
A S E M A N T I C F O U N D AT I O N F O R S O U N D G R A D UA L T Y P I N G

max stewart new

2020





For Sam.





A B S T R A C T

Gradually typed programming languages provide a way forward in
the debate between static and dynamic typing. In a gradual language,
statically typed and dynamically typed programs can intermingle, and
dynamically typed scripts can be gradually migrated to a statically
typed style. In a sound gradually typed language, static type informa-
tion is just as reliable as in a static language, establishing correctness of
type-based refactoring and optimization. To ensure this in the presence
of dynamic typing, runtime type casts are inserted automatically at
the boundary between static and dynamic code. However the design
of these languages is somewhat ad hoc, with little guidance on how
to ensure that static reasoning principles are valid.

In my dissertation, I present a semantic framework for design and
metatheoretic analysis of gradually typed languages based on the
theory of embedding-projection pairs. I show that this semantics
enables proofs of the fundamental soundness theorems of gradual
typing, and that it is robust, applying it to different evaluation orders
and programming features.

v





A C K N O W L E D G M E N T S

First, I thank my advisor Amal Ahmed, who gave me a great deal
of freedom in my PhD to pursue the ideas in this work with little
evidence they would yield much of interest at the time. No one has
influenced my techniques or my tastes in research as much as you. I
also thank the members of my committee: Matthias Felleisen, Mitchell
Wand, Daniel R. Licata, Ronald Garcia and Peter Thiemann, who had
a larger task than most. In particular, I thank Matthias Felleisen who
provided many interesting discussions on gradual typing that led
directly to some of the results in this document. Also Dan Licata, who
in many ways was a second advisor to me.

I want to thank everyone who I knew in the PRL lab throughout my
years at Northeastern. Especially to William J. Bowman, PhD., who
was a true mentor to me. I also need to thank Gabriel Scherer for both
ruining me forever by explaining focusing to me and also supporting
my strong desire to apply type theory and category theory to my
research. And I especially thank the Happy Hour crew throughout the
years: BLerner, Brian, Billy, Vincent, Tony, Asumu, Jr. Slepak, Andrew,
Lief, Greenman, Hyeyoung, Aaron.

I want to thank my parents have supported me unconditionally my
entire life and I am eternally grateful for that. And finally, I want to
thank my partner Sam, who has supported me through this process
almost as long as we’ve known each other, through every high and
low. I certainly could not have gotten through this without you.

vii





S U P P O RT

This work was funded by the National Science Foundation under
grants CCF-1422133, CCF-1453796, CCF-1816837, and CCF-1910522.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author and do not necessarily
reflect the views of the funding agencies.

