧) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐⟧,

which is easily seen to hold by definition of the logical relation.

□

Lemma D.47 (Monotonicity of Subtyping). If 𝑐 ≤ 𝑑 thenV⟦𝑐⟧ ⊆ V⟦𝑑⟧
Further, if 𝑅 ⊆ 𝑆 then K⟦𝑑⟧𝑅 ⊆ K⟦𝑐⟧𝑆 ,
Further, if 𝑐𝜎 ≤ 𝑑𝜎 then both

• E⟦𝑐⟧𝑅 ⊆ E⟦𝑑⟧𝑆
• R⟦𝑐⟧𝑅 ⊆ R⟦𝑑⟧𝑆

Proof. By mutual induction on the subtyping proofs. First the type subtyping cases:

(1) bool ≤ bool: trivial.
(2) 𝑐𝑖 →𝑐𝑒 𝑐𝑜 ≤ 𝑑𝑖𝑡𝑜𝑑𝑒𝑑𝑜 . Assume (𝑉𝑓 ,𝑉

′
𝑓
) ∈ V⟦𝑐𝑖 →𝑐𝑒 𝑐𝑜⟧, we need to show (𝑉𝑓 ,𝑉

′
𝑓
) ∈

V⟦𝑑𝑖 →𝑑𝑒 𝑑𝑜⟧. Let (𝑉𝑖 ,𝑉 ′
𝑖) ∈ V⟦𝑑𝑖⟧. Then by inductive hypothesis, (𝑉𝑖 ,𝑉 ′

𝑖) ∈ V⟦𝑐𝑖⟧.
Therefore (𝑉𝑓𝑉𝑖 ,𝑉

′
𝑓
𝑉 ′
𝑖) ∈ E⟦𝑐𝑒⟧V⟦𝑐𝑜⟧ and the result follows by the two inductive hypothe-

ses.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:63

The K⟦·⟧ case follows by a similar argument to the function case.

The E⟦·⟧ case follows by inductive hypothesis.

Next the R⟦·⟧ cases:

(1) ? ≤ ?: trivial

(2)

𝑐 ≤ Σ

𝑐 ≤ ?

: trivial by definition of R⟦?⟧

(3)

𝑐 ≤ 𝑑

𝑐 ≤ 𝐼𝑛 𝑗 (𝑑)
: trivial by definition of R⟦𝐼𝑛 𝑗 (𝑖, 𝑑)⟧

(4)

𝑐 ≤ 𝑑

𝐼𝑛 𝑗 (𝑐) ≤ 𝐼𝑛 𝑗 (𝑑)
: trivial by definition of R⟦𝐼𝑛 𝑗 (𝑖, 𝑑)⟧

(5)

dom(𝑑𝑐) ⊆ dom(𝑑 ′𝑐)
∀𝜀 : 𝑐 { 𝑑 ∈ 𝑑𝑐 .𝜀 : 𝑐

′ { 𝑑 ′ ∈ 𝑑 ′𝑐 ∧ 𝑐 ≤ 𝑐′ ∧ 𝑑 ′ ≤ 𝑑

𝑑𝑐 ≤ 𝑑 ′𝑐
: Follows using Löb induction by themono-

tonicity of subtyping for the V∼⟦·⟧ and K∼⟦·⟧ relations.

□

We next prove generalized versions of the cast properties ValUpL, ValUpR, ValDnL, ValDnR,

EffUpL, EffUpR, EffDnL, EffDnR. These are proved simultaneously by induction on the type precision

derivation and by Löb-induction.

Lemma D.48 (ValUpR-general).

𝑐 : 𝐴 ⊑ 𝐴′

𝑒 : 𝐴′ ⊑ 𝐴′′

Σ | Γ⊑ ⊨𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑐

Σ | Γ⊑ ⊨𝑑𝜎 𝑀 ⊑ ⟨𝐴′′ ↢ 𝐴′⟩𝑁 : 𝑐 ◦ 𝑒
Proof. We need to show that

(𝑀, ⟨𝐴′′ ↢ 𝐴′⟩𝑁) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐 ◦ 𝑒⟧.

The proof is by induction on the precision derivation 𝑒 . By monadic bind (Lemma D.16), with

𝐸1 = • and 𝐸2 = ⟨𝐴′′ ↢ 𝐴′⟩•, it suffices to show

(𝑉1, ⟨𝐴′′ ↢ 𝐴′⟩𝑉2) ∈ E∼
𝑘
⟦𝑑𝜎⟧V∼⟦𝑐 ◦ 𝑒⟧,

where 𝑘 ≤ 𝑗 and (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝑐⟧. We continue by cases on 𝑒 .

• Case 𝑒 = bool. We have 𝐴 = 𝐴′ = 𝐴′′ = bool, and 𝑐 = bool. Thus 𝑐 ◦ 𝑒 = bool.
Examining the operational semantics, we see that

(⟨bool↢ bool⟩)(𝑉1) ↦→1 𝑉1 .

Thus, by anti-reduction, it suffices to show

(𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝑑𝜎⟧V∼⟦bool⟧.

This is true by assumption and Lemma D.4.

• Case 𝑒 = 𝑒𝑖 →𝑒𝜎 𝑒𝑜 . We have 𝐴′ = 𝐴′
𝑖 →𝜎 ′

𝐴
𝐴′
𝑜 and 𝐴

′′ = 𝐴′′
𝑖 →𝜎 ′′

𝐴
𝐴′′
𝑜 , and also 𝑒𝑖 : 𝐴

′
𝑖 ⊑ 𝐴′′

𝑖

and 𝑒𝑜 : 𝐴′
𝑜 ⊑ 𝐴′′

𝑜 .

By inversion, we see that 𝑐 = 𝑐𝑖 →𝑐𝜎 𝑐𝑜 . Thus, we have that 𝑐 ◦ 𝑒 = (𝑐𝑖 →𝑐𝜎 𝑐𝑜) ◦ (𝑒𝑖 →𝑒𝜎

𝑒𝑜) = (𝑐𝑖 ◦ 𝑒𝑖) →𝑐𝜎◦𝑒𝜎 (𝑐𝑜 ◦ 𝑒𝑜).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:64 Max S. New, Eric Giovannini, and Daniel R. Licata

We need to show that

(𝑉1, ⟨(𝐴′′
𝑖 →𝜎 ′′

𝐴
𝐴′′
𝑜) ↢ (𝐴′

𝑖 →𝜎 ′
𝐴
𝐴′
𝑜)⟩𝑉2) ∈ E∼

𝑘
⟦𝑑𝜎⟧V∼⟦(𝑐𝑖 ◦ 𝑒𝑖) →𝑐𝜎◦𝑒𝜎 (𝑐𝑜 ◦ 𝑒𝑜)⟧.

As both terms are values, it suffices by LemmaD.4 to show they are related inV∼
𝑘
⟦(𝑐𝑖 ◦ 𝑒𝑖) →𝑐𝜎◦𝑒𝜎 (𝑐𝑜 ◦ 𝑒𝑜)⟧.

To this end, let 𝑘 ′ ≤ 𝑘 and (𝑉 𝑙 ,𝑉 𝑟) ∈ V∼
𝑘 ′⟦𝑐𝑖 ◦ 𝑒𝑖⟧. We need to show that

(𝑉1𝑉 𝑙 , (⟨(𝐴′′
𝑖 →𝜎 ′′

𝐴
𝐴′′
𝑜) ↢ (𝐴′

𝑖 →𝜎 ′
𝐴
𝐴′
𝑜)⟩𝑉2)𝑉 𝑟) ∈ E∼

𝑘 ′⟦𝑐𝜎 ◦ 𝑒𝜎⟧V∼⟦𝑐𝑜 ◦ 𝑒𝑜⟧.
By anti-reduction, it suffices to show that

(𝑉1𝑉 𝑙 , ⟨𝐴′′
𝑜
↢ 𝐴′

𝑜⟩⟨𝜎 ′′
𝐴
↢ 𝜎 ′

𝐴⟩(𝑉2 ⟨𝐴′
𝑖 ↞ 𝐴′′

𝑖 ⟩𝑉 𝑟)) ∈ E∼
𝑘 ′⟦𝑐𝜎 ◦ 𝑒𝜎⟧V∼⟦𝑐𝑜 ◦ 𝑒𝑜⟧.

By the induction hypothesis applied twice, it suffices to show

(𝑉1𝑉 𝑙 , (𝑉2 ⟨𝐴′
𝑖 ↞ 𝐴′′

𝑖 ⟩𝑉 𝑟)) ∈ E∼
𝑘 ′⟦𝑐𝜎⟧V∼⟦𝑐𝑜⟧.

Finally, it suffices by the soundness of the term precision congruence rule for function

application (Lemma D.23 to show that (𝑉1,𝑉2) ∈ V∼
𝑘 ′⟦𝑐𝑖 →𝑐𝜎 𝑐𝑜⟧, and that

(𝑉 𝑙 , ⟨𝐴′
𝑖 ↞ 𝐴′′

𝑖 ⟩𝑉 𝑟) ∈ E∼
𝑘 ′⟦𝑑𝜎⟧V∼⟦𝑐⟧.

The former is true by our assumption on 𝑉1 and 𝑉2. The latter follows by the induction

hypothesis and our assumption on 𝑉 𝑙
and 𝑉 𝑟

.

□

Lemma D.49 (ValUpL-general).

Σ | Γ⊑ ⊢𝑑𝜎 𝑐 : 𝐴 ⊑ 𝐴′

Σ | Γ⊑ ⊢𝑑𝜎 𝑒 : 𝐴′ ⊑ 𝐴′′

Σ | Γ⊑ ⊢𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑐 ◦ 𝑒
Σ | Γ⊑ ⊢𝑑𝜎 ⟨𝐴′ ↢ 𝐴⟩𝑀 ⊑ 𝑁 : 𝑒

Proof. Let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⊑⟧. We need to show that

(⟨𝐴′ ↢ 𝐴⟩𝑀 [𝛾1], 𝑁 [𝛾2]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑒⟧.

By monadic bind (Lemma D.16), with 𝐸1 = ⟨𝐴′ ↢ 𝐴⟩• and 𝐸2 = •, it suffices to show

(⟨𝐴′ ↢ 𝐴⟩𝑉1,𝑉2) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑒⟧,

where 𝑘 ≤ 𝑗 and (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝑐 ◦ 𝑒⟧.

We continue by cases on 𝑐 . The case 𝑐 = bool is similar to that in the previous lemma, so we

skip to considering the case 𝑐 = 𝑐𝑖 →𝑐𝜎 𝑐𝑜 . By inversion, we see that 𝑒 = 𝑒𝑖 →𝑒𝜎 𝑒𝑜 .

We have𝐴 = 𝐴𝑖 →�̂� 𝐴𝑜 and𝐴
′ = 𝐴′

𝑖 →�̂� ′ 𝐴′
𝑜 , and also Thus, we have that 𝑐 ◦𝑒 = (𝑐𝑖 ◦𝑒𝑖) →𝑐𝜎◦𝑒𝜎

(𝑐𝑜 ◦ 𝑒𝑜).
We need to show that

(⟨(𝐴′
𝑖 →�̂� ′ 𝐴′

𝑜) ↢ (𝐴𝑖 →�̂� 𝐴𝑜)⟩𝑀 [𝛾1], 𝑁 [𝛾2]) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝑒𝑖 →𝑒𝜎 𝑒𝑜⟧.

Similar to before, it suffices to show that these terms are related at V∼
𝑘
⟦𝑒𝑖 →𝑒𝜎 𝑒𝑜⟧. This is

similar to proof of the previous lemma, and hence omitted.

□

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:65

Lemma D.50 (ValDnL-general).

Σ | Γ⊑ ⊢𝑑𝜎 𝑐 : 𝐴 ⊑ 𝐴′

Σ | Γ⊑ ⊢𝑑𝜎 𝑒 : 𝐴′ ⊑ 𝐴′′

Σ | Γ⊑ ⊢𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑒

Σ | Γ⊑ ⊢𝑑𝜎 ⟨𝐴 ↞ 𝐴′⟩𝑀 ⊑ 𝑁 : 𝑐 ◦ 𝑒

Proof. This proof is dual to the proof of ValUpR-general (Lemma D.48) and is hence omitted. □

Lemma D.51 (ValDnR-general).

Σ | Γ⊑ ⊢𝑑𝜎 𝑐 : 𝐴 ⊑ 𝐴′

Σ | Γ⊑ ⊢𝑑𝜎 𝑒 : 𝐴′ ⊑ 𝐴′′

Σ | Γ⊑ ⊢𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑐 ◦ 𝑒
Σ | Γ⊑ ⊢𝑑𝜎 𝑀 ⊑ ⟨𝐴′

↞ 𝐴′′⟩𝑁 : 𝑐

Proof. This proof is dual to the proof of ValUpL-general (Lemma D.49) and is hence omitted. □

Lemma D.52 (EffUpR-general).

𝑑𝜎 : 𝜎 ⊑ 𝜎 ′

𝑑 ′𝜎 : 𝜎 ′ ⊑ 𝜎 ′′

Σ | Γ⊑ ⊢𝑑𝜎 𝑀 ⊑ 𝑁 : 𝑐

Σ | Γ⊑ ⊢𝑑𝜎◦𝑑 ′
𝜎
𝑀 ⊑ ⟨𝜎 ′′ ↢ 𝜎 ′⟩𝑁 : 𝑐

Proof. Let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⊑⟧. We need to show that

(𝑀, ⟨𝜎 ′′ ↢ 𝜎 ′⟩𝑁) ∈ E∼
𝑗 ⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧V∼⟦𝑐⟧.

We prove this statement by Löb induction (Lemma D.14). That is, assume for all 𝑘 ≤ 𝑗 and all

(𝑀 ′, 𝑁 ′) ∈ (▶E∼⟦𝑑𝜎⟧)𝑘 (V∼⟦𝑐⟧), we have

(𝑀 ′, ⟨𝜎 ′′ ↢ 𝜎 ′⟩𝑁 ′) ∈ (▶E∼⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧)𝑘 (V∼⟦𝑐⟧) .
Let (𝑀, 𝑁) ∈ E∼

𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐⟧. We need to show

(𝑀, ⟨𝜎 ′′ ↢ 𝜎 ′⟩𝑁) ∈ E∼
𝑗 ⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧V∼⟦𝑐⟧.

We proceed by cases on 𝑑 ′𝜎 . The case 𝑑
′
𝜎 = ? is immediate, so consider 𝑑 ′𝜎 = inj(𝑑𝑐), where

𝑑𝑐 : 𝜎𝑐 ⊑ Σ |supp(𝜎𝑐) . In this case, we know that 𝜎 ′′ = ?. Furthermore, we have

𝑑𝜎 ◦ 𝑑 ′𝜎 = 𝑑𝜎 ◦ (inj(𝑑𝑐)) = inj(𝑑𝜎 ◦ 𝑑𝑐).
Thus, we need to show

(𝑀, ⟨?↢ 𝜎 ′⟩𝑁) ∈ E∼
𝑗 ⟦inj(𝑑𝜎 ◦ 𝑑𝑐)⟧V∼⟦𝑐⟧.

By monadic bind (Lemma D.16), it will suffice to consider the following cases:

• Let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝑐⟧. We need to show

(𝑉1, ⟨?↢ 𝜎 ′⟩𝑉2) ∈ E∼
𝑘
⟦inj(𝑑𝜎 ◦ 𝑑𝑐)⟧V∼⟦𝑐⟧.

By anti-reduction, it suffices to show that

(𝑉1,𝑉2) ∈ E∼
𝑘
⟦inj(𝑑𝜎 ◦ 𝑑𝑐)⟧V∼⟦𝑐⟧.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:66 Max S. New, Eric Giovannini, and Daniel R. Licata

As 𝑉1 and 𝑉2 are values, it suffices by Lemma D.4 to show that (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝑐⟧, which is

true by assumption.

• Let 𝑘 ≤ 𝑗 and 𝜀 : 𝑐𝜀 { 𝑑𝜀 ∈ 𝑑𝜎 be an effect that is caught by ⟨?↢ 𝜎 ′⟩•. Let (𝑉 𝑙 ,𝑉 𝑟) ∈
(▶V∼⟦𝑐𝜀⟧)𝑘 , and let 𝐸𝑙#𝜀 and 𝐸𝑟#𝜀 be evaluation contexts such that (𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈
(▶K∼⟦𝑑𝜀⟧)𝑘 (E∼⟦𝑑𝜎⟧V∼⟦𝑐⟧). We need to show that

(𝐸𝑙 [raise 𝜀 (𝑉 𝑙)],
⟨?↢ 𝜎 ′⟩𝐸𝑟 [raise 𝜀 (𝑉 𝑟)]) ∈ E∼

𝑘
⟦inj(𝑑𝜎 ◦ 𝑑𝑐)⟧V∼⟦𝑐⟧.

By anti-reduction, it suffices to show that

(𝐸𝑙 [raise 𝜀 (𝑉 𝑙)],
let 𝑦 = ⟨𝑑𝑟𝜀 ↞ 𝑑?𝜀 ⟩raise 𝜀 (⟨𝑐?𝜀 ↢ 𝑐𝑟𝜀 ⟩𝑉 𝑟) in ⟨?↢ 𝜎 ′⟩𝐸𝑟 [𝑦])

∈ E∼
𝑘
⟦inj(𝑑𝜎 ◦ 𝑑𝑐)⟧V∼⟦𝑐⟧.

Let 𝑉 ′𝑟
be the term to which ⟨𝑐?𝜀 ↢ 𝑐𝑟𝜀 ⟩𝑉 𝑟

steps. By anti-reduction, it suffices to show

(𝐸𝑙 [raise 𝜀 (𝑉 𝑙)],
let 𝑦 = ⟨𝑑𝑟𝜀 ↞ 𝑑?𝜀 ⟩raise 𝜀 (𝑉 ′𝑟) in ⟨?↢ 𝜎 ′⟩𝐸𝑟 [𝑦])

∈ E∼
𝑘
⟦inj(𝑑𝜎 ◦ 𝑑𝑐)⟧V∼⟦𝑐⟧.

As neither term steps, it suffices to show they are related in R∼
𝑘
⟦inj(𝑑𝜎 ◦ 𝑑𝑐)⟧V∼⟦𝑐⟧..

To this end, we need to show (1) (𝑉 𝑙 ,𝑉 ′𝑟) ∈ (▶V∼⟦𝑐𝜀 ◦ 𝑐′𝜀⟧)𝑘 , and (2) given 𝑘 ′ ≤ 𝑘 and

(𝑉1,𝑉2) ∈ (▶V∼⟦𝑑𝜀 ◦ 𝑑 ′𝜀⟧)𝑘 ′ , we have

(𝐸𝑙 [𝑉1],
let 𝑦 = ⟨𝑑𝑟𝜀 ↞ 𝑑?𝜀 ⟩𝑉2 in ⟨?↢ 𝜎 ′⟩𝐸𝑟 [𝑦])

∈ (▶E∼⟦Inj(𝐼 , 𝑑𝜎 ◦ 𝑑𝑐)⟧)𝑘 ′ (V∼⟦𝑐⟧) .

To show (1), it suffices by forward reduction to show that (𝑉 𝑙 , ⟨𝑐?𝜀 ↢ 𝑐𝑟𝜀 ⟩𝑉 𝑟) ∈ (▶V∼⟦𝑐𝜀 ◦
𝑐′𝜀⟧)𝑘 . This follows inductively from ValUpR (which we are proving simultaneously and can

therefore apply at smaller types), and our assumption on 𝑉 𝑙
and 𝑉 𝑟

.

To show (2), let 𝑉 ′
2
be the value to which ⟨𝑑𝑟𝜀 ↞ 𝑑?𝜀 ⟩𝑉2 steps. It suffices by anti-reduction to

show

(𝐸𝑙 [𝑉1], ⟨?↢ 𝜎 ′⟩𝐸𝑟 [𝑉 ′
2
])

∈ (▶E∼⟦Inj(𝐼 , 𝑑𝜎 ◦ 𝑑𝑐)⟧)𝑘 ′ (V∼⟦𝑐⟧) .
By the Löb induction hypothesis, it suffices to show that

(𝐸𝑙 [𝑉1], 𝐸𝑟 [𝑉 ′
2
])

∈ (▶E∼⟦𝑑𝜎⟧)𝑘 ′ (V∼⟦𝑐⟧) .

By our assumption on 𝐸𝑙 and 𝐸𝑟 , it suffices to show that (𝑉1,𝑉 ′
2
) ∈ (▶V∼⟦𝑑𝜀⟧)𝑘 ′ . By forward

reduction, it suffices to show that

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:67

(𝑉1, ⟨𝑑𝑟𝜀 ↞ 𝑑?𝜀 ⟩𝑉2) ∈ (▶E∼⟦𝑑𝜎⟧)𝑘 ′ (V∼⟦𝑑𝜀⟧).
Now inductively by ValDnR, it suffices to show (𝑉1,𝑉2) ∈ (▶V∼⟦𝑑𝜀 ◦ 𝑑 ′𝜀⟧)𝑘 ′ , which is our

assumption.

The case where 𝑑 ′𝜎 is a concrete effect precision derivation is similar to the above.

□

Lemma D.53 (EffUpL-general).

𝑑𝜎 : 𝜎 ⊑ 𝜎 ′

𝑑 ′𝜎 : 𝜎 ′ ⊑ 𝜎 ′′

Σ | Γ⊑ ⊢𝑑𝜎◦𝑑 ′
𝜎
𝑀 ⊑ 𝑁 : 𝑐

Σ | Γ⊑ ⊢𝑑 ′
𝜎
⟨𝜎 ′ ↢ 𝜎⟩𝑀 ⊑ 𝑁 : 𝑐

Proof. This is proved similarly to the above. □

Lemma D.54 (EffDnL-general).

𝑑𝜎 : 𝜎 ⊑ 𝜎 ′

𝑑 ′𝜎 : 𝜎 ′ ⊑ 𝜎 ′′

Σ | Γ⊑ ⊢𝑑 ′
𝜎
𝑀 ⊑ 𝑁 : 𝑐

Σ | Γ⊑ ⊢𝑑𝜎◦𝑑′𝜎
⟨𝜎 ↞ 𝜎 ′⟩𝑀 ⊑ 𝑁 : 𝑐

Proof. We prove this by Löb induction (Lemma D.14). That is, assume for all 𝑘 ≤ 𝑗 and all

(𝑀 ′, 𝑁 ′) ∈ (▶E∼⟦𝑑 ′𝜎⟧)𝑘 (V∼⟦𝑐⟧), we have

(⟨𝜎 ↞ 𝜎 ′⟩𝑀 ′, 𝑁 ′) ∈ (▶E∼⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧)𝑘 (V∼⟦𝑐⟧) .
Let (𝛾1, 𝛾2) ∈ G∼

𝑗 ⟦Γ⊑⟧, and let (𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝑑 ′𝜎⟧V∼⟦𝑐⟧. We need to show

(⟨𝜎 ↞ 𝜎 ′⟩𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧V∼⟦𝑐⟧.

By monadic bind (Lemma D.16) and the fact that effect casts are the identity on values, it will

suffice to show the following:

Let 𝑘 ≤ 𝑗 and 𝜀 : 𝑐𝜀 { 𝑑𝜀 ∈ 𝑑 ′𝜎 be an effect that is caught by ⟨𝜎 ↞ 𝜎 ′⟩•. Let (𝑉 𝑙 ,𝑉 𝑟) ∈
(▶V∼⟦𝑐𝜀⟧)𝑘 , and let 𝐸𝑙#𝜀 and 𝐸𝑟#𝜀 be evaluation contexts such that (𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈
(▶K∼⟦𝑑𝜀⟧)𝑘 (E∼⟦𝑑 ′𝜎⟧V∼⟦𝑐⟧). We need to show that

(⟨𝜎 ↞ 𝜎 ′⟩𝐸𝑙 [raise 𝜀 (𝑉 𝑙)],
𝐸𝑟 [raise 𝜀 (𝑉 𝑟)]𝑁)

∈ E∼
𝑗 ⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧V∼⟦𝑐⟧.

Note that if 𝜀 ∉ 𝜎 , then the left hand side steps to ℧, in which case we are finished by ErrBot

(Lemma D.45). Otherwise, the proof proceeds analogously to EffUpR (Lemma D.52), with upcasts

and downcasts interchanged.

□

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:68 Max S. New, Eric Giovannini, and Daniel R. Licata

Lemma D.55 (EffDnR-general).

𝑑𝜎 : 𝜎 ⊑ 𝜎 ′

𝑑 ′𝜎 : 𝜎 ′ ⊑ 𝜎 ′′

Σ | Γ⊑ ⊢𝑑𝜎◦𝑑𝜎 ′ 𝑀 ⊑ 𝑁 : 𝑐

Σ | Γ⊑ ⊢𝑑𝜎 𝑀 ⊑ ⟨𝜎 ′
↞ 𝜎 ′′⟩𝑁 : 𝑐

Proof. We prove this statement by Löb induction (Lemma D.14). That is, assume for all 𝑘 ≤ 𝑗

and all (𝑀 ′, 𝑁 ′) ∈ (▶E∼⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧)𝑘 (V∼⟦𝑐⟧), we have

(𝑀 ′, ⟨𝜎 ′
↞ 𝜎 ′′⟩𝑁 ′) ∈ (▶E∼⟦𝑑𝜎⟧)𝑘 (V∼⟦𝑐⟧) .

Let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⊑⟧, and let (𝑀, 𝑁) ∈ E∼

𝑗 ⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧V∼⟦𝑐⟧. We need to show

(𝑀, ⟨𝜎 ′
↞ 𝜎 ′′⟩𝑁) ∈ E∼

𝑗 ⟦𝑑𝜎⟧V∼⟦𝑐⟧.
By monadic bind (Lemma D.16) and the fact that effect casts are the identity on values, it will

suffice to show the following:

Let 𝑘 ≤ 𝑗 and 𝜀 : 𝑐𝜀 { 𝑑𝜀 ∈ 𝑑𝜎 ◦ 𝑑 ′𝜎 be an effect that is caught by ⟨𝜎 ′
↞ 𝜎 ′′⟩•. Let (𝑉 𝑙 ,𝑉 𝑟) ∈

(▶V∼⟦𝑐𝜀⟧)𝑘 , and let 𝐸𝑙#𝜀 and 𝐸𝑟#𝜀 be evaluation contexts such that (𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈
(▶K∼⟦𝑑𝜀⟧)𝑘 (E∼⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧V∼⟦𝑐⟧). We need to show that

(𝐸𝑙 [raise 𝜀 (𝑉 𝑙)],
⟨𝜎 ′
↞ 𝜎 ′′⟩𝐸𝑟 [raise 𝜀 (𝑉 𝑟)]) ∈ E∼

𝑘
⟦𝑑𝜎⟧V∼⟦𝑐⟧.

First note that by Lemma D.19, there exist 𝑐1, 𝑐2, 𝑑1, and 𝑑2 such that 𝑐𝜀 = 𝑐1 ◦ 𝑐2 and 𝑑𝜀 = 𝑑1 ◦ 𝑑2
and 𝜀 : 𝑐1 { 𝑑1 ∈ 𝑑𝜎 and 𝜀 : 𝑐2 { 𝑑2 ∈ 𝑑 ′𝜎 . In particular, this that 𝜀 ∈ 𝜎 ′

, so the downcast from 𝜎 ′′

to 𝜎 ′
does not fail. Let 𝑐𝐿 = 𝑐𝑙

1
(= 𝑐𝑙𝜀), 𝑐𝑀 = 𝑐𝑟

1
= 𝑐𝑙

2
, and 𝑐𝑅 = 𝑐𝑟

2
(= 𝑐𝑟𝜀), and likewise define 𝑑𝐿, 𝑑𝑀

and 𝑑𝑅 .

By anti-reduction, it suffices to show that

(𝐸𝑙 [raise 𝜀 (𝑉 𝑙)],
let 𝑦 = ⟨𝑑𝑅 ↢ 𝑑𝑀 ⟩raise 𝜀 (⟨𝑐𝑀 ↞ 𝑐𝑅⟩𝑉 𝑟) in ⟨𝜎 ′

↞ 𝜎 ′′⟩𝐸𝑟 [𝑦])
∈ E∼

𝑘
⟦𝑑𝜎⟧V∼⟦𝑐⟧.

Let 𝑉 ′𝑟
be the term to which ⟨𝑐𝑀 ↞ 𝑐𝑅⟩𝑉 𝑟

steps. By anti-reduction, it suffices to show

(𝐸𝑙 [raise 𝜀 (𝑉 𝑙)],
let 𝑦 = ⟨𝑑𝑅 ↢ 𝑑𝑀 ⟩raise 𝜀 (𝑉 ′𝑟) in ⟨𝜎 ′

↞ 𝜎 ′′⟩𝐸𝑟 [𝑦])
∈ E∼

𝑘
⟦𝑑𝜎⟧V∼⟦𝑐⟧.

As neither term steps, it suffices to show they are related in R∼
𝑘
⟦𝑑𝜎⟧V∼⟦𝑐⟧. To this end, we need

to show (1) (𝑉 𝑙 ,𝑉 ′𝑟) ∈ (▶V∼⟦𝑐1⟧)𝑘 , and (2) given 𝑘 ′ ≤ 𝑘 and (𝑉1,𝑉2) ∈ (▶V∼⟦𝑑1⟧)𝑘 ′ , we have

(𝐸𝑙 [𝑉1],
let 𝑦 = ⟨𝑑𝑅 ↢ 𝑑𝑀 ⟩𝑉2 in ⟨𝜎 ′

↞ 𝜎 ′′⟩𝐸𝑟 [𝑦])
∈ (▶E∼⟦𝑑𝜎⟧)𝑘 ′ (V∼⟦𝑐⟧) .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:69

(1) follows from forward reduction and the inductive hypothesis for value types. To show (2), let

𝑉 ′
2
be the value to which ⟨𝑑𝑅 ↢ 𝑑𝑀 ⟩𝑉2 steps. It suffices by anti-reduction to show

(𝐸𝑙 [𝑉1], ⟨𝜎 ′′ ↢ 𝜎 ′⟩𝐸𝑟 [𝑉 ′
2
])

∈ (▶E∼⟦𝑑𝜎⟧)𝑘 ′ (V∼⟦𝑐⟧) .
By the Löb induction hypothesis, it suffices to show that

(𝐸𝑙 [𝑉1], 𝐸𝑟 [𝑉 ′
2
])

∈ (▶E∼⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧)𝑘 ′ (V∼⟦𝑐⟧).

By our assumption on 𝐸𝑙 and 𝐸𝑟 , it suffices to show that (𝑉1,𝑉 ′
2
) ∈ (▶V∼⟦𝑑𝜀⟧)𝑘 ′ . By forward

reduction, it suffices to show that

(𝑉1, ⟨𝑑𝑅 ↢ 𝑑𝑀 ⟩𝑉2) ∈ (▶E∼⟦𝑑𝜎⟧)𝑘 ′ (V∼⟦𝑑𝜀⟧) .
Now inductively by ValUpR, it suffices to show (𝑉1,𝑉2) ∈ (▶V∼⟦𝑑1⟧)𝑘 ′ , which is our assumption.

The case where 𝑑 ′𝜎 is a concrete effect precision derivation is similar to the above. □

Lemma D.56 (ValUpEval).

⟨𝐵 ↢ 𝐴⟩𝑀 ≡ let 𝑥 = 𝑀 in ⟨𝐵 ↢ 𝐴⟩𝑥

Proof. We show one direction of the equivalence; the other is symmetric. Let 𝑗 be arbitrary and

let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦Γ⟧. We need to show

((⟨𝐵 ↢ 𝐴⟩𝑀) [𝛾1], (let 𝑥 = 𝑀 in ⟨𝐵 ↢ 𝐴⟩𝑥) [𝛾2]) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

By Monadic Bind (Lemma D.16) and reflexivity, it will suffice to show that for all 𝑘 ≤ 𝑗 let

(𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧, we have

((⟨𝐵 ↢ 𝐴⟩𝑉1), (let 𝑥 = 𝑉2 in ⟨𝐵 ↢ 𝐴⟩𝑥)) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

By anti-reduction, it suffices to show

((⟨𝐵 ↢ 𝐴⟩𝑉1), (⟨𝐵 ↢ 𝐴⟩𝑉2)) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

By congruence, it suffices to show

(𝑉1, 𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧.

This follows from our assumption on 𝑉1 and 𝑉2.

□

Lemma D.57 (ValDnEval).