ix





C O N T E N T S

I gradual typing and embedding-projection pairs

1 statically, dynamically and gradually typed pro-
gramming languages 3

1.1 Static and Dynamic Typing 4

1.2 Dynamically Typed Languages 6

1.2.1 Migrating from Dynamic to Static Typing 6

1.3 Gradual Typing 6

1.4 Reasoning About Programs 7

1.5 Thesis 8

1.6 Contributions and Structure of Thesis 9

2 syntax and semantics of gradually typed lan-
guages and cast calculi 11

2.0.1 Multilanguage Gradual Typing 11

2.0.2 Fine-Grained Gradual Typing 13

2.0.3 Multi-language vs Fine-Grained Gradual Typ-
ing 14

2.1 Cast Calculus 16

2.1.1 Elaborating Surface Calculi 19

2.2 Reasoning about Gradually Typed Programs 19

2.2.1 Reasoning about Equality 22

2.2.2 Precision and Graduality 24

2.2.3 Reducing Surface Reasoning to Cast Calculus
Reasoning 30

3 graduality from embedding projection pairs 37

3.1 A Typed Metalanguage 39

3.2 Translating Gradual Typing 41

3.2.1 Constructive Type Precision 41

3.2.2 Translations 45

3.2.3 Direct Semantics is Adequate 47

3.3 Reasoning about Equivalence and Error Approxima-
tion 49

3.3.1 Logical Relation 50

3.3.2 Approximation and Equivalence Lemmas 54

3.4 Casts from Embedding-Projection Pairs 61

3.4.1 Embedding-Projection Pairs 61

3.4.2 Type Precision Semantics produce Coherent EP
Pairs 62

3.4.3 Casts Factorize into EP Pairs 68

3.5 Soundness of βη Equality 71

3.6 Graduality from EP Pairs 71

3.7 Related Work and Discussion 80

xi



xii contents

II gradual type theory : axiomatizing gradual typ-
ing

4 introduction to part II 87

5 gradual type theory 89

5.1 Goals 89

5.1.1 Exploring the Design Space 89

5.1.2 An Axiomatic Approach to Gradual Typing 92

5.1.3 Technical Overview of GTT 94

5.1.4 Contributions. 95

5.2 Axiomatic Gradual Type Theory 95

5.2.1 Background: Call-by-Push-Value 96

5.2.2 Gradual Typing in GTT 101

5.3 Theorems in Gradual Type Theory 108

5.3.1 Derived Cast Rules 108

5.3.2 Type-Generic Properties of Casts 111

5.3.3 Deriving Behavior of Casts 115

5.3.4 Proof of Theorem 75 120

5.3.5 Upcasts must be Values, Downcasts must be
Stacks 124

5.3.6 Equiprecision and Isomorphism 127

5.3.7 Most Precise Types 129

5.4 Discussion and Related Work 133

6 from gtt to evaluation orders 139

6.1 Call-by-value 140

6.1.1 From CBV to GTT 140

6.2 Call-by-name 148

6.3 Lazy 155

7 models 161

7.1 Call-by-Push-Value 162

7.2 Elaborating GTT 164

7.2.1 Natural Dynamic Type Interpretation 165

7.2.2 Scheme-Like Dynamic Type Interpretation 169

7.2.3 Contract Translation 174

7.3 Complex Value/Stack Elimination 203

7.4 Operational Model of GTT 221

7.4.1 Call-by-Push-Value Operational Semantics 221

7.4.2 Observational Equivalence and Approximation 222

7.4.3 CBPV Step Indexed Logical Relation 226

III gradual typing and parametric polymorphism

8 introduction to part III 247

9 gradual typing & curry style polymorphism 249

9.1 Informal Proof 249

9.2 Formalizing the Assumptions of the Proof 250

9.3 Consequences 254



contents xiii

10 graduality and parametricity : together again

for the first time 257

10.1 Graduality and Parametricity, Friends or Enemies? 259

10.1.1 “Naïve” Attempt 259

10.1.2 Type-directed Sealing 260

10.1.3 To Seal, or not to Seal 262

10.1.4 Resolution: Explicit Sealing 265

10.2 PolyGν: A Gradual Language with Polymorphism and
Sealing 268

10.2.1 PolyGν Informally 268

10.2.2 PolyGν Formal Syntax and Semantics 272

10.3 A Dynamically Typed Variant of PolyGν
275

10.4 PolyCν: Cast Calculus 277

10.4.1 PolyCν Type Precision 279

10.4.2 PolyCν Type System 280

10.4.3 Elaboration from PolyGν to PolyCν
281

10.4.4 PolyCν Operational Semantics 281

10.5 Typed Interpretation of the Cast Calculus 285

10.5.1 Typed Metalanguage 285

10.5.2 Static and Dynamic Semantics 286

10.5.3 Translation 287

10.5.4 Adequacy 294

10.6 Graduality and Parametricity 310

10.6.1 Term Precision 311

10.6.2 Graduality Theorem 318

10.6.3 Logical Relation 318

10.7 Parametricity and Free Theorems 348

10.7.1 Standard Free Theorems 348

10.7.2 Free Theorems with Dynamic Typing 354

10.8 Discussion and Related Work 358

IV conclusions

11 discussion and future works 363

11.1 Implementation and Optimization 363

11.2 What do Type and Term Precision Mean? 363

11.3 Blame 365

11.4 Limitations of the Theory 366

11.4.1 Subtyping 366

11.4.2 Consistency and Abstracting Gradual Typing 367

11.5 Generality of EP Pairs 367

bibliography 369



L I S T O F F I G U R E S

Figure 2.1 Multi-language-Style Gradual Typing 12

Figure 2.2 Fine-grained Gradual Typing 15

Figure 2.3 Cast Calculus Syntax and Typing 17

Figure 2.4 Cast Calculus Operational Semantics 18

Figure 2.5 Elaboration of Multi-language Gradual Typ-
ing 20

Figure 2.6 Elaboration of Fine-grained Gradual Typing 21

Figure 2.7 βη equality for Multi-Language Terms 22

Figure 2.8 Type and Term Precision for Fine-Grained Terms 27

Figure 2.9 Boundary, Variable and Function Term Preci-
sion for Multi-language Terms 28

Figure 2.10 Product, Boolean Term Precision for Multi-language
Terms 29

Figure 2.11 βη Equality for Cast Calculus Terms 31

Figure 2.12 Term Precision for Cast Calculus 35

Figure 3.1 Overview of Embedding-Projection Pair Se-
mantics 38

Figure 3.2 λT,f Syntax 39

Figure 3.3 λT,f Typing Rules 40

Figure 3.4 λT,f Operational Semantics 40

Figure 3.5 Logical Types 42

Figure 3.6 Term Assignment for Type Precision 42

Figure 3.7 Type Precision EP Pair Translation 43

Figure 3.8 Canonical Forms for Type Precision Proofs 43

Figure 3.9 Type Precision Admissible Proof Terms 44

Figure 3.10 Term Translation 46

Figure 3.11 Direct Cast Translation 46

Figure 3.12 λT,f Error Approximation Logical Relation 51

Figure 3.13 λT,f Error Approximation Congruence Rules 52

Figure 3.14 Commuting Conversions 57

Figure 3.15 Term Precision Upcast, Downcast Rules 73

Figure 5.1 GTT Type and Term Syntax 96

Figure 5.2 GTT Typing 97

Figure 5.3 GTT Type Precision and Precision Contexts 102

Figure 5.4 GTT Term Precision (Structural and Congru-
ence Rules) 105

Figure 5.5 GTT Term Precision (Congruence Rules) 106

Figure 5.6 GTT Term Precision Axioms 109

Figure 5.7 Derivable Cast Behavior for +,×, &,→ 116

Figure 6.1 Cast Calculus Syntax 140

Figure 6.2 CBV Cast Calculus Operational Semantics 141

xiv



list of figures xv

Figure 6.3 CBV to GTT translation 142

Figure 6.4 CBV Value and Stack translations 143

Figure 6.5 Call-by-name Reduction 149

Figure 6.6 CBN to GTT translation 150

Figure 6.7 CBN Value and Stack translations 151

Figure 6.8 Lazy Reduction 157

Figure 6.9 Lazy to GTT translation 158

Figure 6.10 Lazy Value and Stack translation 159

Figure 7.1 CBPV* types, terms, recursive types (diff from
GTT) 163

Figure 7.2 CBPV* βη rules (recursive types) 164

Figure 7.3 Natural Dynamic Type Extension of GTT 168

Figure 7.4 Scheme-like Extension to GTT 173

Figure 7.5 Cast to Contract Translation 175

Figure 7.6 Normalized Type Precision Relation 176

Figure 7.7 Operational CBPV Syntax 203

Figure 7.8 CBPV Inequational Theory (Congruence Rules) 205

Figure 7.9 CBPV β, η rules 206

Figure 7.10 CBPV logical and error rules 207

Figure 7.11 CBPV Operational Semantics 222

Figure 7.12 CBPV Contexts 223

Figure 7.13 Result Orderings 224

Figure 7.14 Logical Relation from a Preorder E 228

Figure 10.1 PolyGν Syntax 272

Figure 10.2 Well-formedness of Environments, Types 272

Figure 10.3 PolyGν Type System 274

Figure 10.4 Dynamically Typed PolyGν
275

Figure 10.5 Dynamic PolyGν Scope Checking 277

Figure 10.6 Translation of Dynamic PolyGνinto Gradual
PolyGν

278

Figure 10.7 PolyCν Syntax 279

Figure 10.8 PolyCν Type Precision 280

Figure 10.9 PolyCν Typing 282

Figure 10.10 Elaborating PolyGν to PolyCν
283

Figure 10.11 PolyCν Operational Semantics 284

Figure 10.12 CBPVOSum Syntax 286

Figure 10.13 CBPV Type System 288

Figure 10.14 CBPV Operational Semantics 289

Figure 10.15 PolyCν type and environment translation 290

Figure 10.16 Ground type tag management 291

Figure 10.17 PolyCν term translation 292

Figure 10.18 PolyCν cast translation 293

Figure 10.19 PolyCν translation relation 295

Figure 10.20 PolyCν translation relation (Continued) 296

Figure 10.21 PolyCν translation relation, evaluation contexts 298



xvi list of figures

Figure 10.22 Type Precision Contexts, Type Precision Deriva-
tions in Context 312