⟨𝐴 ↞ 𝐵⟩𝑀 ≡ let 𝑥 = 𝑀 in ⟨𝐴 ↞ 𝐵⟩𝑥

Proof. Dual to the above. □

Lemma D.58 (cast-retraction). let 𝐴 ⊑ 𝐵 and 𝜎 ⊑ 𝜎 ′
, and let 𝑐 : 𝐴 ⊑ 𝐵 and 𝑑𝜎 : 𝜎 ⊑ 𝜎 ′

. Let

Σ | Γ⊑ ⊢𝜎 𝑀 ⊑ 𝑁 : 𝐴. The following hold:

(1) Σ | Γ⊑ ⊨𝜎 ⟨𝐴 ↞ 𝐵⟩⟨𝐵 ↢ 𝐴⟩𝑀 ⊑ 𝑁 : 𝐴

(2) Σ | Γ⊑ ⊨𝜎 ⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝑀 ⊑ 𝑁 : 𝐴

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:70 Max S. New, Eric Giovannini, and Daniel R. Licata

Proof. We prove stronger, “pointwise" version of the above statements. Namely, we assume

(𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧, and show, for example, that (⟨𝐴 ↞ 𝐵⟩⟨𝐵 ↢ 𝐴⟩𝑀, 𝑁) ∈ E∼

𝑗 ⟦𝜎⟧V∼⟦𝐴⟧.
The proof is by simultaneous induction on the derivations 𝑐 and 𝑑𝜎 .

(1) Let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦𝐴⟧. Suppose (𝑀, 𝑁) ∈ E∼

𝑗 ⟦𝜎⟧V∼⟦𝐴⟧. We need to show

(⟨𝐴 ↞ 𝐵⟩⟨𝐵 ↢ 𝐴⟩𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧.

By monadic bind (Lemma D.16), it suffices to show that

(⟨𝐴 ↞ 𝐵⟩⟨𝐵 ↢ 𝐴⟩𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧,

where 𝑘 ≤ 𝑗 and (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧.

We proceed by induction on the precision derivation 𝑐 . If 𝑐 = bool, then we need to show

(⟨bool ↞ bool⟩⟨bool↢ bool⟩𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦bool⟧.

According to the operational semantics, we have that

⟨bool ↞ bool⟩⟨bool↢ bool⟩𝑉1 ↦→2 𝑉1.

So by anti-reduction (Lemma D.6), it suffices to show that (𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦bool⟧, which

follows from our assumption.

If 𝑐 = 𝑐𝑖 →𝑐𝜎 𝑐𝑜 , then 𝐴 = 𝐴𝑖 →𝜎𝐴 𝐴𝑜 and 𝐵 = 𝐵𝑖 →𝜎𝐵 𝐵𝑜 . We need to show

(⟨(𝐴𝑖 →𝜎𝐴 𝐴𝑜) ↞ (𝐵𝑖 →𝜎𝐵 𝐵𝑜)⟩⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉1,𝑉2)
∈ E∼

𝑘
⟦𝜎⟧V∼⟦𝐴𝑖 →𝜎𝐴 𝐴𝑜⟧.

As both of these are values, it suffices to show that they are related in V∼⟦𝐴𝑖 →𝜎𝐴 𝐴𝑜⟧. To
this end, let 𝑘 ′ ≤ 𝑘 and let (𝑉 𝑙 ,𝑉 𝑟) ∈ V∼

𝑘 ′⟦𝐴𝑖⟧. We need to show that

((⟨(𝐴𝑖 →𝜎𝐴 𝐴𝑜) ↞ (𝐵𝑖 →𝜎𝐵 𝐵𝑜)⟩⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉1)𝑉 𝑙 ,

𝑉2𝑉
𝑟)
∈ E∼

𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧.
The former term steps, so by anti-reduction, it suffices to show that

(⟨𝐴𝑜 ↞ 𝐵𝑜⟩⟨𝜎𝐴 ↞ 𝜎𝐵⟩((⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉1) ⟨𝐵𝑖 ↢ 𝐴𝑖⟩𝑉 𝑙), 𝑉2𝑉
𝑟)

∈ E∼
𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧.

Let 𝑉 ′𝑙
be the value to which ⟨𝐵𝑖 ↢ 𝐴𝑖⟩𝑉 𝑙

steps. By anti-reduction, it suffices to show that

(⟨𝐴𝑜 ↞ 𝐵𝑜⟩⟨𝜎𝐴 ↞ 𝜎𝐵⟩
(⟨𝐵𝑜 ↢ 𝐴𝑜⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩

(𝑉1 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑙)),
𝑉2𝑉

𝑟)
∈ E∼

𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:71

We will appeal to transitivity (Lemma D.64). We continue by cases on ∼. First assume ∼ is <.

Let 𝑉 ′𝑟
be the value to which ⟨𝐵𝑖 ↢ 𝐴𝑖⟩𝑉 𝑟

steps. If we show (1)

(⟨𝐴𝑜 ↞ 𝐵𝑜⟩⟨𝜎𝐴 ↞ 𝜎𝐵⟩
(⟨𝐵𝑜 ↢ 𝐴𝑜⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩

(𝑉1 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑙)),
⟨𝐴𝑜 ↞ 𝐵𝑜⟩⟨𝐵𝑜 ↢ 𝐴𝑜⟩

(⟨𝜎𝐴 ↞ 𝜎𝐵⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩
(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟)))

∈ E∼
𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧.

and (2)

(⟨𝐴𝑜 ↞ 𝐵𝑜⟩⟨𝐵𝑜 ↢ 𝐴𝑜⟩
(⟨𝜎𝐴 ↞ 𝜎𝐵⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩

(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟)),
𝑉2𝑉

𝑟)
∈ E∼

𝜔⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧,

then we will be finished by transitivity.

To show (1), first note that by monotonicity of casts (Lemma D.63), it suffices to show that

(⟨𝜎𝐴 ↞ 𝜎𝐵⟩
(⟨𝐵𝑜 ↢ 𝐴𝑜⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩

(𝑉1 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑙)),
⟨𝐵𝑜 ↢ 𝐴𝑜⟩

(⟨𝜎𝐴 ↞ 𝜎𝐵⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩
(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟)))

∈ E∼
𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐵𝑜⟧.

Then by commutativity of casts (Corollary D.61), it suffices to show

(⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉1 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑙),
⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟))

∈ E∼
𝑘 ′⟦𝜎𝐵⟧V∼⟦𝐴𝑜⟧.

By monotonicity of casts again, it suffices to show

((𝑉1 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑙),
(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟))

∈ E∼
𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:72 Max S. New, Eric Giovannini, and Daniel R. Licata

By soundness of the precision rule for function application, it suffices to show that (𝑉1,𝑉2) ∈
V∼

𝑘
⟦(𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟧ and that (⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑙 , ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟) ∈ E∼

𝑘
⟦𝜎𝐴⟧V∼⟦𝐴𝑖⟧. The former

holds by assumption, and to show the latter, it suffices by forward reduction to show (⟨𝐴𝑖 ↞
𝐵𝑖⟩⟨𝐵𝑖 ↢ 𝐴𝑖⟩𝑉 𝑙 , ⟨𝐴𝑖 ↞ 𝐵𝑖⟩⟨𝐵𝑖 ↢ 𝐴𝑖⟩𝑉 𝑟) ∈ E∼

𝑘
⟦𝜎𝐴⟧V∼⟦𝐴𝑖⟧. This follows from the

inductive hypothesis and assumption on 𝑉 𝑙
and 𝑉 𝑟

.

To show (2), it suffices by the inductive hypothesis applied twice to show

((𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟)),𝑉2𝑉 𝑟)
∈ E∼

𝜔⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧,
By forward reduction, it suffices to show

((𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟)),𝑉2𝑉 𝑟)
∈ E∼

𝜔⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧,
By soundness of function application, it suffices to show that 𝑉2 is related to itself at

V∼
𝜔 ⟦(𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟧ and that (⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟 ,𝑉 𝑟) ∈ E∼

𝜔⟦𝜎𝐴⟧V∼⟦𝐴𝑖⟧. The former holds

by reflexivity (Corollary D.28), and to show the latter it suffices by forward reduction to show

that

(⟨𝐴𝑖 ↞ 𝐵𝑖⟩⟨𝐵𝑖 ↢ 𝐴𝑖⟩𝑉 𝑟 ,𝑉 𝑟) ∈ E∼
𝜔⟦𝜎𝐴⟧V∼⟦𝐴𝑖⟧,

which follows by the inductive hypothesis and reflexivity.

The case when ∼ is < is analogous.

(2) Let (𝛾1, 𝛾2) ∈ G∼
𝑗 ⟦𝐴⟧. We use Löb induction. We assume that for all 𝑘 ≤ 𝑗 and all related

terms (𝑀 ′, 𝑁 ′) ∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧), we have

(⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝑀 ′, 𝑁 ′) ∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧) .
Let (𝑀, 𝑁) ∈ E∼

𝑗 ⟦𝜎⟧V∼⟦𝐴⟧. We need to show that

(⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧.

By monadic bind (Lemma D.16), it suffices to consider the following cases:

(a) Let 𝑘 ≤ 𝑗 and (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧. We need to show

(⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧

This follows by anti-reduction and assumption.

(b) Let 𝑘 ≤ 𝑗 and let 𝜀 : 𝑐 { 𝑑 ∈ 𝜎 . Let 𝐶′
and 𝐷 ′

be the types such that 𝜀 : 𝐶′ { 𝐷 ′ ∈ 𝜎 ′
. Let

(𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝐶⟧)𝑘 and let 𝐸𝑙#𝜀 and 𝐸𝑟#𝜀 be such that

(𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈ (▶K∼
) ⟦𝐷⟧𝑘 (E

∼⟦𝜎⟧V∼⟦𝐴⟧) .
We need to show that

(⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑙 [raise 𝜀 (𝑉 𝑙)], 𝐸𝑟 [raise 𝜀 (𝑉 𝑟)])
∈ E∼

𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

The first term steps, so by anti-reduction it suffices to show

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:73

(⟨𝜎 ↞ 𝜎 ′⟩(let 𝑥 = ⟨𝐷 ↞ 𝐷 ′⟩raise 𝜀 (⟨𝐶′ ↢ 𝐶⟩𝑉 𝑙) in ⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑙 [𝑥]),
𝐸𝑟 [raise 𝜀 (𝑉 𝑟)])

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

Let 𝑉 ′𝑙
be the value to which ⟨𝐶′ ↢ 𝐶⟩𝑉 𝑙

steps. By anti-reduction, it suffices to show

(let 𝑦 = ⟨𝐷 ′ ↢ 𝐷⟩raise 𝜀 (⟨𝐶 ↞ 𝐶′⟩𝑉 ′𝑙) in ⟨𝜎 ↞ 𝜎 ′⟩let 𝑥 = ⟨𝐷 ↞ 𝐷 ′⟩𝑦 in ⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑙 [𝑥],
𝐸𝑟 [raise 𝜀 (𝑉 𝑟)])

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

Let 𝑦′ be the value to which ⟨𝐷 ↞ 𝐷 ′⟩𝑦 steps. Let 𝑉 ′′𝑙
be the value to which ⟨𝐶 ↞ 𝐶′⟩𝑉 ′𝑙

steps.

By anti-reduction, it suffices to show

(let 𝑦 = ⟨𝐷 ′ ↢ 𝐷⟩raise 𝜀 (𝑉 ′′𝑙) in ⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑙 [𝑦′],
𝐸𝑟 [raise 𝜀 (𝑉 𝑟)])

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

Neither term steps, so it suffices to show they are related in R∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧. To this end,

we first show that (𝑉 ′′𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝐶⟧)𝑘 . By forward reduction, it suffices to show that

(⟨𝐶 ↞ 𝐶′⟩⟨𝐶′ ↢ 𝐶⟩𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝐶⟧)𝑘 . This follows from the inductive hypothesis

for value types and our assumption on 𝑉 𝑙
and 𝑉 𝑟

.

We now show that, given 𝑘 ′ ≤ 𝑘 and values (𝑉1,𝑉2) ∈ (▶V∼⟦𝐷⟧)𝑘 ′ , we have

(let 𝑦 = ⟨𝐷 ′ ↢ 𝐷⟩𝑉1 in ⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑙 [𝑦′],
𝐸𝑟 [𝑉2])

∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧) .

Let 𝑉 ′
1
be the value to which ⟨𝐷 ′ ↢ 𝐷⟩𝑉1 steps. By anti-reduction, it will suffice to show

(let 𝑦 = 𝑉 ′
1
in ⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑙 [𝑦′],

𝐸𝑟 [𝑉2])
∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧) .

By forward reduction, it will suffice to show

(let 𝑦 = 𝑉 ′
1
in ⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑙 [⟨𝐷 ↞ 𝐷 ′⟩𝑦],

𝐸𝑟 [𝑉2])
∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧) .

By anti-reduction, it will suffice to show

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:74 Max S. New, Eric Giovannini, and Daniel R. Licata

(⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑙 [⟨𝐷 ↞ 𝐷 ′⟩𝑉 ′
1
], 𝐸𝑟 [𝑉2])

∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧).
By the Löb induction hypothesis, it suffices to show that

(𝐸𝑙 [⟨𝐷 ↞ 𝐷 ′⟩𝑉 ′
1
], 𝐸𝑟 [𝑉2])

∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧) .
By forward reduction, it suffices to show

(𝐸𝑙 [⟨𝐷 ↞ 𝐷 ′⟩⟨𝐷 ′ ↢ 𝐷⟩𝑉1], 𝐸𝑟 [𝑉2])
∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧).

By the induction hypothesis for value types, it suffices to show

(𝐸𝑙 [𝑉1], 𝐸𝑟 [𝑉2]) ∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧) .
This follows by our assumption on 𝐸𝑙 and 𝐸𝑟 .

□

Lemma D.59 (Gradual subtyping). Let 𝑐 : 𝐴 ⊑ 𝐵 and 𝑐′ : 𝐴′ ⊑ 𝐵′
where 𝐴 ≤ 𝐴′

and 𝐵 ≤ 𝐵′
. Let

𝑑𝜎 : 𝜎1 ⊑ 𝜎2 and 𝑑
′
𝜎 : 𝜎 ′

1
⊑ 𝜎 ′

2
where 𝜎1 ≤ 𝜎 ′

1
and 𝜎2 ≤ 𝜎 ′

2
. Suppose𝑀 ≡ 𝑁 . The following hold:

(1)

Σ | Γ⊑ ⊨𝑑𝜏 𝑀 ⊑ 𝑁 : 𝐴

Σ | Γ⊑ ⊨𝑑𝜏 ⟨𝐵 ↢ 𝐴⟩𝑀 ⊑ ⟨𝐵′ ↢ 𝐴′⟩𝑁 : 𝐵′

(2)

Σ | Γ⊑ ⊨𝑑𝜏 𝑀 ⊑ 𝑁 : 𝐵

Σ | Γ⊑ ⊨𝑑𝜏 ⟨𝐴′
↞ 𝐵′⟩𝑀 ⊑ ⟨𝐴 ↞ 𝐵⟩𝑁 : 𝐴′

(3)

Σ | Γ⊑ ⊨𝜎1 𝑀 ⊑ 𝑁 : 𝑑

Σ | Γ⊑ ⊨𝜎 ′
2

⟨𝜎2 ↢ 𝜎1⟩𝑀 ⊑ ⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩𝑁 : 𝑑

(4)

Σ | Γ⊑ ⊨𝜎2 𝑀 ⊑ 𝑁 : 𝑑

Σ | Γ⊑ ⊨𝜎 ′
1

⟨𝜎 ′
1 ↞ 𝜎 ′

2
⟩𝑀 ⊑ ⟨𝜎1 ↞ 𝜎2⟩𝑁 : 𝑑

Proof. By simultaneous induction on the derivation 𝑐′ : 𝐴′ ⊑ 𝐵′
and 𝑑 ′𝜎 : 𝜎 ′

1
⊑ 𝜎 ′

2
.

(1) We need to show

(⟨𝐵 ↢ 𝐴⟩𝑀, ⟨𝐵′ ↢ 𝐴′⟩𝑁) ∈ E∼
𝑗 ⟦𝑑𝜎⟧V∼⟦𝐵′⟧.

By monadic bind (Lemma D.16), with 𝐸1 = ⟨𝐵 ↢ 𝐴⟩• and 𝐸2 = ⟨𝐵′ ↢ 𝐴′⟩•, it suffices to

show the following.