Figure 10.23 Metafunctions extended to type precision deriva-
tions 312

Figure 10.24 PolyGν Term Precision 313

Figure 10.25 PolyCν Term Precision Part 1 314

Figure 10.26 PolyCν Term Precision Part 2 315

Figure 10.27 Logical Relation Auxiliary Definitions 320

Figure 10.28 Graduality/Parametricity Logical Relation 322

Figure 10.29 Free Theorems without ? 349



Part I

G R A D UA L T Y P I N G A N D
E M B E D D I N G - P R O J E C T I O N PA I R S





1
S TAT I C A L LY, D Y N A M I C A L LY A N D G R A D UA L LY
T Y P E D P R O G R A M M I N G L A N G UA G E S

The task of computer programming can be a very frustrating experi-
ence. Never before the rise of computers have humans had access to
such a general-purpose form of automation. But also never before in
human history have we been so painfully confronted with the need for
precision in expressing our intentions or with such frequent reminders
of the difficulty that we have in expressing ourselves correctly than
we do when programming. The fact that semi-technical words like
“bug”, “crash”, “freeze” have entered into the common language is a
consequence of not only the ubiquity of software systems in our ev-
eryday lives, but also the difficulty that we still have in implementing
software that functions as we desire it to.

And so with the rise in software there has been a corresponding
rise in techniques for reducing these programming errors: informal
specifications, model checking, unit testing, integration testing, prop-
erty testing, static analysis, dynamic analysis, type systems, software
contracts, fuzzing, and surely many others. All of these systems rely
on one fundamental idea for reducing errors in programming: do
repeat yourself. That is, express your intentions about the software
in at least two ways, and then check for consistency between them.
Often, this means giving the code and another, more coarse-grained
specification, written in a more declarative style. For instance, with
static type checking, we write the code that specifies the program’s
behavior precisely, but then we also give static type annotations that
typically specify the behavior at a much more coarse-grained level. A
static type checker checks the code for consistency with the type anno-
tations. If they match, the code can be run, but if they do not match we
have some kind of inconsistency between the two and the programmer
then must determine which of the code or the type annotations (or
neither) correctly represented their intentions for the program. Due to
fundamental computational limitations static type checkers must be
inherently conservative, rejecting programs which do actually satisfy
the specification, but in a way that is too complex for the type checker
to understand. As we will expand on soon, languages with non-trivial
type checkers are called statically typed, while languages for which
there are few to no type distinctions are called dynamically typed. Here we mean no

type distinctions
are enforced by
the language. A
programmer
always does have
some type
distinctions in
mind while
programming.

Another system for detecting programming errors is that of soft-
ware contracts. Contracts are similar to types in that they are given
alongside code and typically provide a coarse-grained specification for
the program’s behavior. However contracts are typically checked while

3



4 statically, dynamically and gradually typed programming languages

running the program, dynamically monitoring the execution for incon-
sistency with the contract. Delaying the checking to runtime means
catching programming errors later, but also means that contracts need
never have false positives: if a contract error is raised at runtime it is a
true inconsistency between the contract and the program’s behavior.
Additionally, while static type systems are typically highly integrated
into the language itself, contracts are a post hoc mechanism, and so a
contract can be imposed on code that was not originally written with
the contract in mind.

This dissertation is concerned with the semantics and design of
gradually typed programming languages. These languages, studied as
their own class since the mid-2000s [69, 81], are designed to support
both dynamically typed and statically typed sublanguages, while facil-
itating the migration from a more dynamically typed style to the more
statically typed style. That is, they allow for the gradual introduction
of more precise specifications for code in the form of typing. So a
program might be written in the dynamically typed sublanguage at
first, but then one module might be migrated to static typing and
type checked, then others. One of the primary applications is to add a
static type system to an existing dynamically typed language, to give
programmers using this language some of the benefits of static type
checking.

To ensure that types remain reliable even while mixing statically
typed and dynamically typed components, runtime-checking similar
to software contracts is used at the boundaries between dynamically
typed and statically typed styles. Much of the semantic difficulty of
gradual typing lies in ensuring that these runtime checks correctly
ensure the same kind of reasoning that the static types provide.

Before diving into more details of gradually typed languages and
the challenges in designing them, we first review the basics of dynamic
and static typing. Note that these terms (static and dynamic typing)
are not universally agreed-upon, so we will try to provide a coherent,
if not completely precise, working definition for the purposes of this
dissertation.

1.1 static and dynamic typing

Statically typed programming languages provide a formally verified
mechanism for expressing interfaces between different program com-
ponents. These interfaces are called types and when a program is built
up using the languages’ constructs, the type checker verifies that the
components fit together properly.This intrinsic

view of typing as
corresponding to

“sorts” or
“boundaries of

composition” is
well formalized by

approaches to
multi-sorted
algebras and

category theory.

A programming language is called dynamically typed if it lacks a
mechanism for expressing some form of static type distinction.

So despite being defined by their lack of a feature, dynamically
typed languages are quite popular, and many programmers espouse



1.1 static and dynamic typing 5

a preference for dynamically typed languages. Why? First, it may be
because the static types are burdensome to write down. This criticism
holds especially true of many older statically typed that lack much
means of type inference, but also can hold for languages with very
expressive type systems that can express complex invariants that are
difficult to formally check. Second, the static type system may be
ill-adapted to formalizing the interfaces the programmer has in mind
because it is not expressive enough to precisely describe the invariants
in a program.

For these reasons a programmer may prefer a language that does
little or no static type checking because it is easier to write a program
that will be accepted by the compiler or interpreter and the program-
mer can get to the task of running the program and evaluating its
behavior explicitly by interacting with it or running a test suite.

On the other hand, there are clear downsides to having a single
“universal” interface. Usually when an operation is defined it has an
intended domain of definition. For instance, a programmer is imple-
menting a procedure that overlays one image on top of another, they
are probably focusing on what the procedure does when its inputs are
actually values that represent images. However, in most dynamically
typed languages, there are many other kinds of values: bytestrings,
unicode strings, numbers, structures of other kinds. In a dynamically
typed language, every operation must have a defined behavior. For Some languages

such as C and
C++ have
“undefined
behavior”
meaning the
implementation
can do absolutely
anything, but
most languages
intend for there to
be a well-defined
semantics for any
program accepted
by the compil-
er/interpreter.

every primitive operation, the language must specify some behavior
even on “unintended” inputs. One solution, the one most commonly
associated to dynamic typing, is for the program to enter an “error
state”, by raising an exception or terminating the program and yield-
ing control to the operating system. However, operations might instead
return a sentinel value that is intended to represent an error, or they
might simply return a value that might be valid, putting the onus on
the user of the procedure to ensure that the inputs are valid.

This introduces a major advantage of static typing over dynamic
typing: when the programmer’s thinking is in sync with the type
system, it simplifies reasoning about the program. If the types accu-
rately reflect the intended inputs and outputs of a procedure, then
the programmer only has to think about those inputs and outputs.
In the case that the dynamically typed language would error with
invalid inputs, this can be understood as eliminating the possibility
of errors, which is a common perspective on the advantage of static
typing. This is typically codified as a global property of a static type
system as follows. First, a dynamically typed language is presented
which raises errors or “gets stuck” and does not further evaluate when
invalid inputs are passed to an operation. Then a static language is
presented with nearly the same surface syntax except for some an-
notations related to typing information. Finally, it is proven that the
programs that pass the type checker never produce any errors or get



6 statically, dynamically and gradually typed programming languages

stuck. However this global approach is at odds with the gradual part
of gradual typing, where static types are only added a little at a time.

1.2 dynamically typed languages

Dynamically typed programming languages are characterized by their
lack of static type distinctions, i.e., operations such as function applica-
tion or arithmetic operations are considered valid on any syntactically
well-formed subterms, rather than requiring the subterms to satisfy
some particular types. From a static typing perspective, we can think
of dynamically typed programming languages as those only admit-
ting one single type, which need not be named since there are no
other things that it need be distinguished from. This perspective on
dynamically typed languages as being a special case of statically typed
languages goes back to the earliest work on programming language
semantics [67]. This viewpoint is summarized with the idea (explained,
and attributed to Dana Scott in [36]) that untyped languages are really
unityped languages, i.e. they have only one type, the universal type of
all well-formed terms, and so there are no distinctions between types
of term.This does not

mean there is no
“static checking”

of dynamically
typed programs:

for instance,
many

dynamically
typed languages
have some static

checking to
ensure that all

variables are
bound before the
program is run.

Another common feature that is however not universal is that many
built-in operations raise errors when given “invalid” inputs. While
generally dynamically typed languages feature “more” of these opera-
tions, most statically typed languages feature them as well: division
for example is typically defined for a type that includes 0 and an error
is raised at runtime if 0 is passed as the denominator. Additionally,
dynamically typed languages don’t necessarily raise errors when in-
valid inputs are passed to built-in functions. For instance, JavaScript
returns a special ‘undefined‘ value in many cases, and so moving from
dynamic to static typing might not inherently prevent runtime errors.

In fact in
well-behaved

gradually typed
languages, adding
types to some of

a program results
in potentially
more errors

because a stricter
type discipline is

imposed at
runtime.

1.2.1 Migrating from Dynamic to Static Typing

When faced with the choice of whether to use a statically typed or
dynamically typed programming language for a project, a programmer
must weigh the perceived benefits of the two styles. Crucially, we must
consider the context of the programmer’s decision. Maybe the program
must be written urgently and an initial version of the program might

1.3 gradual typing

Gradually typed languages are those that accommodate some kind
of type distinctions while also allowing for a mode of programming
where there are no type distinctions, and, most importantly, allowing
for programs written in the two styles to interoperate. Very often,
such a language is designed by taking an existing dynamically typed



1.4 reasoning about programs 7

language and adding a static typing discipline to it, with the intent to
support a simple migration path from the dynamic to static discipline.
Importantly, the language is designed to allow for gradual migration,
that is the programmer can migrate one module (or function or ex-
pression) at a time while still being able to typecheck and run their
code. The motivation for this gradual migration is that this is easier
and less error-prone than rewriting a system from one language to
another that has very different syntax and semantics. In this way, a
programmer using the language can gradually accrue the benefits of
static typing, i.e. the reliable static reasoning principles!

The idea of adding a static type system to a dynamic language
for the purposes of improved compilation has precedent in Common
Lisp, though the soundness of the types is not enforced. The modern
idea of a gradually typed language was codified in two papers pub-
lished at roughly the same time. Tobin-Hochstadt and Felleisen [82]
developed Typed Scheme (now Typed Racket), a type system for the
dynamically-typed language PLT Scheme (now Racket), with the abil-
ity for statically typed and dynamically typed modules to interoperate,
with contracts inserted to ensure the soundness of typing. Siek and
Taha [69] introduced the Gradually Typed Lambda Calculus, a typed
language with a special “dynamic type” that is treated specially by
the type checker in a way that allows for a lax static typing discipline
like that of a dynamically typed language. The semantics of these two
styles is the focus of our work, and we introduce their formal syntax
and operational semantics in Chapter 2.

There is a third, increasingly popular category of languages, which
we refer to as “optionally typed”, that falls outside the purview of this
dissertation. For these languages, like TypeScript [10, 37] and Hack
[86], the static type system is used as a kind of simple static analysis
in that it is meant to find bugs, but not meant to provide reliable
reasoning principles for programmers. The runtime semantics of these
languages is essentially the same as a dynamically typed language.
The tradeoff for these languages is that while the types do not provide
reliable reasoning principles, there is no “interoperability overhead”
between statically and dynamically typed components. Since their
semantics is essentially the same as dynamic typing, they do not
exhibit the same issues as the “sound” gradually typed languages in
the style of [69, 82] and so are out of scope for this dissertation.

1.4 reasoning about programs

Programming Languages are designed to aid in program reasoning.
One of the key tools of the programming language designer is the
study of relational properties of programs. Why relational properties?
The key distinction between the theory of programming languages
and the theory of computation is that the theory of computation is



8 statically, dynamically and gradually typed programming languages

chiefly concerned with properties of single programs: Can a program
solve this problem? How efficiently can a program solve this prob-
lem? If we add a language feature such as angelic non-determinism
can a single program solve the same problem faster? The theory of
programming languages, on the other hand, is concerned with such
questions as “What will happen if I change a certain subexpression
of a program?” and “Can this data representation be replaced with
another?” and “Can this assertion be removed without affecting the
programs semantics?”