Let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴′⟧. We need to show

(⟨𝐵 ↢ 𝐴⟩𝑉1, ⟨𝐵′ ↢ 𝐴′⟩𝑉2) ∈ E∼
𝑘
⟦𝑑𝜎⟧V∼⟦𝐵′⟧.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:75

We continue by cases on 𝑐′.
Case 𝑐′ = bool. Then by inversion on the rules for subtyping of precision derivations, we

have 𝑐 = bool.
We need to show

(⟨bool↢ bool⟩𝑉1, ⟨bool↢ bool⟩𝑉2) ∈ E∼
𝑘
⟦𝑑𝜎⟧V∼⟦bool⟧

This follows by anti-reduction and our assumption on 𝑉1 and 𝑉2.

Case 𝑐′ = 𝑐′𝑖 →𝑐′𝜎 𝑐′𝑜 : 𝐴′
𝑖 →𝜎 ′

𝐴
𝐴′
𝑜 ⊑ 𝐵′

𝑖 →𝜎 ′
𝐵
𝐵′
𝑜 .

By inversion on the rules for subtyping for precision derivations, we have that 𝑐 = 𝑐𝑖 →𝑐𝜎 𝑐𝑜 ,

where 𝑐′𝑖 ≤ 𝑐𝑖 , and 𝑐𝜎 ≤ 𝑐′𝜎 , and 𝑐𝑜 ≤ 𝑐′𝑜 .
Our assumption then becomes (𝑉1,𝑉2) ∈ V∼

𝑘
⟦𝐴′

𝑖 →𝜎 ′
𝐴
𝐴′
𝑜⟧. We need to show

(⟨𝐵𝑖 →𝜎𝐵 𝐵𝑜
↢ 𝐴𝑖 →𝜎𝐴 𝐴𝑜⟩𝑉1, ⟨𝐵′

𝑖 →𝜎 ′
𝐵
𝐵′
𝑜
↢ 𝐴′

𝑖 →𝜎 ′
𝐴
𝐴′
𝑜⟩𝑉2) ∈ E∼

𝑘
⟦𝑑𝜎⟧V∼⟦𝐵′

𝑖 →𝜎 ′
𝐵
𝐵′
𝑜⟧.

Since both terms are values, it suffices to show they are related in V∼
𝑘
⟦𝐵′

𝑖 →𝜎 ′
𝐵
𝐵′
𝑜⟧. Let

𝑘 ′ ≤ 𝑘 and let (𝑉 𝑙 ,𝑉 𝑟) ∈ V∼
𝑘 ′⟦𝐵′

𝑖⟧. We need to show

((⟨𝐵𝑖 →𝜎𝐵 𝐵𝑜
↢ 𝐴𝑖 →𝜎𝐴 𝐴𝑜⟩𝑉1)𝑉 𝑙 ,

(⟨𝐵′
𝑖 →𝜎 ′

𝐵
𝐵′
𝑜
↢ 𝐴′

𝑖 →𝜎 ′
𝐴
𝐴′
𝑜⟩𝑉2)𝑉 𝑟)

∈ E∼
𝑘 ′⟦𝜎 ′

𝐵⟧V∼⟦𝐵′
𝑜⟧.

By anti-reduction, it suffices to show

(⟨𝐵𝑜 ↢ 𝐴𝑜⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉1 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑙),
⟨𝐵′

𝑜
↢ 𝐴′

𝑜⟩⟨𝜎 ′
𝐵
↢ 𝜎 ′

𝐴⟩(𝑉2 ⟨𝐴′
𝑖 ↞ 𝐵′

𝑖 ⟩𝑉 𝑟))
∈ E∼

𝑘 ′⟦𝜎 ′
𝐵⟧V∼⟦𝐵′

𝑜⟧.
By the induction hypothesis applied twice, it suffices to show

((𝑉1 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑙), (𝑉2 ⟨𝐴′
𝑖 ↞ 𝐵′

𝑖 ⟩𝑉 𝑟))
∈ E∼

𝑘 ′⟦𝜎 ′
𝐴⟧V∼⟦𝐴′

𝑜⟧.
By soundness of the term precision congruence rule for function application (Lemma D.23),

it suffices to show that (𝑉1,𝑉2) ∈ V∼
𝑘 ′⟦𝐴′

𝑖 →𝜎 ′
𝐴
𝐴′
𝑜⟧, and that

(⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑙 , ⟨𝐴′
𝑖 ↞ 𝐵′

𝑖 ⟩𝑉 𝑟) ∈ E∼
𝑘 ′⟦𝑑𝜎⟧V∼⟦𝐴′

𝑖⟧.
The former holds by assumption. To show the latter, it suffices by the admissible direction of

gradual subtyping rule ValDnSub (item (2) in Lemma A.1), whose proof does not depend on

the present lemma, to show that (𝑉 𝑙 ,𝑉 𝑟) ∈ V∼
𝑘 ′⟦𝐵′

𝑖⟧. This is true by assumption.

(2) Similar to the above.

(3) We need to show

(⟨𝜎2 ↢ 𝜎1⟩𝑀, ⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩𝑁) ∈ E∼

𝑗 ⟦𝜎 ′
2
⟧V∼⟦𝑐⟧.

We use Löb induction. That is, we assume as our induction hypothesis that

(⟨𝜎2 ↢ 𝜎1⟩𝑀 ′, ⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩𝑁 ′) ∈ ▶(E∼⟦𝜎 ′

2
⟧) 𝑗 (V∼⟦𝑐⟧),

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:76 Max S. New, Eric Giovannini, and Daniel R. Licata

for all (𝑀 ′, 𝑁 ′) ∈ (▶E∼⟦𝜎 ′
1
⟧) 𝑗 (V∼⟦𝑐⟧), and we show that under this assumption, we have

(⟨𝜎2 ↢ 𝜎1⟩𝑀, ⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩𝑁) ∈ E∼

𝑗 ⟦𝜎 ′
2
⟧V∼⟦𝑐⟧

for all (𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝜎 ′

1
⟧V∼⟦𝑐⟧.

Using Monadic Bind (Lemma D.16), we have the following cases:

• Let 𝑘 ≤ 𝑗 and (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝑐⟧. We need to show

(⟨𝜎2 ↢ 𝜎1⟩𝑉1, ⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩𝑉2) ∈ E∼

𝑘
⟦𝜎 ′

2
⟧V∼⟦𝑐⟧.

This follows by anti-reduction and our assumption on 𝑉1 and 𝑉2.

• Let 𝜀 : 𝑐𝑖 { 𝑑𝑖 ∈ 𝜎1 be an effect caught by ⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩•. Let (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝑐𝑙𝑖⟧)𝑘 , and

let (𝐸𝑙 , 𝐸𝑟) ∈ (▶K∼⟦𝑑𝑙𝑖⟧)𝑘 (E∼⟦𝜎 ′
1
⟧V∼⟦𝑐⟧). We need to show

(⟨𝜎2 ↢ 𝜎1⟩𝐸𝑙 [raise 𝜀 (𝑉 𝑙)], ⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩𝐸𝑟 [raise 𝜀 (𝑉 𝑟)])

∈ E∼
𝑘
⟦𝜎 ′

2
⟧V∼⟦𝑐⟧.

We continue by cases on subtyping of effect precision derivations. We show only the case

𝑑 ′𝜎 is a concrete effect precision set 𝑑 ′𝑐 ; the other cases follow immediately or reduce to this

one.

By inversion, we have𝑑𝜎 is also a concrete effect precision set𝑑𝑐 where dom(𝑑𝑐) ⊆ dom(𝑑 ′𝑐)
and for all 𝜀 : 𝑐 { 𝑑 ∈ 𝑑𝑐 , 𝜀 : 𝑐′ { 𝑑 ′ ∈ 𝑑 ′𝑐 and 𝑐 ≤ 𝑐′ and 𝑑 ′ ≤ 𝑑 . By anti-reduction, it

suffices to show

(let 𝑥 = ⟨𝑑𝑙𝑖 ↞ 𝑑𝑟𝑖 ⟩raise 𝜀 (⟨𝑐𝑟𝑖 ↢ 𝑐𝑙𝑖 ⟩𝑉 𝑙) in ⟨𝜎2 ↢ 𝜎1⟩𝐸𝑙 [𝑥],
let 𝑥 = ⟨𝑑 ′𝑙𝑖 ↞ 𝑑 ′𝑟𝑖 ⟩raise 𝜀 (⟨𝑐′𝑟𝑖 ↢ 𝑐′𝑙𝑖 ⟩𝑉 𝑟) in ⟨𝜎 ′

2

↢ 𝜎 ′
1
⟩𝐸𝑟 [𝑥])

∈ (▶E∼
) ⟦𝜎

′
2
⟧𝑘 (V∼⟦𝑐⟧),

By congruence for Let, it suffices to show (1)

(⟨𝑑𝑙𝑖 ↞ 𝑑𝑟𝑖 ⟩raise 𝜀 (⟨𝑐𝑟𝑖 ↢ 𝑐𝑙𝑖 ⟩𝑉 𝑙),
⟨𝑑 ′𝑙𝑖 ↞ 𝑑 ′𝑟𝑖 ⟩raise 𝜀 (⟨𝑐′𝑟𝑖 ↢ 𝑐′𝑙𝑖 ⟩𝑉 𝑟))

∈ (▶E∼
) ⟦𝜎

′
2
⟧𝑘 (V∼⟦𝑐⟧),

and (2) for (𝑉1,𝑉2) ∈ ▶(V∼⟦𝑑𝑖⟧)𝑘 we have

(⟨𝜎2 ↢ 𝜎1⟩𝐸𝑙 [𝑉1],
⟨𝜎 ′

2

↢ 𝜎 ′
1
⟩𝐸𝑟 [𝑉2])

∈ (▶E∼
) ⟦𝜎

′
2
⟧𝑘 (V∼⟦𝑐⟧),

To show (1), first note that by the induction hypothesis for value types,

(raise 𝜀 (⟨𝑐𝑟𝑖 ↢ 𝑐𝑙𝑖 ⟩𝑉 𝑙), raise 𝜀 (⟨𝑐′𝑟𝑖 ↢ 𝑐′𝑙𝑖 ⟩𝑉 𝑟)) ∈ E∼
𝑘
⟦𝜎 ′

2
⟧V∼⟦𝑐′𝑖⟧,

and by the induction hypothesis for value types again, (1) follows. To show (2), note

that 𝐸𝑙 [𝑥𝑙] and 𝐸𝑟 [𝑥𝑟] are related by assumption on 𝐸𝑙 and 𝐸𝑟 . So we may apply the Löb

induction hypothesis to reach the desired conclusion.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:77

(4) We again use Löb induction and monadic bind. In the related raises case of the bind lemma,

we let 𝜀 : 𝑐𝑖 { 𝑑𝑖 ∈ 𝜎2 be an effect caught by ⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩•. We let (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝑐𝑙𝑖⟧)𝑘 ,

and let (𝐸𝑙 , 𝐸𝑟) ∈ (▶K∼⟦𝑑𝑙𝑖⟧)𝑘 (E∼⟦𝜎 ′
1
⟧V∼⟦𝑐⟧).

We need to show

(⟨𝜎2 ↢ 𝜎1⟩𝐸𝑙 [raise 𝜀 (𝑉 𝑙)], ⟨𝜎 ′
2

↢ 𝜎 ′
1
⟩𝐸𝑟 [raise 𝜀 (𝑉 𝑟)])

∈ E∼
𝑘
⟦𝜎 ′

2
⟧V∼⟦𝑐⟧.

If 𝜀 ∉ 𝜎1, then both sides step to ℧. Since ℧ is related to itself by ErrBot (Lemma D.45), we

are finished by anti-reduction.

Otherwise, the proof proceeds analogously to that of the previous case, with upcasts and

downcasts interchanged.

□

Lemma D.60 (effect casts commute with pure function values). Let 𝐸 be an evaluation

context such that (1) for all 𝜎 , Σ | Γ | • : (𝜎 !𝐴) ⊢𝜎 𝐸 : 𝐵, and such that (2) 𝐸#𝜀 for all 𝜀 ∈ Σ.
Furthermore, suppose that (3) for all values 𝑉 , there exists a value 𝑉 ′

such that 𝐸 [𝑉] ↦→∗ 𝑉 ′
.

Let Σ | Γ⊑ ⊨𝜎2 𝑀 ≡ 𝑁 : 𝐴.

Then Σ | Γ⊑ ⊨𝜎1 𝐸 [⟨𝜎1 ↞ 𝜎2⟩𝑀] ≡ ⟨𝜎1 ↞ 𝜎2⟩𝐸 [𝑁] : 𝐵, and likewise for upcasts.

Proof. We show the statement for downcasts only; the proof for upcasts is similar. Additionally,

we show only one of the directions of the equivalence; the other is symmetric.

We need to show

(𝐸 [⟨𝜎1 ↞ 𝜎2⟩𝑀], ⟨𝜎1 ↞ 𝜎2⟩𝐸 [𝑁]) ∈ E∼
𝑗 ⟦𝜎1⟧V∼⟦𝐵⟧.

We apply monadic bind (Lemma D.16) with 𝐸1 = 𝐸 [⟨𝜎1 ↞ 𝜎2⟩•] and 𝐸2 = ⟨𝜎1 ↞ 𝜎2⟩𝐸. By
assumption on𝑀 and 𝑁 , will suffice to consider the following cases.

• Let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧. We need to show

(𝐸 [⟨𝜎1 ↞ 𝜎2⟩𝑉1], ⟨𝜎1 ↞ 𝜎2⟩𝐸 [𝑉2]) ∈ E∼
𝑘
⟦𝜎1⟧V∼⟦𝐵⟧.

By the operational semantics, we have 𝐸 [⟨𝜎1 ↞ 𝜎2⟩𝑉1] ↦→1 𝐸 [𝑉1].
By anti-reduction, it suffices to show

(𝐸 [𝑉1], ⟨𝜎1 ↞ 𝜎2⟩𝐸 [𝑉2]) ∈ E∼
𝑘
⟦𝜎1⟧V∼⟦𝐵⟧.

Furthermore, there exist 𝑖1 and 𝑖2 and values𝑉
′
1
and𝑉 ′

2
such that 𝐸 [𝑉1] ↦→𝑖1 𝑉 ′

1
and 𝐸 [𝑉2] ↦→𝑖2

𝑉 ′
2
.

We also have ⟨𝜎1 ↞ 𝜎2⟩𝑉 ′
2
↦→1 𝑉 ′

2
.

Putting the above facts together, by anti-reduction, it suffices to show

(𝑉 ′
1
,𝑉 ′

2
) ∈ E∼

𝑘
⟦𝜎1⟧V∼⟦𝐵⟧.

But by forward reduction, it suffices to show that (𝐸 [𝑉1], 𝐸 [𝑉2]) ∈ E∼
𝑘
⟦𝜎1⟧V∼⟦𝐵⟧.

For this, it suffices (by the congruence lemmas) that 𝑉1 and 𝑉2 are related, which is true by

assumption.

• Let 𝑘 ≤ 𝑗 and let 𝜀 : 𝑐𝑟 { 𝑑𝑟 ∈ 𝜎2 be an effect caught by ⟨𝜎1 ↞ 𝜎2⟩•. Let 𝑉 𝑙 ,𝑉 𝑟 , 𝐸𝑙#𝜀, 𝐸𝑟#𝜀

be as in the statement of Lemma D.16. We need to show

(𝐸 [⟨𝜎1 ↞ 𝜎2⟩𝐸𝑙 [raise 𝜀 (𝑉 𝑙)]], ⟨𝜎1 ↞ 𝜎2⟩𝐸 [𝐸𝑟 [raise 𝜀 (𝑉 𝑟)]]) ∈ E∼
𝑘
⟦𝜎1⟧V∼⟦𝐵⟧.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:78 Max S. New, Eric Giovannini, and Daniel R. Licata

If 𝜀 ∉ 𝜎1, then, by the operational semantics, both terms will step to ℧. By anti-reduction, it

suffices to show that (℧,℧) ∈ E∼
𝑘
⟦𝜎1⟧V∼⟦𝐵⟧. This follows by ErrBot (Lemma D.45).

Now suppose 𝜀 : 𝑐𝑙 { 𝑑𝑙 ∈ 𝜎1. According to the operational semantics, we have

𝐸 [⟨𝜎1 ↞ 𝜎2⟩𝐸𝑙 [raise 𝜀 (𝑉 𝑙)]] ↦→1 𝐸 [𝐸𝑙 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩raise 𝜀 (⟨𝑐𝑙 ↞ 𝑐𝑟 ⟩𝑉 𝑙)]],
and

⟨𝜎1 ↞ 𝜎2⟩𝐸 [𝐸𝑟 [raise 𝜀 (𝑉 𝑟)]] ↦→1 𝐸 [𝐸𝑟 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩raise 𝜀 (⟨𝑐𝑙 ↞ 𝑐𝑟 ⟩𝑉 𝑟)]] .
Thus, by anti-reduction, it suffices to show

(𝐸 [𝐸𝑙 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩raise 𝜀 (⟨𝑐𝑙 ↞ 𝑐𝑟 ⟩𝑉 𝑙)]],
𝐸 [𝐸𝑟 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩raise 𝜀 (⟨𝑐𝑙 ↞ 𝑐𝑟 ⟩𝑉 𝑟)]])

∈ E∼
𝑘
⟦𝜎1⟧V∼⟦𝐵⟧.

Let 𝑉 ′𝑙
be the value to which ⟨𝑐𝑙 ↞ 𝑐𝑟 ⟩𝑉 𝑙

steps, and similarly let 𝑉 ′𝑟
be the value to which

⟨𝑐𝑙 ↞ 𝑐𝑟 ⟩𝑉 𝑟
steps. By anti-reduction, it suffices to show

(𝐸 [𝐸𝑙 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩raise 𝜀 (𝑉 ′𝑙)]],
𝐸 [𝐸𝑟 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩raise 𝜀 (𝑉 ′𝑟)]])

∈ E∼
𝑘
⟦𝜎1⟧V∼⟦𝐵⟧.

As neither term steps, it is sufficient to show that they are related in R∼
𝑘
⟦𝜎1⟧V∼⟦𝐵⟧. We

assert the second disjunct in the definition of R∼⟦·⟧, taking 𝐸𝑙 = 𝐸 [𝐸𝑙 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩•]] and
𝐸𝑟 = 𝐸 [𝐸𝑟 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩•]].
We first need to show that (𝑉 ′𝑙 ,𝑉 ′𝑟) ∈ (▶V∼⟦𝑐⟧)𝑘 . By forward reduction, it suffices to show

that

(⟨𝑐𝑙 ↞ 𝑐𝑟 ⟩𝑉 𝑙 , ⟨𝑐𝑙 ↞ 𝑐𝑟 ⟩𝑉 𝑟) ∈ (▶E∼⟦𝜎1⟧)𝑘 (V∼⟦𝑐𝑟⟧).
By monotonicity of casts (lemma D.63), it suffices to show (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶E∼⟦𝜎1⟧)𝑘 (V∼⟦𝑐𝑟⟧).
This follows from our assumption about 𝑉 𝑙

and 𝑉 𝑟
.

We now need to show that

(𝑥𝑙 .𝐸 [𝐸𝑙 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩𝑥𝑙]], 𝑥𝑟 .𝐸 [𝐸𝑟 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩𝑥𝑟]]) ∈ (▶K∼⟦𝑑⟧)𝑘 (E∼⟦𝜎1⟧V∼⟦𝐵⟧) .
To this end, let 𝑘 ′ ≤ 𝑘 and let (𝑉1,𝑉2) ∈ (▶V∼

) ⟦𝑑
𝑙⟧𝑘 ′ . We need to show

(𝐸 [𝐸𝑙 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩𝑉1]], 𝐸 [𝐸𝑟 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩𝑉2]]) ∈ (▶E∼⟦𝜎1⟧)𝑘 ′ (V∼⟦𝐵⟧) .
It will suffice by the soundness of the congruence rules to show that

(𝐸𝑙 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩𝑉1], 𝐸𝑟 [⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩𝑉2]) ∈ (▶E∼⟦𝜎1⟧)𝑘 ′ (V∼⟦𝐵⟧).
Let 𝑉 ′

1
and 𝑉 ′

2
be the values to which ⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩𝑉1 and ⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩𝑉2 step, respectively. By

anti-reduction, it suffices to show

(𝐸𝑙 [𝑉 ′
1
], 𝐸𝑟 [𝑉 ′

2
]) ∈ (▶E∼⟦𝜎1⟧)𝑘 ′ (V∼⟦𝐵⟧) .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:79

By assumption on 𝐸𝑙 and 𝐸𝑟 , it suffices to show that (𝑉 ′
1
,𝑉 ′

2
) ∈ (▶V∼⟦𝑑𝑟⟧)𝑘 ′ . By forward

reduction, it suffices to show

(⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩𝑉1, ⟨𝑑𝑟 ↢ 𝑑𝑙 ⟩𝑉2) ∈ (▶E∼⟦𝜎1⟧)𝑘 ′ (V∼⟦𝐵⟧) .
By monotonicity of casts (lemma D.63), it suffices to show

(𝑉1,𝑉2) ∈ (▶E∼⟦𝜎1⟧)𝑘 ′ (V∼⟦𝐵⟧) .
This follows from our assumption on 𝑉1 and 𝑉2.

□

Corollary D.61 (commutativity of casts). Value casts commute with effect casts.

Proof. This follows from D.60, because ⟨𝐵 ↢ 𝐴⟩• and ⟨𝐴 ↞ 𝐵⟩• satisfy the requirements in

the lemma. □

Lemma D.62 (functoriality of casts). Let 𝑀 be a term such that Σ | Γ | · ⊢𝜎 𝑀 : 𝐴. Let

𝑐 : 𝐴 ⊑ 𝐵 and 𝑒 : 𝐵 ⊑ 𝐶 . Let 𝑑𝜎 : 𝜎 ⊑ 𝜎 ′
and let 𝑑 ′𝜎 : 𝜎 ′ ⊑ 𝜎 ′′

Suppose Σ | Γ⊑ ⊨𝜎 𝑀 ≡ 𝑁 : 𝐴. Then the following hold:

Identity properties: Suppose Σ | Γ⊑ ⊨𝜎 𝑀 ⊒⊑ 𝑁 : 𝐴. We have

(1) Σ | Γ ⊨𝜎 ⟨𝐴 ↢ 𝐴⟩𝑀 ≡ 𝑁 : 𝐴

(2) Σ | Γ ⊨𝜎 ⟨𝐴 ↞ 𝐴⟩𝑀 ≡ 𝑁 : 𝐴

(3) Σ | Γ ⊨𝜎 ⟨𝜎 ↢ 𝜎⟩𝑀 ≡ 𝑁 : 𝐴

(4) Σ | Γ ⊨𝜎 ⟨𝜎 ↞ 𝜎⟩𝑀 ≡ 𝑁 : 𝐴

Composition properties: Let 𝑐 : 𝐴 ⊑ 𝐵 and 𝑒 : 𝐵 ⊑ 𝐶 . Let 𝑑𝜎 : 𝜎 ⊑ 𝜎 ′
and 𝑑 ′𝜎 : 𝜎 ′ ⊑ 𝜎 ′′

. Suppose

𝑀 ⊒⊑ 𝑁 . Then

(1) Σ | Γ ⊨𝜎 ⟨𝐶 ↢ 𝐴⟩𝑀 ⊒⊑ ⟨𝐶 ↢ 𝐵⟩⟨𝐵 ↢ 𝐴⟩𝑁 : 𝐶

(2) Σ | Γ ⊨𝜎 ⟨𝐴 ↞ 𝐶⟩𝑀 ⊒⊑ ⟨𝐴 ↞ 𝐵⟩⟨𝐵 ↞ 𝐶⟩𝑁 : 𝐴

(3) Σ | Γ ⊨𝜎 ′′ ⟨𝜎 ′′ ↢ 𝜎⟩𝑀 ⊒⊑ ⟨𝜎 ′′ ↢ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝑁 : 𝐴

(4) Σ | Γ ⊨𝜎 ⟨𝜎 ↞ 𝜎 ′′⟩𝑀 ⊒⊑ ⟨𝜎 ↞ 𝜎 ′⟩⟨𝜎 ′
↞ 𝜎 ′′⟩𝑁 : 𝐴

Proof. We prove more general, “pointwise" versions of the above statements. For instance, we

show that if (𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧, then (⟨𝐴 ↢ 𝐴⟩𝑀, 𝑁) ∈ E∼

𝑗 ⟦𝜎⟧V∼⟦𝐴⟧.
Additionally, we only prove one direction of each of the equivalences (i.e., ⊑); the proof of the

other direction is symmetric.

The statements are proven simultaneously by induction on 𝐴 and 𝜎 .

• Identity properties:

(1) We need to show (⟨𝐴 ↢ 𝐴⟩𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧. By monadic bind (Lemma D.16),

with 𝐸1 = ⟨𝐴 ↢ 𝐴⟩• and 𝐸2 = •, it will suffice to show the following: Let 𝑘 ≤ 𝑗 and

(𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧. We will show

(⟨𝐴 ↢ 𝐴⟩𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

We continue by induction on 𝐴. If 𝐴 = bool, then we need to show

(⟨bool↢ bool⟩𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝑑𝜎⟧V∼⟦bool⟧.

By anti-reduction, it suffices to show (𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦bool⟧, which follows from our

assumption on (𝑉1,𝑉2).
If 𝐴 = 𝐴𝑖 →𝜎𝐴 𝐴𝑜 , we need to show

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:80 Max S. New, Eric Giovannini, and Daniel R. Licata

(⟨(𝐴𝑖 →𝜎𝐴 𝐴𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴𝑖 →𝜎𝐴 𝐴𝑜⟧.

As both terms are values, it suffices to show they are related inV∼
𝑘
⟦𝐴𝑖 →𝜎𝐴 𝐴𝑜⟧. So, let

𝑘 ′ ≤ 𝑘 and let (𝑉 𝑙 ,𝑉 𝑟) ∈ V∼
𝑘 ′⟦𝐴𝑖⟧. We need to show

((⟨(𝐴𝑖 →𝜎𝐴 𝐴𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉1)𝑉 𝑙 ,𝑉2𝑉
𝑟) ∈ E∼

𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧.

By anti-reduction, it suffices to show

(⟨𝐴𝑜
↢ 𝐴𝑜⟩⟨𝜎𝐴 ↢ 𝜎𝐴⟩(𝑉1 ⟨𝐴𝑖 ↞ 𝐴𝑖⟩𝑉 𝑙),𝑉2𝑉 𝑟) ∈ E∼

𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧.

By the induction hypothesis (applied twice), it suffices to show

((𝑉1 ⟨𝐴𝑖 ↞ 𝐴𝑖⟩𝑉 𝑙),𝑉2𝑉 𝑟) ∈ E∼
𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧.

By the soundness of function application, it suffices to show that (𝑉1,𝑉2) ∈ V∼
𝑘 ′⟦𝐴𝑖 →𝜎𝐴

𝐴𝑜⟧ and (⟨𝐴𝑖 ↞ 𝐴𝑖⟩𝑉 𝑙 ,𝑉 𝑟) ∈ E∼
𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑖⟧. The former is true by assumption and

downward closure (𝑘 ′ ≤ 𝑘). The latter is true by inductive hypothesis, since 𝑉 𝑙
and 𝑉 𝑟

are

related.

(2) This is dual to the above.

(3) We prove this statement by Löb induction (Lemma D.14). That is, assume for all (𝑀 ′, 𝑁 ′) ∈
(▶E∼⟦𝜎⟧) 𝑗 (V∼⟦𝐴⟧), we have (⟨𝜎 ↢ 𝜎⟩𝑀 ′, 𝑁 ′) ∈ (▶E∼⟦𝜎⟧) 𝑗 (V∼⟦𝐴⟧). Let (𝑀, 𝑁) ∈
E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧. We need to show (⟨𝜎 ↢ 𝜎⟩𝑀, 𝑁) ∈ E∼

𝑗 ⟦𝜎⟧V∼⟦𝐴⟧. By monadic bind

(Lemma D.16), with 𝐸1 = ⟨𝜎 ↢ 𝜎⟩• and 𝐸2 = •, it will suffice to consider the following

cases.

– Let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧. We need to show

(⟨𝜎 ↢ 𝜎⟩𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝑐⟧.

Per the operational semantics, we have ⟨𝜎 ↢ 𝜎⟩𝑉1 ↦→1 𝑉1, so by anti-reduction it suffices

to show (𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧, which follows by the assumption that (𝑉1,𝑉2) ∈

V∼
𝑘
⟦𝐴⟧.

– Let 𝑘 ≤ 𝑗 and let 𝜀 : 𝑐𝜀 { 𝑑𝜀 be an effect caught by ⟨𝜎 ↢ 𝜎⟩• – i.e., 𝜀 : 𝑐𝜀 { 𝑑𝜀 ∈ 𝜎 .

Note that, as 𝜎 is a reflexivity derivation, 𝑐𝜀 and 𝑑𝜀 are also reflexivity derivations, i.e.,

𝑐𝑙𝜀 = 𝑐𝑟𝜀 and likewise for 𝑑𝜀 . For simplicity, let 𝐶 = 𝑐𝑙𝜀 and 𝐷 = 𝑑𝑙𝜀 .

Let 𝑉 𝑙 ,𝑉 𝑟 , 𝐸𝑙#𝜀, 𝐸𝑟#𝜀 be as in the statement of Lemma D.16. We need to show

(⟨𝜎 ↢ 𝜎⟩𝐸𝑙 [raise 𝜀 (𝑉 𝑙)], 𝐸𝑟 [raise 𝜀 (𝑉 𝑟)])
∈ E∼

𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

According to the operational semantics, we have

⟨𝜎 ↢ 𝜎⟩𝐸𝑙 [raise 𝜀 (𝑉 𝑙)] ↦→1

let 𝑥 = ⟨𝐷 ↞ 𝐷⟩raise 𝜀 (⟨𝐶 ↢ 𝐶⟩𝑉 𝑙) in ⟨𝜎 ↢ 𝜎⟩𝐸𝑙 [𝑥]

So, by anti-reduction it suffices to show that

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:81

(let 𝑥 = ⟨𝐷 ↞ 𝐷⟩raise 𝜀 (⟨𝐶 ↢ 𝐶⟩𝑉 𝑙) in ⟨𝜎 ↢ 𝜎⟩𝐸𝑙 [𝑥],
𝐸𝑟 [raise 𝜀 (𝑉 𝑟)])

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

Let𝑉 ′𝑙
be the term to which ⟨𝐶 ↢ 𝐶⟩𝑉 𝑙

steps. By anti-reduction, it suffices to show that

(let 𝑥 = ⟨𝐷 ↞ 𝐷⟩raise 𝜀 (𝑉 ′𝑙) in ⟨𝜎 ↢ 𝜎⟩𝐸𝑙 [𝑥],
𝐸𝑟 [raise 𝜀 (𝑉 𝑟)])

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

The above terms do not step, so it suffices to show that they are related in R∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

To this end, we will first show that (𝑉 ′𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝐶⟧)𝑘 . By forward reduction, it

suffices to show that (⟨𝐶 ↢ 𝐶⟩𝑉 𝑙 ,𝑉 𝑟) ∈ (▶E∼⟦V∼⟦𝐶⟧⟧)𝑘 . By the induction hypothesis,
it suffices to show that (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝐶⟧) (𝑘).
Now we will show that

(𝑥𝑙 .(let 𝑥 = ⟨𝐷 ↞ 𝐷⟩𝑥𝑙 in ⟨𝜎 ↢ 𝜎⟩𝐸𝑙 [𝑥]), 𝑥𝑟 .𝐸𝑟 [𝑥𝑟])
∈ (▶K∼⟦𝐷⟧)𝑘 (E∼⟦𝜎⟧V∼⟦𝐴⟧).

Let 𝑘 ′ ≤ 𝑘 and let (𝑉1,𝑉2) ∈ (▶V∼⟦𝐴⟧)𝑘 ′ . We need to show

((let 𝑥 = ⟨𝐷 ↞ 𝐷⟩𝑉1 in ⟨𝜎 ↢ 𝜎⟩𝐸𝑙 [𝑥]), 𝐸𝑟 [𝑉2])
∈ (▶E∼⟦𝜎⟧)𝑘 ′ (V∼⟦𝐴⟧).