We can think of all these questions in one unified view: a main
focus theory of programming languages is the study of the changes
in programs over time. More specifically, we focus on how syntactic
changes affect semantics, and studying syntactic principles that codify
these reasoning abilities. We can think of the life cycle of a program as
a kind of discrete dynamical system, with the programmer making
changes over time. Most of the semantic properties we will discuss
and prove in this dissertation will be of the form “X syntactic change”
results in “Y semantic change”. The three main semantic properties
that we consider in this dissertation: graduality, βη equivalence, and
parametricity, can all be understood within this framework. First, grad-
uality tells the programmer that when they change the types in their
program to be more precise, but don’t otherwise change the code, then
they have only increased the precision of runtime enforcement, and so
the program will either behave the same, or raise a dynamic error it
did not before. This simplifies reasoning about the correctness when
adding types because the programmer can add more precise types
without affecting partial program correctness. Next, βη equivalence
justifies many different program transformations that do not change
the extensional behavior of programs and justify things like inlining,
simplifications, etc. This supports refactoring by the programmer in
addition to improved compilation. Finally, parametricity gives sufficient
conditions for reasoning about changing the underlying representa-
tion of abstract data types, allowing a programmer to start out with an
inefficient implementation and swap out an equivalent more efficient
implementation later.

1.5 thesis

This dissertation presents a semantic foundation for gradually typed
languages. That is, a theory of gradual typing runtime semantics that
aids in designing and analyzing gradually typed languages. The kernel
of the theory is that the runtime type enforcement of gradually typed
languages can usefully be structured in terms of the mathematical
concept of embedding-projection pairs. My thesis is that



1.6 contributions and structure of thesis 9

The theory of embedding-projection pairs provides a com-
mon semantic framework for the design and metatheory
of sound gradually typed languages.

The basic idea (expanded in Chapter 3) is to give a semantics where
the meaning of a gradual type consists of two components: the logical
type of inhabitants paired with a pair of functions that say how to
cast to and from the “universal” dynamic type. One function embeds
inhabitants of the type in the universal type, defining the “dynamically
typed interface” to the values of the type. The other function projects
inhabitants of the dynamic type down into the logical type. This
projection is a partial operation, it errors when the dynamic value does
not fit into the logical type. These two functions, the embedding and
the projection, both define the dynamic interface to the type, and so
then we impose some additional conditions that say that they agree.
First, if we embed a value of the type into the universal type, the
projection function should agree that this is a well-formed value, and
so projecting the value back to the logical type should get us a value
that is equivalent to the original in observable behavior. Next, if we
project a value down to the logical type, it will have the type enforced,
so it may error now, or later on if it is a higher order type. So if we
embed this back into the dynamic type, we should get something that
is like the original value, but has some “enforcement” now built into
it. We specify this by saying that the value should “error more” than
the original.

The goal of the dissertation is to show that these notions are a
natural way to structure the semantics of gradually typed languages
that satisfy the graduality property and provide relational reasoning
principles. We will show that the graduality property relies critically
on the defining properties of embedding-projection pairs. We also
show that relational reasoning principles for the surface language
follow from the corresponding principles for of the target language of
the elaboration.

1.6 contributions and structure of thesis

The dissertation is structured in three parts. In Part I I show how the
embedding-projection pair semantics can be used to prove the desired
properties of a gradually typed language. In Chapter 2, I show two
representative formal syntaxes of gradually typed languages, and the
desired reasoning properties for their operational semantics. Then in
Chapter 3, I introduce the embedding-projection pair semantics and
prove our desired graduality and relational reasoning properties.

In Part II, I explore to what extent we can derive what the semantics
of gradual typing should be from these desired properties. In Chap-
ter 5, I define Gradual Type Theory (GTT), which axiomatizes the
graduality and equational reasoning principles we desire of gradual



10 statically, dynamically and gradually typed programming languages

typing, based on the ep-pair properties. We then show that nearly
all of the operational semantics of gradual typing for simple types
is fully determined by this axiomatization. In Chapter 7, I show the
consistency of this axiomatic theory by giving semantic models, and in
Chapter 6 I show how the theory is general enough to derive gradual
operational semantics for three different evaluation orders.

In Part III, I explore the problem of designing a gradually typed
language that supports parametric polymorphism while satisfying the
crucial parametricity theorem. In Chapter 9, I show that at least one
interpretation of this problem is impossible to solve, in that enforcing
parametricity is uncomputable. In Chapter 10 I explore previous work
which satisfies parametricity but not graduality, and show how to
modify the language so that the semantics is fully explainable by an
embedding-projection pair translation, and both parametricity and
graduality properties fall out easily.

Finally in Chapter 11 we discuss some of the existing limitations of
our approach and some avenues for future work.



2
S Y N TA X A N D S E M A N T I C S O F G R A D UA L LY T Y P E D
L A N G UA G E S A N D C A S T C A L C U L I

In this chapter, I present two different calculi whose syntaxes are
representative of common approaches to the syntax of a gradually
typed language, and how to equip them with an operational semantics
by elaboration to a cast calculus. The first style I will call multilanguage
gradual typing and is most similar to gradual languages like Typed
Racket [82]. The second approach I will call fine-grained and is based
on Siek and Taha’s gradually typed lambda calculus[69]. Despite
significant syntactic differences, the two styles are semantically quite
similar, and work in later chapters will work primarily with cast calculi,
which are core languages designed as a target of an elaboration from
the surface syntax. We will give semantics to both the multilanguage
and fine-grained calculi by elaboration to a single cast calculus. Finally,
we discuss some syntactic reasoning principles and how they manifest
in the two different language styles.

2.0.1 Multilanguage Gradual Typing

The philosophy behind multilanguage gradual typing is that the
gradual language G consists of two interoperating languages: D the
dynamically typed language and S the statically typed variant of
the language D. To facilitate migration, S should be as similar in
syntax to D as is possible while accommodating the need for type
annotations. Then the two languages interact by a sort of high-level
FFI where the typed code assigns types when importing from the
dynamic language. This interface is made at the level of the module
system, where statically typed modules can import from dynamic
modules and vice-versa, but in order to have a simple expression-
based calculus, we’ll adopt the “multi-language” approach following
[49] which has been used for gradual typing calculi before[33, 88].

Figure 2.1 contains the syntax and typing of a simple gradual lan-
guage using the multi-language approach. The two sublanguages are
a simple dynamically typed language and a simply typed lambda
calculus, with two “language boundaries”: one to import dynamically
typed values into statically typed code and vice-versa. Note that the
context here consists of both typed variables, written “x : A” and
dynamic variables written “x dynamic”.

11



12 syntax and semantics of gradually typed languages and cast calculi

types A, B : := Bool | A× B | A→ B

static terms t, u : := x |ToTypeAt | t u | λx : A.t | (t, u) |πit

| true | false | if t then u else u

dynamic terms t, u : := x | FromTypeAt | t u | λx.t | (t, u) |πit

| true | false | if t then u else u

Γ `D t

Γ `S ToTypeAt : A

Γ `S t : A

Γ `D FromTypeAt

x : A ∈ Γ

Γ `S x : A

x dynamic ∈ Γ

Γ `D x

Γ `S t : A→ B Γ `S u : A

Γ `S t u : B

Γ `D t Γ `D u

Γ `D t u

Γ, x : A `S t : B

Γ `S λx : A.t : A→ B

Γ, x dynamic `D t

Γ `D λx.t

∀i ∈ {1, 2}.Γ `S ti : Ai

Γ `S (t1, t2) : A1 × A2

∀i ∈ {1, 2}.Γ `D ti

Γ `D (t1, t2)

Γ `S t : A1 × A2

Γ `S πit : Ai

Γ `D t

Γ `D πit

Γ `S true : Bool Γ `S false : Bool Γ `D true Γ `D false

Γ `S t : Bool
Γ `S ut : A Γ `S u f : A

Γ `S if t then ut else u f : A

Γ `D t
Γ `D ut Γ `D u f

Γ `D if t then ut else u f

Figure 2.1: Multi-language-Style Gradual Typing



syntax and semantics of gradually typed languages and cast calculi 13

2.0.2 Fine-Grained Gradual Typing

Next, in Figure 2.2, we present the syntax of what I will call fine-grained
gradual typing, which is a popular style in the gradual typing liter-
ature, and originates with [69]. The philosophy behind fine-grained
gradual typing, outlined here: [75], is that the gradual language G is
essentially a statically typed language with a special type ? . Then in general,

gradually typed
languages do not
necessarily have a
? type. Both
because some are
language-based
and do not
support a ? type
and others have
some other aspect
of the type system
that is gradual, so
there might be a
dynamic effect
type [66] or
dynamic row type
[29] or dynamic
refinement [44]

rather than dynamically typed values being explicitly imported into
a static type, type checking is relaxed at the boundary of static and
dynamic code: dynamically typed values are allowed to flow to static
code and vice-versa with no syntactic annotation from the programmer
using a type-checking strategy similar to but distinct from subtyping.
A good intuition of how the type checker works is to think of the
dynamic type ? as representing “uncertainty” about a value and the
type checker is an analysis that checks for if it is plausible that the
program type checks.

The first rule is the rule for type annotations t :: A. This says we can
annotate t with a type A as long as its original type B is “consistent”,
written A ∼ B and pronounced “A is consistent with B”. This notion
of consistency is the main way laxness of checking is formalized in
the type checker: A ∼ B holds when A and B are the same type,
except where subformulae on one side or the other are ?. If we think
of ? as representing uncertainty, this says it is plausible that A and
B are the same type. This intuition can be formalized as a Galois
connection where gradual types represent sets of possible static types.
See the Abstracting Gradual Typing framework for much more on this
approach to the design of fine-grained gradual surface languages[29].
The variable rule, and the introduction rules λ, pairs, true and false
are all the same as for static typing. The elimination rules however,
build in laxness of checking. For the application rule, we say that an
application t u is well typed if the domain of the function is consistent
with the type of the input, and the resulting type is the codomain of
the function. Here dom and cod are partial functions on gradual types
that extract the best approximation to the domain and codomain of
a type: for function types, the actual domain and codomain, but for
the dynamic type, we extract the dynamic type. If the partial function
is not defined for a type, then the rule does not hold. This use of
partial functions makes the type checking more succinct, but we could
equivalently express the function rule as multiple rules: one where
the term in function position has a function type and one where it has
the dynamic type.

Γ ` t : A→ B Γ ` u : A′ A ∼ A′

Γ ` t u : B

Γ ` t : ? Γ ` u : A′

Γ ` t u : ?

The product projections follow a similar structure: projecting a field
has the most precise type for that field, given by the partial function



14 syntax and semantics of gradually typed languages and cast calculi

on types πi. Finally, following Garcia and Cimini [28], the if-statement
checks that the scrutinee is plausibly a boolean and the type of the term
as a whole is the gradual meet of the two continuations. Gradual meet
is also defined as a partial function at the bottom of the figure, with
the meet of ? with any other type A being A and otherwise checking
that the two types are structurally the same. An argument for why
this should be meet and not join is that it agrees with simply-typed λ

calculus on terms that do not contain ?. If it were instead gradual join,
we would have terms where the programmer never explicitly uses any
dynamic types, but they are introduced, for example:

Γ ` t : Bool Γ ` true : Bool Γ ` λx : Bool.x

Γ ` if t then true else λx : Bool.x : ?

would not type check in simply typed lambda calculus, but it would
typecheck with a dynamic type here. This is undesirable since one
goal of gradual language is to support a static sublanguage with strict
type checking.

2.0.3 Multi-language vs Fine-Grained Gradual Typing

The two gradually typed surface calculi each have advantages over
the other.

First, for migration purposes, the multi-language approach makes
all interaction between languages explicit, and supports the syntax of
the original dynamically typed language directly. On the other hand, in
the fine-grained approach, dynamically typed code must be annotated
with many casts to the dynamic type ?, since introduction forms all
are typed with a more precise type. For instance, a dynamically typed
application function λ f .λx. f x would in the fine-grained language be
written as

(λ f : ?.(λx : ?. f x) :: ?) :: ?

so all introduction forms would be annotated with ?, but elimination
forms do not.