Let 𝑉 ′
1
be the value to which ⟨𝐷 ↞ 𝐷⟩𝑉1 steps. By anti-reduction, it suffices to show

((let 𝑥 = 𝑉 ′
1
in ⟨𝜎 ↢ 𝜎⟩𝐸𝑙 [𝑥]), 𝐸𝑟 [𝑉2])

∈ (▶E∼⟦𝜎⟧)𝑘 ′ (V∼⟦𝐴⟧),
and then since the let term steps, it suffices by anti-reduction again to show

(⟨𝜎 ↢ 𝜎⟩𝐸𝑙 [𝑉 ′
1
], 𝐸𝑟 [𝑉2]) ∈ (▶E∼⟦𝜎⟧)𝑘 ′ (V∼⟦𝐴⟧),

By the Löb induction hypothesis, it suffices to show that

(𝐸𝑙 [𝑉 ′
1
], 𝐸𝑟 [𝑉2]) ∈ (▶E∼⟦𝜎⟧)𝑘 ′ (V∼⟦𝐴⟧)

By our assumption on 𝐸𝑙 and 𝐸𝑟 , it suffices to show

(𝑉 ′
1
,𝑉2) ∈ (▶V∼⟦𝐴⟧)𝑘 ′ .

By forward reduction, it suffices to show

(⟨𝐷 ↞ 𝐷⟩𝑉1,𝑉2) ∈ (▶V∼⟦𝐴⟧)𝑘 ′ .

By the induction hypothesis for value types, it suffices to show

(𝑉1,𝑉2) ∈ (▶E∼⟦𝐴⟧)𝑘 ′ .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:82 Max S. New, Eric Giovannini, and Daniel R. Licata

This follows by assumption.

(4) We again use Löb induction and monadic bind.

That is, assume for all (𝑀 ′, 𝑁 ′) ∈ (▶E∼⟦𝜎⟧) 𝑗 (V∼⟦𝐴⟧), we have (⟨𝜎 ↞ 𝜎⟩𝑀 ′, 𝑁 ′) ∈
(▶E∼⟦𝜎⟧) 𝑗 (V∼⟦𝐴⟧). We need to show

(⟨𝜎 ↞ 𝜎⟩𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧

where (𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧. We again use monadic bind, and as in the previous proof,

the case of related values follows trivially since effect casts are the identity on values. Thus,

it will suffice to show the related raises case. That is, let 𝑘 ≤ 𝑗 and let 𝜀 : 𝑐𝜀 { 𝑑𝜀 be

an effect caught by ⟨𝜎 ↞ 𝜎⟩• – i.e., 𝜀 : 𝑐𝜀 { 𝑑𝜀 ∈ 𝜎 . As in the previous proof, since 𝜎

is a reflexivity derivation, 𝑐𝜀 and 𝑑𝜀 are also reflexivity derivations, so for simplicity, let

𝐶 = 𝑐𝑙𝜀 = 𝑐𝑟𝜀 and 𝐷 = 𝑑𝑙𝜀 = 𝑑𝑟𝜀 .

Let 𝑉 𝑙 ,𝑉 𝑟 , 𝐸𝑙#𝜀, 𝐸𝑟#𝜀 be as in the statement of the monadic bind lemma. We need to show

(⟨𝜎 ↞ 𝜎⟩𝐸𝑙 [raise 𝜀 (𝑉 𝑙)], 𝐸𝑟 [raise 𝜀 (𝑉 𝑟)])
∈ E∼

𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

Note that, since 𝜀 ∈ 𝜎 , the downcast cannot fail.

The remainder of the proof proceeds exactly like the previous proof, with upcasts and

downcasts interchanged.

• Composition properties:

(1) We need to show (⟨𝐶 ↢ 𝐴⟩𝑀, ⟨𝐶 ↢ 𝐵⟩⟨𝐵 ↢ 𝐴⟩𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐶⟧.

By monadic bind (Lemma D.16) with 𝐸1 = ⟨𝐶 ↢ 𝐴⟩• and 𝐸2 = ⟨𝐶 ↢ 𝐵⟩⟨𝐵 ↢ 𝐴⟩•, it will
suffice to show the following: Let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼

𝑘
⟦𝐴⟧. We will show

(⟨𝐶 ↢ 𝐴⟩𝑉1, ⟨𝐶 ↢ 𝐵⟩⟨𝐵 ↢ 𝐴⟩𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐶⟧.

If 𝑐 ◦ 𝑒 = bool, then 𝑐 = 𝑒 = bool, and we need to show

(⟨bool↢ bool⟩𝑉1, ⟨bool↢ bool⟩⟨bool↢ bool⟩𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦bool⟧.

By anti-reduction, it suffices to show (𝑉1,𝑉2) ∈ V∼
𝑗 ⟦bool⟧, which follows from our as-

sumption.

Now suppose 𝑐 ◦ 𝑒 = (𝑐𝑖 ◦ 𝑒𝑖) →(𝑐𝜎◦𝑒𝜎) (𝑐𝑜 ◦ 𝑒𝑜). We need to show

(⟨(𝐶𝑖 →𝜎𝐶 𝐶𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉1,
⟨(𝐶𝑖 →𝜎𝐶 𝐶𝑜) ↢ (𝐵𝑖 →𝜎𝐵 𝐵𝑜)⟩⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉2)

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐶𝑖 →𝜎𝐶 𝐶𝑜⟧.

Both terms are values, so it suffices to show that they are related inV∼
𝑘
⟦𝐶𝑖 →𝜎𝐶 𝐶𝑜⟧. Let

𝑘 ′ ≤ 𝑘 and let (𝑉 𝑙 ,𝑉 𝑟) ∈ V∼
𝑘 ′⟦𝐶𝑖⟧. We need to show that

((⟨(𝐶𝑖 →𝜎𝐶 𝐶𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉1)𝑉 𝑙 ,

(⟨(𝐶𝑖 →𝜎𝐶 𝐶𝑜) ↢ (𝐵𝑖 →𝜎𝐵 𝐵𝑜)⟩⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉2)𝑉 𝑟)
∈ E∼

𝑘 ′⟦𝜎𝐶⟧V∼⟦𝐶𝑜⟧.
By anti-reduction, it suffices to show

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:83

(⟨𝐶𝑜
↢ 𝐴𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐴⟩(𝑉1 ⟨𝐴𝑖 ↞ 𝐶𝑖⟩𝑉 𝑙),

⟨𝐶𝑜
↢ 𝐵𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐵⟩
((⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉2) ⟨𝐵𝑖 ↞ 𝐶𝑖⟩𝑉 𝑟))

∈ E∼
𝑘 ′⟦𝜎𝐶⟧V∼⟦𝐶𝑜⟧.

Let 𝑉 ′𝑟
be the value to which ⟨𝐵𝑖 ↞ 𝐶𝑖⟩𝑉 𝑟

steps. By anti-reduction, it suffices to show

(⟨𝐶𝑜
↢ 𝐴𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐴⟩(𝑉1 ⟨𝐴𝑖 ↞ 𝐶𝑖⟩𝑉 𝑙),

⟨𝐶𝑜
↢ 𝐵𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐵⟩
((⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉2)𝑉 ′𝑟))

∈ E∼
𝑘 ′⟦𝜎𝐶⟧V∼⟦𝐶𝑜⟧.

By anti-reduction again, it suffices to show

(⟨𝐶𝑜
↢ 𝐴𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐴⟩(𝑉1 ⟨𝐴𝑖 ↞ 𝐶𝑖⟩𝑉 𝑙),

⟨𝐶𝑜
↢ 𝐵𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐵⟩
(⟨𝐵𝑜 ↢ 𝐴𝑜⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟)))

∈ E∼
𝑘 ′⟦𝜎𝐶⟧V∼⟦𝐶𝑜⟧.

We will appeal to transitivity (Lemma D.64). We continue by cases on ∼.
– First suppose ∼=<. We first claim that

(⟨𝐶𝑜
↢ 𝐴𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐴⟩(𝑉1 ⟨𝐴𝑖 ↞ 𝐶𝑖⟩𝑉 𝑙),

⟨𝐶𝑜
↢ 𝐵𝑜⟩⟨𝐵𝑜 ↢ 𝐴𝑜⟩
(⟨𝜎𝐶 ↢ 𝜎𝐵⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟)))

∈ E∼
𝑘 ′⟦𝜎𝐶⟧V∼⟦𝐶𝑜⟧.

By the induction hypothesis applied twice, it suffices to show

((𝑉1 ⟨𝐴𝑖 ↞ 𝐶𝑖⟩𝑉 𝑙), (𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟))
∈ E∼

𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧.
By soundness of function application, it suffices to show that (𝑉1,𝑉2) ∈ V∼

𝑘 ′⟦𝐴𝑖 →𝜎𝐴 𝐴𝑜⟧
and that

(⟨𝐴𝑖 ↞ 𝐶𝑖⟩𝑉 𝑙 , ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟) ∈ E∼
𝑘 ′⟦𝜎⟧V∼⟦𝐴𝑖⟧.

The former holds by assumption and downward closure. To show the latter, it suffices by

forward reduction to show that

(⟨𝐴𝑖 ↞ 𝐶𝑖⟩𝑉 𝑙 , ⟨𝐴𝑖 ↞ 𝐵𝑖⟩⟨𝐵𝑖 ↞ 𝐶𝑖⟩𝑉 𝑟) ∈ E∼
𝑘 ′⟦𝜎⟧V∼⟦𝐴𝑖⟧.

Now, by the induction hypothesis, it suffices to show that

(𝑉 𝑙 ,𝑉 𝑟) ∈ E∼
𝑘 ′⟦𝜎⟧V∼⟦𝐶𝑖⟧,

which follows from our assumption.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:84 Max S. New, Eric Giovannini, and Daniel R. Licata

Now by transitivity, it will suffice to show

(⟨𝐶𝑜
↢ 𝐵𝑜⟩⟨𝐵𝑜 ↢ 𝐴𝑜⟩
(⟨𝜎𝐶 ↢ 𝜎𝐵⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟)),

⟨𝐶𝑜
↢ 𝐵𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐵⟩
(⟨𝐵𝑜 ↢ 𝐴𝑜⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟)))

∈ E⪰
𝜔⟦𝜎𝐶⟧V∼⟦𝐶𝑜⟧.

By reflexivity (CorollaryD.28), we have that ⟨𝐵𝑜 ↢ 𝐴𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐵⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉2 ⟨𝐴𝑖 ↞
𝐵𝑖⟩𝑉 ′𝑟) is related to itself. Then by commutativity of casts (Corollary D.61), we can in-

terchange the order of ⟨𝐵𝑜 ↢ 𝐴𝑜⟩ and ⟨𝜎𝐶 ↢ 𝜎𝐵⟩, and the resulting terms are related.

Finally by monotonicity of casts (Lemma D.63), we can apply ⟨𝐶𝑜
↢ 𝐵𝑜⟩, and the

resulting terms are still related. Moreover, all of these relations hold “at 𝜔”.

– Now suppose ∼=>. By similar reasoning as in the previous case, we have

(⟨𝐶𝑜
↢ 𝐴𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐴⟩(𝑉1 ⟨𝐴𝑖 ↞ 𝐶𝑖⟩𝑉 𝑙),

⟨𝐶𝑜
↢ 𝐵𝑜⟩⟨𝐵𝑜 ↢ 𝐴𝑜⟩
(⟨𝜎𝐶 ↢ 𝜎𝐵⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑙)))

∈ E∼
𝜔⟦𝜎𝐶⟧V∼⟦𝐶𝑜⟧.

Thus, by transitivity it will suffice to show

(⟨𝐶𝑜
↢ 𝐵𝑜⟩⟨𝐵𝑜 ↢ 𝐴𝑜⟩
(⟨𝜎𝐶 ↢ 𝜎𝐵⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑙)),

⟨𝐶𝑜
↢ 𝐵𝑜⟩⟨𝜎𝐶 ↢ 𝜎𝐵⟩
(⟨𝐵𝑜 ↢ 𝐴𝑜⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 ′𝑟)))

∈ E⪰
𝑘 ′⟦𝜎𝐶⟧V∼⟦𝐶𝑜⟧.

The reasoning is analogous to that of the previous case.

(2) This is dual to the above.

(3) We prove this statement by Löb induction (Lemma D.14). That is, assume for all (𝑀 ′, 𝑁 ′) ∈
(▶E∼⟦𝜎⟧) 𝑗 (V∼⟦𝐴⟧), we have

(⟨𝜎 ′′ ↢ 𝜎⟩𝑀, ⟨𝜎 ′′ ↢ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝑁) ∈ (▶E∼⟦𝜎 ′′⟧) 𝑗 (V∼⟦𝐴⟧) .
Let (𝑀, 𝑁) ∈ E∼

𝑗 ⟦𝜎⟧V∼⟦𝐴⟧. We need to show

(⟨𝜎 ′′ ↢ 𝜎⟩𝑀, ⟨𝜎 ′′ ↢ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝑁) ∈ E∼
𝑗 ⟦𝜎 ′′⟧V∼⟦𝐴⟧.

By monadic bind (Lemma D.16), with 𝐸1 = ⟨𝜎 ′′ ↢ 𝜎⟩• and 𝐸2 = ⟨𝜎 ′′ ↢ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩•, it
suffices to consider the following cases:

– Let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧. We need to show that

(⟨𝜎 ′′ ↢ 𝜎⟩𝑉1, ⟨𝜎 ′′ ↢ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝑉2) ∈ E∼
𝑗 ⟦𝜎 ′′⟧V∼⟦𝐴⟧.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:85

Since the effect cast is the identity on values, the above follows immediately by anti-

reduction.

– Let 𝑘 ≤ 𝑗 and let 𝜀 : 𝑐𝜀 { 𝑑𝜀 ∈ 𝜎 be an effect caught by either 𝐸1 or 𝐸2. Note that, as 𝜎 is

a reflexivity derivation, 𝑐𝜀 and 𝑑𝜀 are also reflexivity derivations, i.e., 𝑐𝑙𝜀 = 𝑐𝑟𝜀 and likewise

for 𝑑𝜀 . For simplicity, let 𝐶𝐿 = 𝑐𝑙𝜀 and 𝐷
𝐿 = 𝑑𝑙𝜀 .

Let𝑉 𝑙 ,𝑉 𝑟 , 𝐸𝑙#𝜀, 𝐸𝑟#𝜀 be as in the statement of the monadic bind lemma. We need to show

(⟨𝜎 ′′ ↢ 𝜎⟩𝐸𝑙 [raise 𝜀 (𝑉 𝑙)],
⟨𝜎 ′′ ↢ 𝜎 ′⟩⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑟 [raise 𝜀 (𝑉 𝑟)])

∈ E∼
𝑘
⟦𝜎 ′′⟧V∼⟦𝐴⟧.

Let 𝐶𝑀
and 𝐷𝑀

be the types such that 𝜀 : 𝐶𝑀 { 𝐷𝑀 ∈ 𝜎 ′
Let 𝐶𝑅

and 𝐷𝑅
be the types

such that 𝜀 : 𝐶𝑅 { 𝐷𝑅 ∈ 𝜎 ′′
. By anti-reduction, it suffices to show

(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑅⟩raise 𝜀 (⟨𝐶𝑅 ↢ 𝐶𝐿⟩𝑉 𝑙) in ⟨𝜎 ′′ ↢ 𝜎⟩𝐸𝑙 [𝑥],

⟨𝜎 ′′ ↢ 𝜎 ′⟩(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑀 ⟩raise 𝜀 (⟨𝐶𝑀 ↢ 𝐶𝐿⟩𝑉 𝑟) in ⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑟 [𝑥]))

∈ E∼
𝑘
⟦𝜎 ′′⟧V∼⟦𝐴⟧.

Let 𝑉 ′𝑙
be the value to which ⟨𝐶𝑅 ↢ 𝐶𝐿⟩𝑉 𝑙

steps, say in 𝑖 steps. Let 𝑉 ′𝑟
be the value to

which ⟨𝐶𝑀 ↢ 𝐶𝐿⟩𝑉 𝑟
steps, say in 𝑗 steps.

By anti-reduction, it suffices to show

(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑅⟩raise 𝜀 (𝑉 ′𝑙) in ⟨𝜎 ′′ ↢ 𝜎⟩𝐸𝑙 [𝑥],

⟨𝜎 ′′ ↢ 𝜎 ′⟩(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑀 ⟩raise 𝜀 (𝑉 ′𝑟) in ⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑟 [𝑥]))

∈ E∼
𝑘
⟦𝜎 ′′⟧V∼⟦𝐴⟧.

Now (taking 𝐸′ = let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑀 ⟩ • in ⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑟 [𝑥] in the EffUpCast rule), it

will suffice by anti-reduction to show

(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑅⟩raise 𝜀 (𝑉 ′𝑙) in ⟨𝜎 ′′ ↢ 𝜎⟩𝐸𝑙 [𝑥],

let 𝑦 = ⟨𝐷𝑀
↞ 𝐷𝑅⟩raise 𝜀 (⟨𝐶𝑅 ↢ 𝐶𝑀 ⟩𝑉 ′𝑟) in

⟨𝜎 ′′ ↢ 𝜎 ′⟩(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑀 ⟩𝑦 in ⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑟 [𝑥]))

∈ E∼
𝑘
⟦𝜎 ′′⟧V∼⟦𝐴⟧.