On the other hand, by supporting a dynamic type ?, the fine-grained
calculus can support some intermediate states of typing that cannot
be represented in our multi-language approach. For instance, in the
fine-grained calculus, we can gradually migrate a function from being
dynamically typed ? to a function with dynamic domain and codomain
?→ ? and then gradually migrate the domain and codomain to more
precise types. On the other hand, in our multi-language calculus, you
must immediately pick a completely “static” type such as Bool→ Bool

to migrate to.
Modifications can be made to both calculi to overcome these difficul-

ties, adopting something of a “hybrid” approach. For instance, we can
add a dynamic sublanguage to the fine-grained calculus with similar



syntax and semantics of gradually typed languages and cast calculi 15

typesA, B : := ? | Bool | A× B | A→ B

termst, u : := x | t :: A | t u | λx : A.t | (t, u) |πit | true | false | if t then u else u

Γ ` t : B A ∼ B

Γ ` t :: A : A

x : A ∈ Γ

Γ ` x : A

Γ ` t : A Γ ` u : A′ dom(A) ∼ A′

Γ ` t u : cod(A)

Γ, x : A ` t : B

Γ ` λx : A.t : A→ B

∀i ∈ {1, 2}.Γ ` ti : Ai

Γ ` (t1, t2) : A1 × A2

Γ ` t : A

Γ ` πit : πi A
Γ ` true : Bool

Γ ` false : Bool

Γ ` t : A A ∼ Bool Γ ` ut : At Γ ` u f : A f

Γ ` if t then ut else u f : At u A f

? ∼ A A ∼ ? Bool ∼ Bool
A ∼ A′ B ∼ B′

A→ B ∼ A′ → B′

A1 ∼ A′1 A2 ∼ A′2
A1 × A2 ∼ A′1 ∼ A′2

dom(?) = ?

dom(A→ B) = A

cod(?) = ?

cod(A→ B) = B

πi? = ?

πi(A1 × A2) = Ai

? u A = A

A u ? = A

Boolu Bool = Bool

(A1 → A2) u (B1 → B2) = (A1 u B1)→ (A2 u B2)

(A1 × A2) u (B1 × B2) = (A1 u B1)× (A2 u B2)

Figure 2.2: Fine-grained Gradual Typing



16 syntax and semantics of gradually typed languages and cast calculi

multi-language boundaries. The fine-grained calculus would then be
the “static” portion of this multi-language, still with lax type checking
when the dynamic type is used. Similarly, we can allow for more fine-
grained migration in the multi-language by adding something like
the dynamic type ? to the static types of the language. For instance,
Typed Racket includes an “Any” type that is the top of its subtyping
hierarchy. Adding this “Any” type does not mean we need to also
accept the approach to gradual type-checking of the fine-grained cal-
culus, instead we can think of Any as an uninterpreted base type for
the purposes of static checking, or the top of a subtyping hierarchy.

So the true fundamental difference between the multi-language
approach and the fine-grained approach is not that the multi-language
approach features a multi-language boundary, or that the fine-grained
approach supports more fine-grained use of the dynamic type, it is
that in the multi-language approach, all interaction between dynamic
and static code is explicitly annotated by the programmer with a multi-
language or module boundary, whereas in the fine-grained approach,
the lax type checking allows for syntactically implicit boundaries be-
tween dynamic and static types, driven by the presence of the dynamic
type ?.

The implicit insertion of casts into the fine-grained calculi makes it
difficult to determine where the elaboration inserts casts by inspection
of a program. This difficulty is mitigated by the graduality property
which gives reasoning principles for the addition of more precise types
to a program.

2.1 cast calculus

A common approach to the operational semantics of gradual typing is
given by cast calculi. Cast calculi typically include a dynamic type, but
have a strict static type system. They provide a calculus in which the
behavior of the built-in casts are specified in the form of some explicit
cast term 〈A ⇐ B〉t. These casts can then be given an operational
semantics. Both multilanguage and fine-grained styles of gradual typ-
ing can be given semantics by elaboration into the same cast calculus,
showing that they can be built on the same semantic foundation.

We present the syntax of our cast calculus in Figure 2.3. The first
rule gives the typing for the cast form that gives the calculus its name.
This allows us to cast from any type A to an arbitrary other type B.
The remaining rules for variables, functions/application, pairs/projec-
tion, booleans/if are the standard rules of the simply typed lambda
calculus.

Next, we present the operational semantics of our cast calculus
in Figure 2.4. First, we define “tag types” G to be the basic type
constructors of the language applied to ? if they take any arguments.
These represent the tags on dynamically typed values at runtime.



2.1 cast calculus 17

types A, B : := ? | Bool | A× B | A→ B

terms t, u : := x | 〈A⇐ B〉t | t u | λx : A.t | (t, u) |πit

| true | false | if t then u else u

Γ ` t : B

Γ ` 〈A⇐ B〉t : A

x : A ∈ Γ

Γ ` x : A

Γ ` t : A→ B Γ ` u : A

Γ ` t u : B

Γ, x : A ` t : B

Γ ` λx : A.t : A→ B

∀i ∈ {1, 2}. Γ ` ti : Ai

Γ ` (t1, t2) : A1 × A2

Γ ` t : A1 × A2

Γ ` πit : Ai

Γ ` true : Bool Γ ` false : Bool

Γ ` t : Bool Γ ` ut : A Γ ` u f : A

Γ ` if t then ut else u f : A

Figure 2.3: Cast Calculus Syntax and Typing

Then, we define our values V and evaluation contexts E, encoding
a call-by-value, left-to-right evaluation order. The top of the figure
shows the reductions not involving casts. This includes the standard
reductions for pairs, sums, and functions using the usual notion of
substitution t[γ], in addition to a reduction E[f] 7→ f to propagate a
dynamic type error to the top level.

More importantly, the bottom of the figure shows the reductions of
casts, specifying the dynamic type checking necessary for gradual typ-
ing. First (DynDyn), casting from dynamic to itself is the identity. For
any type A that is not a tag type (checked by bAc 6= A) or the dynamic
type, casting to the dynamic type first casts to its underlying tag type
bAc and then tags it at that type (TagUp). Similarly, casting down from
the dynamic type first casts to the underlying tag type (TagDn). The
next two rules are the primitive reductions for tags: if you project at
the correct tag type, you get the underlying value out (TagMatch) and
otherwise a dynamic type error is raised (TagMismatch). Similarly,
the next rule (TagMismatch’) says that if two types are incompati-
ble in that they have distinct tag types and neither is dynamic, then
the cast errors. The next three (Fun, Pair, Sum) are the standard
“wrapping” implementations of contracts/casts [25], also familiar from
subtyping. For the function cast 〈A1 → B1 ⇐ A2 → B2〉, note that
while the output type is the same direction 〈B1 ⇐ B2〉, the input cast
is flipped: 〈A2 ⇐ A1〉.