Let 𝑉 ′′𝑟
be the value to which ⟨𝐶𝑅 ↢ 𝐶𝑀 ⟩𝑉 ′𝑟

steps. By anti-reduction, it suffices to

show

(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑅⟩raise 𝜀 (𝑉 ′𝑙) in ⟨𝜎 ′′ ↢ 𝜎⟩𝐸𝑙 [𝑥],

let 𝑦 = ⟨𝐷𝑀
↞ 𝐷𝑅⟩raise 𝜀 (𝑉 ′′𝑟) in

⟨𝜎 ′′ ↢ 𝜎 ′⟩(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑀 ⟩𝑦 in ⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑟 [𝑥]))

∈ E∼
𝑘
⟦𝜎 ′′⟧V∼⟦𝐴⟧.

As neither term steps, we will show that they belong to R∼
𝑘
⟦𝜎 ′′⟧V∼⟦𝐴⟧. We first need

to show that

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:86 Max S. New, Eric Giovannini, and Daniel R. Licata

(𝑉 ′𝑙 ,𝑉 ′′𝑟) ∈ (▶V∼⟦𝐴⟧)𝑘 .
By forward-reduction, it suffices to show that

(⟨𝐶𝑅 ↢ 𝐶𝐿⟩𝑉 𝑙 , ⟨𝐶𝑅 ↢ 𝐶𝑀 ⟩⟨𝐶𝑀 ↢ 𝐶𝐿⟩𝑉 𝑟) ∈ (▶V∼⟦𝐴⟧)𝑘 .
By the induction hypothesis for value types, it suffices to show that (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝐴⟧)𝑘 ,
which is true by assumption.

Now we need to show that, for all 𝑘 ′ ≤ 𝑘 and related values (𝑉1,𝑉2) ∈ (▶V∼⟦𝐴⟧)𝑘 ′ , we

have

(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑅⟩𝑉1 in ⟨𝜎 ′′ ↢ 𝜎⟩𝐸𝑙 [𝑥],

let 𝑦 = ⟨𝐷𝑀
↞ 𝐷𝑅⟩𝑉2 in

⟨𝜎 ′′ ↢ 𝜎 ′⟩(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑀 ⟩𝑦 in ⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑟 [𝑥]))

∈ (▶E∼⟦𝜎 ′′⟧)𝑘 ′ (V∼⟦𝐴⟧) .

Let𝑉 ′
1
and𝑉 ′

2
be the values to which ⟨𝐷𝐿

↞ 𝐷𝑅⟩𝑉1 and ⟨𝐷𝑀
↞ 𝐷𝑅⟩𝑉2 step, respectively.

By anti-reduction, it will suffice to show

(⟨𝜎 ′′ ↢ 𝜎⟩𝐸𝑙 [𝑉 ′
1
],

⟨𝜎 ′′ ↢ 𝜎 ′⟩(let 𝑥 = ⟨𝐷𝐿
↞ 𝐷𝑀 ⟩𝑉 ′

2
in ⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑟 [𝑥]))

∈ (▶E∼⟦𝜎 ′′⟧)𝑘 ′ (V∼⟦𝐴⟧) .

Let 𝑉 ′′
2
be the value to which ⟨𝐷𝐿

↞ 𝐷𝑀 ⟩𝑉 ′
2
steps. By anti-reduction, it will suffice to

show

(⟨𝜎 ′′ ↢ 𝜎⟩𝐸𝑙 [𝑉 ′
1
],

⟨𝜎 ′′ ↢ 𝜎 ′⟩(⟨𝜎 ′ ↢ 𝜎⟩𝐸𝑟 [𝑉 ′′
2
]))

∈ (▶E∼⟦𝜎 ′′⟧)𝑘 ′ (V∼⟦𝐴⟧).

Now by the Löb induction hypothesis, it suffices to show

(𝐸𝑙 [𝑉 ′
1
], 𝐸𝑟 [𝑉 ′′

2
]) ∈ (▶E∼⟦𝜎 ′′⟧)𝑘 ′ (V∼⟦𝐴⟧).

By assumption on 𝐸𝑙 and 𝐸𝑟 , it suffices to show

(𝑉 ′
1
,𝑉 ′′

2
) ∈ (▶V∼⟦𝐴⟧)𝑘 ′ .

Now by forward reduction it suffices to show

(⟨𝐷𝐿
↞ 𝐷𝑅⟩𝑉1, ⟨𝐷𝐿

↞ 𝐷𝑀 ⟩⟨𝐷𝑀
↞ 𝐷𝑅⟩𝑉2) ∈ (▶E∼⟦𝜎 ′′⟧)𝑘 ′ (V∼⟦𝐴⟧) .

This follows by the inductive hypothesis for value types and our assumption on 𝑉1 and

𝑉2.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:87

(4) This is dual to the above: we use Löb induction and monadic bind, and we reach a point

where we need to show

(⟨𝜎 ↞ 𝜎 ′′⟩𝐸𝑙 [raise 𝜀 (𝑉 𝑙)],
⟨𝜎 ′
↞ 𝜎 ′′⟩⟨𝜎 ↞ 𝜎 ′⟩𝐸𝑟 [raise 𝜀 (𝑉 𝑟)])
∈ E∼

𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

where 𝜀 : 𝐶𝑅 { 𝐷𝑅 ∈ 𝜎 ′′
.

If 𝜀 ∉ 𝜎 , then the left-hand side steps to ℧, as does the right-hand side. By ErrBot (Lemma

D.45), ℧ is related to itself, so by anti-reduction, we are finished. If 𝜀 ∉ 𝜎 ′
, then in fact,

𝜀 ∉ 𝜎 (since 𝜎 ⊑ 𝜎 ′
), and so again, both sides step to ℧.

Otherwise, we proceed as in the proof of the previous case, with the upcasts and downcasts

interchanged.

□

Lemma D.63 (monotonicity of casts). Let 𝑐 : 𝐴 ⊑ 𝐵, and 𝑑𝜎 : 𝜎 ⊑ 𝜎 ′
, and let𝑀 and 𝑁 be terms

such that Σ | Γ⊑ ⊨𝜎 𝑀 ⊑ 𝑁 : 𝐴. The following hold:

(1) Σ | Γ⊑ ⊨𝜎 ⟨𝐵 ↢ 𝐴⟩𝑀 ⊑ ⟨𝐵 ↢ 𝐴⟩𝑁 : 𝐵

(2) Σ | Γ⊑ ⊨𝜎 ⟨𝐴 ↞ 𝐵⟩𝑀 ⊑ ⟨𝐴 ↞ 𝐵⟩𝑁 : 𝐴

(3) Σ | Γ⊑ ⊨𝜎 ′ ⟨𝜎 ′ ↢ 𝜎⟩𝑀 ⊑ ⟨𝜎 ′ ↢ 𝜎⟩𝑁 : 𝐴

(4) Σ | Γ⊑ ⊨𝜎 ⟨𝜎 ↞ 𝜎 ′⟩𝑀 ⊑ ⟨𝜎 ↞ 𝜎 ′⟩𝑁 : 𝐴

Proof. As in the proof of the functoriality properties of casts, we prove stronger, “pointwise”

versions of the above statements, i.e., we assume (𝑀, 𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧, and show, for example,

that (⟨𝐵 ↢ 𝐴⟩𝑀, ⟨𝐵 ↢ 𝐴⟩𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

The proof is by induction on 𝑐 and 𝑑𝜎 .

(1) We need to show

(⟨𝐵 ↢ 𝐴⟩𝑀, ⟨𝐵 ↢ 𝐴⟩𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐵⟧.

By monadic bind (Lemma D.16), with 𝐸1 = 𝐸2 = ⟨𝐵 ↢ 𝐴⟩•, it will suffice to show that

(⟨𝐵 ↢ 𝐴⟩𝑉1, ⟨𝐵 ↢ 𝐴⟩𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐵⟧,

where 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧.

If 𝑐 = bool, then we need to show

(⟨bool↢ bool⟩𝑉1, ⟨bool↢ bool⟩𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦bool⟧.

By anti-reduction, it suffices to show that (𝑉1,𝑉2) ∈ E∼
𝑘
⟦𝜎⟧V∼⟦bool⟧, which follows from

our assumption.

If 𝑐 = 𝑐𝑖 →𝑐𝜎 𝑐𝑜 , then we need to show

(⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉1, ⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉2)
∈ E∼

𝑘
⟦𝜎⟧V∼⟦𝐵𝑖 →𝜎𝐵 𝐵𝑜⟧.

As both terms are values, it suffices to show that they are related in V∼
𝑘
⟦𝐵𝑖 →𝜎𝐵 𝐵𝑜⟧. Let

𝑘 ′ ≤ 𝑘 and let (𝑉 𝑙 ,𝑉 𝑟) ∈ K∼
𝑘 ′⟦𝐵𝑖⟧. We need to show

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:88 Max S. New, Eric Giovannini, and Daniel R. Licata

((⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉1)𝑉 𝑙 ,

(⟨(𝐵𝑖 →𝜎𝐵 𝐵𝑜) ↢ (𝐴𝑖 →𝜎𝐴 𝐴𝑜)⟩𝑉2)𝑉 𝑟)
∈ E∼

𝑘 ′⟦𝜎𝐵⟧V∼⟦𝐵𝑜⟧.
By anti-reduction, it suffices to show

(⟨𝐵𝑜 ↢ 𝐴𝑜⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉1 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑙),
⟨𝐵𝑜 ↢ 𝐴𝑜⟩⟨𝜎𝐵 ↢ 𝜎𝐴⟩(𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑟))

∈ E∼
𝑘 ′⟦𝜎𝐵⟧V∼⟦𝐵𝑜⟧.

By the inductive hypothesis applied twice, it suffices to show

((𝑉1 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑙), (𝑉2 ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑟)) ∈ E∼
𝑘 ′⟦𝜎𝐴⟧V∼⟦𝐴𝑜⟧.

By soundness of function application, it suffices to show that (𝑉1,𝑉2) ∈ V∼
𝑘 ′⟦𝐴𝑖 →𝜎𝐴 𝐴𝑜⟧ and

that (⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑙 , ⟨𝐴𝑖 ↞ 𝐵𝑖⟩𝑉 𝑟) ∈ E∼
𝑘 ′⟦𝜎⟧V∼⟦𝐴𝑖⟧. The former is true by our assumption

about 𝑉1 and 𝑉2. To show the latter, it suffices by the inductive hypothesis to show that

(𝑉 𝑙 ,𝑉 𝑟) ∈ E∼
𝑘 ′⟦𝜎⟧V∼⟦𝐵𝑖⟧, which follows by our assumption.

(2) This is dual to the above.

(3) This is dual to the below, and in fact easier since these are upcasts.

(4) We prove this statement by Löb induction (Lemma D.14). That is, assume for all (𝑀 ′, 𝑁 ′) ∈
(▶E∼⟦𝜎 ′⟧) 𝑗 (V∼⟦𝐴⟧), we have

(⟨𝜎 ↞ 𝜎 ′⟩𝑀, ⟨𝜎 ↞ 𝜎 ′⟩𝑁) ∈ (▶E∼⟦𝜎⟧) 𝑗 (V∼⟦𝐴⟧) .
Let (𝑀, 𝑁) ∈ E∼

𝑗 ⟦𝜎 ′⟧V∼⟦𝐴⟧. We need to show

(⟨𝜎 ↞ 𝜎 ′⟩𝑀, ⟨𝜎 ↞ 𝜎 ′⟩𝑁) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧.

By monadic bind (Lemma D.16), it will suffice to consider the following two cases:

• Let 𝑘 ≤ 𝑗 and let (𝑉1,𝑉2) ∈ V∼
𝑘
⟦𝐴⟧. We need to show that

(⟨𝜎 ↞ 𝜎 ′⟩𝑉1, ⟨𝜎 ↞ 𝜎 ′⟩𝑉2) ∈ E∼
𝑗 ⟦𝜎⟧V∼⟦𝐴⟧.

Since the effect cast is the identity on values, the above follows immediately by anti-

reduction.

• Let 𝑘 ≤ 𝑗 and let 𝜀 : 𝑐𝜀 { 𝑑𝜀 ∈ 𝜎 ′
be an effect caught by ⟨𝜎 ↞ 𝜎 ′⟩•. Recalling that 𝜎 ′

is

shorthand for the reflexivity derivation 𝜎 ′ ⊑ 𝜎 ′
, we have that 𝑐𝜀 and 𝑑𝜀 are themselves

reflexivity (type precision) derivations; for brevity, we refer to the types as 𝐶 and 𝐷 .

Let (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V∼⟦𝐶⟧)𝑘 and and let 𝐸𝑙#𝜀, 𝐸𝑟#𝜀 be such that

(𝑥𝑙 .𝐸𝑙 [𝑥𝑙], 𝑥𝑟 .𝐸𝑟 [𝑥𝑟]) ∈ (▶K∼⟦𝐷⟧)𝑘 (E∼⟦𝜎⟧V∼⟦𝐴⟧) .
We need to show

(⟨𝜎 ↞ 𝜎 ′⟩𝐸𝑙 [raise 𝜀 (𝑉 𝑙)],
⟨𝜎 ↞ 𝜎 ′⟩𝐸𝑟 [raise 𝜀 (𝑉 𝑟)])

∈ E∼
𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:89

First, if 𝜀 ∉ 𝜎 , then both sides step to ℧, and we are finished by anti-reduction since ℧ is

related to itself by ErrBot (Lemma D.45).

Otherwise, by anti-reduction, it suffices to show

(let 𝑥 = ⟨𝐷 ↢ 𝐷⟩raise 𝜀 (⟨𝐶 ↞ 𝐶⟩𝑉 𝑙) in ⟨𝜎 ↞ 𝜎 ′⟩𝐸𝑙 [𝑥],
let 𝑥 = ⟨𝐷 ↢ 𝐷⟩raise 𝜀 (⟨𝐶 ↞ 𝐶⟩𝑉 𝑟) in ⟨𝜎 ↞ 𝜎 ′⟩𝐸𝑟 [𝑥])

∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧) .

By the soundness of the term precision congruence rule for let, it suffices to show that (1)

(⟨𝐷 ↢ 𝐷⟩raise 𝜀 (⟨𝐶 ↞ 𝐶⟩𝑉 𝑙),
⟨𝐷 ↢ 𝐷⟩raise 𝜀 (⟨𝐶 ↞ 𝐶⟩𝑉 𝑟))

∈ (▶E∼⟦𝜎⟧)𝑘 (V∼⟦𝐴⟧) .

and (2) for all related (𝑉1,𝑉2) ∈ (▶V∼⟦𝐴⟧), we have

(⟨𝜎 ↞ 𝜎 ′⟩𝐸𝑙 [𝑉1], ⟨𝜎 ↞ 𝜎 ′⟩𝐸𝑟 [𝑉2])
∈ E∼

𝑘
⟦𝜎⟧V∼⟦𝐴⟧.

□

D.0.5 Transitivity. We introduce the following notation. We define (𝑀1, 𝑀2) ∈ 𝑅𝜔 to mean that

(𝑀1, 𝑀2) ∈ 𝑅𝑘 for all natural numbers 𝑘 .

We now state and prove a “mixed transitivity” lemma, in which we allow one of the two relations

in the assumption to occur at a “proper" precision derivation, while the other is constrained to

occur at a reflexivity derivation.

Lemma D.64 (mixed transitivity, terms). If (1) (𝑀1, 𝑀2) ∈ E⪰
𝜔⟦𝜎⟧V⪰⟦𝐴⟧ and (2) (𝑀2, 𝑀3) ∈

E⪰
𝑗
⟦𝑑𝜎⟧V⪰⟦𝑐⟧, then (𝑀1, 𝑀3) ∈ E⪰

𝑗
⟦𝑑𝜎⟧V⪰⟦𝑐⟧.

Similarly, if (𝑀1, 𝑀2) ∈ E⪯
𝑗
⟦𝑑𝜎⟧V⪯⟦𝑐⟧ and (𝑀2, 𝑀3) ∈ E⪯

𝜔⟦𝜎⟧V⪯⟦𝐴⟧, then (𝑀1, 𝑀3) ∈
E⪯
𝑗
⟦𝑑𝜎⟧V⪯⟦𝑐⟧.

Proof. This is proved simultaneously with the following two lemmas on transitivity for results

and values. We prove the lemma for ∼=>; the other case is similar.

The proof is by Löb-induction (Lemma D.14). That is, assume that for all 𝑀 ′
1
, 𝑀 ′

2
, and 𝑀 ′

3
,

if (𝑀 ′
1
, 𝑀 ′

2
) ∈ (▶E⪰⟦𝜎⟧)𝜔 (V⪰⟦𝐴⟧) and (𝑀 ′

2
, 𝑀 ′

3
) ∈ (▶E⪰⟦𝑑𝜎⟧) 𝑗 (V⪰⟦𝑐⟧), then (𝑀 ′

1
, 𝑀 ′

3
) ∈

(▶E⪰⟦𝑑𝜎⟧) 𝑗 (V⪰⟦𝑐⟧).
We proceed by considering cases on the assumption that (𝑀2, 𝑀3) ∈ E⪰

𝑗
⟦𝑑𝜎⟧V⪰⟦𝑐⟧.

In the first case,𝑀3 ↦→𝑗+1
. Then we immediately have that (𝑀1, 𝑀3) ∈ E⪰

𝑗
⟦𝑑𝜎⟧V⪰⟦𝑐⟧, via the

first disjunct.

In the second case, there is 𝑘 ≤ 𝑗 such that𝑀3 ↦→𝑗−𝑘 ℧ and𝑀2 ↦→𝑠 ℧, for some number of steps

𝑠 . By assumption (1), we have that (𝑀1, 𝑀2) ∈ E⪰
𝑠 ⟦𝜎⟧V⪰⟦𝐴⟧. By inversion, we see that the second

disjunct must have been true (with 𝑘 = 0). This means in particular that𝑀1 ↦→∗ ℧. Thus, we may

conclude using the second disjunct that (𝑀1, 𝑀3) ∈ E⪰
𝑗
⟦𝑑𝜎⟧V⪰⟦𝑐⟧.

In the third case, there is 𝑘 ≤ 𝑗 and 𝑁3 such that𝑀3 ↦→𝑗−𝑘 𝑁3, and𝑀2 ↦→𝑠 ℧, for some number

of steps 𝑠 . By similar reasoning to the previous case, we may conclude using the third disjunct that

(𝑀1, 𝑀3) ∈ E⪰
𝑗
⟦𝑑𝜎⟧V⪰⟦𝑐⟧.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:90 Max S. New, Eric Giovannini, and Daniel R. Licata

Finally, in the fourth case, there exist 𝑘 ≤ 𝑗 and (𝑁2, 𝑁3) ∈ R⪰
𝑘
⟦𝑑𝜎⟧V⪰⟦𝑐⟧ such that𝑀2 ↦→𝑠 𝑁2

for some 𝑠 , and𝑀3 ↦→𝑗−𝑘 𝑁3. By assumption (1), we have that (𝑀1, 𝑀2) ∈ E⪰
𝑠+𝑖⟦𝜎⟧V⪰⟦𝐴⟧ for all

𝑖 ∈ N. By inversion, we see that either the third or the fourth disjunct was true, with 𝑘 = 𝑖 in both

cases (notice that (𝑠 + 𝑖) − 𝑖 = 𝑠 , which is precisely the number of steps that𝑀2 takes to 𝑁2).

In the former case, we have𝑀1 ↦→∗ ℧ and we can then finish by asserting the third disjunct. In the

latter case, there exists 𝑁1 such that𝑀1 ↦→∗ 𝑁1 and (𝑁1, 𝑁2) ∈ R⪰
𝑖
⟦𝜎⟧V⪰⟦𝐴⟧. Since 𝑖 is arbitrary,

this tells us that (𝑁1, 𝑁2) ∈ R⪰
𝜔⟦𝜎⟧V⪰⟦𝐴⟧. To recap, we have (𝑁1, 𝑁2) ∈ R⪰

𝜔⟦𝜎⟧V⪰⟦𝐴⟧, and
(𝑁2, 𝑁3) ∈ R⪰

𝑘
⟦𝑑𝜎⟧V⪰⟦𝑐⟧, for some 𝑘 ≤ 𝑗 . We want to show that (𝑁1, 𝑁3) ∈ R⪰

𝑘
⟦𝑑𝜎⟧V⪰⟦𝑐⟧.

This follows from Lemma D.66.

□

Lemma D.65 (mixed transitivity, values). If (𝑉1,𝑉2) ∈ V⪰
𝜔 ⟦𝐴⟧ and (𝑉2,𝑉3) ∈ V⪰

𝑗
⟦𝑐⟧, then

(𝑉1,𝑉3)V⪰
𝑗
⟦𝑐⟧.

Similarly, if (𝑉1,𝑉2) ∈ V⪯
𝑗
⟦𝑐⟧ and (𝑉2,𝑉3) ∈ V⪯

𝜔 ⟦𝐴⟧, then (𝑉1,𝑉3)V⪯
𝑗
⟦𝑐⟧.

Proof. Proved simultaneously with the homogeneous transitivity for terms (Lemma D.64) and

for results (Lemma D.66). The proof is by induction on the type precision derivation 𝑐 . We prove

the first statement only; the other is proved similarly.

• Case 𝑐 = bool. Then we have 𝑉1 = 𝑉2 = 𝑉3 and either all are true, or all are false. In either

case, 𝑉1 is related to 𝑉3.

• Case 𝑐 = 𝑐𝑖 →𝑐𝜎 𝑐𝑜 . Then 𝐴 = 𝐴𝑖 →𝜎𝐴 𝐴𝑜 and 𝐵 = 𝐵𝑖 →𝜎𝐵 𝐵𝑜 .

We have (𝑉1,𝑉2) ∈ V∼
𝜔 ⟦𝐴𝑖 →𝜎𝐴 𝐴𝑜⟧ and (𝑉2,𝑉3) ∈ V∼

𝑘
⟦𝑐𝑖 →𝑐𝜎 𝑐𝑜⟧.

We need to show

(𝑉1,𝑉3) ∈ V⪰
𝑗 ⟦𝑐𝑖 →𝑐𝜎 𝑐𝑜⟧.

Let 𝑘 ≤ 𝑗 and let (𝑉 𝑙 ,𝑉 𝑟) ∈ V⪰
𝑘
⟦𝑐𝑖⟧. We need to show that

(𝑉1𝑉 𝑙 ,𝑉3𝑉
𝑟) ∈ E⪰

𝑘
⟦𝑐𝜎⟧V⪰⟦𝑐𝑜⟧.

By reflexivity (D.28), we know that (𝑉 𝑙 ,𝑉 𝑙) ∈ V⪰
𝜔 ⟦𝐴𝑖⟧.

From our assumption about (𝑉1,𝑉2), it follows that

(𝑉1𝑉 𝑙 ,𝑉2𝑉
𝑙) ∈ E⪰

𝜔⟦𝜎𝐴⟧V⪰⟦𝐴𝑜⟧.
From our assumption about (𝑉2,𝑉3), we have

(𝑉2𝑉 𝑙 ,𝑉3𝑉
𝑟) ∈ E⪰

𝑘
⟦𝑐𝜎⟧V⪰⟦𝑐𝑜⟧.

Now we apply the induction hypothesis (Lemma D.64) to conclude that

(𝑉1𝑉 𝑙 ,𝑉3𝑉
𝑟) ∈ E⪰

𝑘
⟦𝑐𝜎⟧V⪰⟦𝑐𝑜⟧,

as needed.

□

Lemma D.66 (mixed transitivity, results). If (1) (𝑁1, 𝑁2) ∈ R⪰
𝜔⟦𝜎⟧V⪰⟦𝐴⟧ and (2) (𝑁2, 𝑁3) ∈

R⪰
𝑗
⟦𝑑𝜎⟧V⪰⟦𝑐⟧, then (𝑁1, 𝑁3) ∈ R⪰

𝑗
⟦𝑑𝜎⟧V⪰⟦𝑐⟧.

Similarly, if (𝑁1, 𝑁2) ∈ R⪯
𝑗
⟦𝑑𝜎⟧V⪯⟦𝑐⟧ and (𝑁2, 𝑁3) ∈ R⪯

𝜔⟦𝜎⟧V⪯⟦𝐴⟧, then (𝑁1, 𝑁3) ∈ R⪯
𝑗
⟦𝑑𝜎⟧V⪯⟦𝑐⟧.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

Gradual Typing for Effect Handlers (Extended Version) 284:91

Proof. We prove only the first statement; the second is analogous.

Let 𝑗 be fixed. We consider cases on assumption (1). There are two subcases to consider. First,

𝑁1 and 𝑁2 are values and (𝑁1, 𝑁2) ∈ V⪰
𝜔 ⟦𝐴⟧. Then 𝑁3 is also a value, and (𝑁2, 𝑁3) ∈ V⪰

𝑗
⟦𝑐⟧. By

D.65, we have that (𝑁1, 𝑁3) ∈ V⪰
𝑗
⟦𝐴⟧.

Otherwise, there exist 𝜀 : 𝐶 { 𝐷 ∈ 𝜎 , 𝐸1#𝑒𝑝𝑠𝑖𝑙𝑜𝑛 and 𝐸2#𝜀, and 𝑉1 and 𝑉2 such that (𝑉1,𝑉2) ∈
(▶V⪰⟦𝐶⟧)𝜔 , and (𝑥1 .𝐸1 [𝑥1], 𝑥2.𝐸2 [𝑥2]) ∈ (▶K⪰⟦𝐷⟧)𝜔 (E⪰⟦𝜎⟧V⪰⟦𝐴⟧), and

𝑁1 = 𝐸1 [raise 𝜀 (𝑉1)],
and

𝑁2 = 𝐸2 [raise 𝜀 (𝑉2)] .
Similarly, since 𝑁2 and 𝑁3 are related in R⪰

𝑗
⟦𝑑𝜎⟧V⪰⟦𝑐⟧, it follows that 𝜀 : 𝑐𝜀 { 𝑑𝜀 ∈ 𝑑𝜎 ,

where 𝑐𝜀 : 𝐶 ⊑ 𝐶′
and 𝑑𝜀 : 𝐷 ⊑ 𝐷 ′

. We also know that there exist 𝐸3#𝜀 and 𝑉3 such that

(𝑉2,𝑉3) ∈ (▶V⪰⟦𝑐𝜀⟧) 𝑗 , and (𝑥2.𝐸2 [𝑥2], 𝑥3.𝐸3 [𝑥3]) ∈ (▶K⪰⟦𝑑𝜀⟧) 𝑗 (E⪰⟦𝑑𝜎⟧V⪰⟦𝑐⟧), and

𝑁3 = 𝐸3 [raise 𝜀 (𝑉3)] .
Recall that we need to show

(𝐸1 [raise 𝜀 (𝑉1)], 𝐸3 [raise 𝜀 (𝑉3)]) ∈ R⪰
𝑗 ⟦𝑑𝜎⟧V

⪰⟦𝑐⟧.
We assert the second disjunct in the definition of R⪰⟦·⟧.
We first claim that (𝑉1,𝑉3) ∈ (▶V⪰⟦𝑐𝜀⟧) 𝑗 . By transitivity for values (Lemma D.65), it suffices to

show that (𝑉1,𝑉2) ∈ (▶V⪰⟦𝑐𝜀⟧)𝜔 and (𝑉2,𝑉3) ∈ (▶V⪰⟦𝑐𝜀⟧) 𝑗 . These follow by assumption.

Now we claim that

(𝑥1.𝐸1 [𝑥1], 𝑥3.𝐸3 [𝑥3]) ∈ (▶K⪰⟦𝑑𝜀⟧) 𝑗 (E⪰⟦𝑑𝜎⟧V⪰⟦𝑐⟧) .
Let 𝑘 ≤ 𝑗 and let (𝑉 𝑙 ,𝑉 𝑟) ∈ (▶V⪰⟦𝑑𝜀⟧)𝑘 . We need to show

(𝐸1 [𝑉 𝑙], 𝐸3 [𝑉 𝑟]) ∈ (▶E⪰⟦𝑑𝜎⟧)𝑘 (V⪰⟦𝑐⟧).
By the induction hypothesis (recall we are proving this simultaneously with transitivity for

terms, which is being proven by Löb induction), it suffices to find a term𝑀 such that (𝐸1 [𝑉 𝑙], 𝑀) ∈
(▶E⪰⟦𝜎⟧)𝜔 (V⪰⟦𝐴⟧), and (𝑀, 𝐸3 [𝑉𝑟]) ∈ (▶E⪰⟦𝑑𝜎⟧)𝑘 (V⪰⟦𝑐⟧).
By reflexivity (Corollary D.28), we have (𝑉 𝑙 ,𝑉 𝑙) ∈ (▶V∼⟦⟧)𝜔 .
Then by our assumption on (𝐸1, 𝐸2), we have

(𝐸1 [𝑉 𝑙], 𝐸2 [𝑉 𝑙]) ∈ (▶E⪰⟦𝜎⟧)𝜔 (V⪰⟦𝐴⟧)
By our assumption on (𝐸2, 𝐸3) we have

(𝐸2 [𝑉 𝑙], 𝐸3 [𝑉 𝑟]) ∈ (▶E⪰⟦𝑑𝜎⟧)𝑘 (V⪰⟦𝑐⟧),
which finishes the proof. □

Lemma D.67 (heterogeneous transitivity). Let 𝑐 : 𝐴1 ⊑ 𝐴2 and 𝑒 : 𝐴2 ⊑ 𝐴3. Let 𝑑𝜎 : 𝜎 ⊑ 𝜎 ′

and let 𝑑 ′𝜎 : 𝜎 ′ ⊑ 𝜎 ′′
.

If (1) (𝑀1, 𝑀2) ∈ E⪰
𝜔⟦𝑑𝜎⟧V⪰⟦𝑐⟧ and (2) (𝑀2, 𝑀3) ∈ E⪰

𝑗
⟦𝑑 ′𝜎⟧V⪰⟦𝑒⟧, then (𝑀1, 𝑀3) ∈ E⪰

𝑗
⟦𝑑𝜎 ◦

𝑑 ′𝜎⟧V⪰⟦𝑐 ◦ 𝑒⟧.
Similarly, if (𝑀1, 𝑀2) ∈ E⪯

𝑗
⟦𝑑𝜎⟧V⪯⟦𝑐⟧ and (𝑀2, 𝑀3) ∈ E⪯

𝜔⟦𝑑 ′𝜎⟧V⪯⟦𝑒⟧, then (𝑀1, 𝑀3) ∈
E⪯
𝑗
⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧V⪯⟦𝑐 ◦ 𝑒⟧.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

284:92 Max S. New, Eric Giovannini, and Daniel R. Licata

Proof. Follows from mixed transitivity (Lemma D.64) and the generalized cast lemmas (Lemmas

D.48, D.49, D.50, D.51, D.52, D.53, D.54, and D.55).

For example, by EffDnR and ValDnR, we have

(𝑀1, ⟨𝜎 ↞ 𝜎 ′⟩⟨𝐴1 ↞ 𝐴2⟩𝑀2) ∈ E⪰
𝜔⟦𝜎⟧V⪰⟦𝐴1⟧,

and by EffDnL and ValDnL, we have

(⟨𝜎 ↞ 𝜎 ′⟩⟨𝐴1 ↞ 𝐴2⟩𝑀2, 𝑀3) ∈ E⪰
𝑗 ⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧V⪰⟦𝑐 ◦ 𝑒⟧.

Then applying mixed transitivity, we have

(𝑀1, 𝑀3) ∈ E⪰
𝑗 ⟦𝑑𝜎 ◦ 𝑑 ′𝜎⟧V⪰⟦𝑐 ◦ 𝑒⟧,

as desired.

□

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 284. Publication date: October 2023.

	Abstract
	1 Introduction
	2 Overview of GrEff
	3 Surface and Core GrEff
	3.1 Syntax and Typing of Core GrEff
	3.2 Syntax and Elaboration of GrEff

	4 Axiomatics and Operational Semantics
	4.1 Axiomatics
	4.2 Operational Semantics
	4.3 Subtyping, Gradual Subtyping and Coercions

	5 Soundness and Graduality
	5.1 Static and Dynamic Gradual Guarantees
	5.2 Logical Relation
	5.3 Proof of Graduality

	6 Discussion
	References
	A (In)Equational Theory
	B Operational Semantics
	B.1 Operational Semantics from First Principles

	C Elaboration of Gradual Subtyping
	D Graduality