18 syntax and semantics of gradually typed languages and cast calculi

G : := ?→ ? | ?× ? | Bool
V : := 〈?⇐ G〉V | λx : A.t | (V1, V2) | true | false
E : := [·] | 〈A⇐ B〉E | E t |V E | (E, t2) | (V1, E) | if E then ut else u f

E[f] 7→ f E[(λx : A.t)V] 7→ E[t[V/x]] E[πi(V1, V2)] 7→ E[Vi]

E[if true then ut else u f ] 7→ E[ut]

E[if false then ut else u f ] 7→ E[u f ]

E[〈?⇐ ?〉V] 7→ E[V]
A 6= ? bAc 6= A

E[〈A⇐ ?〉V] 7→ E[〈A⇐ bAc〉〈bAc ⇐ ?〉V]

A 6= ? bAc 6= A

E[〈?⇐ A〉V] 7→ E[〈?⇐ bAc〉〈bAc ⇐ A〉V]

E[〈G ⇐ ?〉〈?⇐ G〉V] 7→ E[V]
G 6= G′

E[〈G ⇐ ?〉〈?⇐ G′〉V] 7→ f

bAc 6= bBc
E[〈A⇐ B〉V] 7→ f

E[〈A→ B⇐ A′ → B′〉V] 7→ E[λx : A.〈B⇐ B′〉(V (〈A⇐ A′〉x))]

E[〈A1 × A2 ⇐ A′1 × A′2〉(V1, V2)] 7→ E[(〈A1 ⇐ A′1〉V1, 〈A2 ⇐ A′2〉V2)]

Figure 2.4: Cast Calculus Operational Semantics



2.2 reasoning about gradually typed programs 19

2.1.1 Elaborating Surface Calculi

Next, we define the elaboration for multilanguage syntax in Figure 2.5
and fine-grained syntax in Figure 2.6. The multilanguage elaboration
can be divided into 3 pieces: elaboration of static terms, dynamic
terms and boundaries. The static terms are elaborated directly into
the corresponding constructor in the cast calculus. The boundaries
are directly translated into casts involving the dynamic type. The
dynamic terms are elaborated to use casts. Note that in general it
is not necessarily the case that the dynamic language’s semantics is
the same as simply inserting casts into a lightly typed cast calculus
program, because casts error on invalid inputs, but as mentioned in
Chapter 1, dynamic languages like JavaScript return special undefined
values instead. To accomodate this we would need to include some
separate form in the cast calculus or explicitly describe the dynamic
checking as a cast calculus program.

Next, we define the elaboration of the fine-grained syntax in Fig-
ure 2.6. First, annotations are translated directly into casts. Next,
variables and introduction forms are directly translated to the corre-
sponding construct of the cast calculus. Finally, elimination forms use
an auxiliary function G

 

t that inserts a cast on the scrutinee of the
elimination form if the term is dynamically typed.

2.2 reasoning about gradually typed programs

The elaborations of multilanguage and fine-grained gradual typing
are markedly different, and the difference has an impact on the pro-
grammer using the language. The multi-language approach offers a
very simple translation, essentially the dynamic code is a standard
translation into typed code, while the typed code translation is a
no-op other than the boundaries. The boundaries are all explicit and
all runtime type checking is placed there. On the other hand, the
fine-grained translation is complicated, with every elimination form
possibly introducing dynamic type checking depending on the inter-
action between the types of different subterms. Then the dynamic
type checking itself is given by the reductions of the cast calculus,
which are themselves somewhat complicated. This naturally leads to
the question of how usable this language is, i.e., how hard is it for
a programmer to understand what their gradually-typed program’s
behavior will be?

In this section we consider program reasoning principles for our
gradually typed calculi that provide some formal argument that while
the specification of the language semantics is somewhat complex, there
are some simple principles for understanding how the code behaves.
These come in two classes. First, equational reasoning principles such
as βη equations tell us how to simplify programs and how type



20 syntax and semantics of gradually typed languages and cast calculi

·ml = ·
(Γ, x : A)ml = Γml , x : Aml

(Γ, x dynamic)ml = Γml , x : ?

(ToTypeAt)S = 〈A⇐ ?〉tD

xS = x

(λx : A.t)S = λx : A.tS

(t u)S = tS uS

(t1, t2)S = (tS
1 , tS

2)

(πit)S = πitS

trueS = true

falseS = false

(if t then ut else u f )
S = if tS then uS

t else uS
f

(FromTypeAt)D = 〈?⇐ A〉tS

xD = x

(λx.t)D = 〈?⇐ ?→ ?〉(λx : ?.tD)

(t u)D = (〈?→ ?⇐ ?〉tD) uD

(t1, t2)D = 〈?⇐ ?× ?〉(tD
1 , tD

2 )

(πit)D = πi〈?× ?⇐ ?〉tD

trueD = 〈?⇐ Bool〉true
falseD = 〈?⇐ Bool〉false

(if t then ut else u f )
D = if 〈Bool⇐ ?〉tD then uD

t else uD
f

Figure 2.5: Elaboration of Multi-language Gradual Typing



2.2 reasoning about gradually typed programs 21

(t :: B) f g = 〈B⇐ A〉t f g (where t : A)

x f g = x

(λx : A.t) f g = λx : A.t f g

(t u) f g = (?→ ?

 

t) (〈dom(A)⇐ B〉u f g)

(where t : A and u : B)

(t1, t2)
f g = (t1

f g, t2
f g)

(πit)
f g = πi(?× ?

 

t)

true f g = true

false f g = false

(if t then ut else u f )
f g = if Bool

 

t then 〈A⇐ At〉ut
f g else 〈A⇐ A f 〉u f

f g

(where ut : At, u f : A f and A = At u A f )

G

 

t = 〈G ⇐ ?〉t f g (when t : ?)

G

 

t = t f g (otherwise)

Figure 2.6: Elaboration of Fine-grained Gradual Typing

information informs program reasoning. These equational reasoning
principles tell us what our type information is actually good for.
Second, we have the inequational principle of graduality, which helps
us reason about casts. The graduality principle ensures that, despite
the fact that the semantics of fine-grained gradual typing is quite
sensitive to the exact types that are present, the behavior of code that
contains casts is easy to understand at the level of partial correctness:
the behavior of fine-grained code is always a refinement of the behavior
of its type erasure. Either the program produces the same behavior
as its type erasure, or it results in a dynamic error. So at this coarse
level, most of the program’s behavior can be understood in terms of
the behavior of dynamically typed code.

As discussed in Chapter 1, we express all reasoning principles as
relational principles, which we view as properties of programs “in
motion”, i.e. properties that state how syntactic changes over the
lifespan of the program development process affect the behavior of the
program. These two classes of properties are formalized in a similar
fashion. We first specify a relation on syntactic types and/or terms,
and then we prove that some semantic property is implied by the
relation. For equality, if t ≡ u is true then we want the behavior of t
and u to be the same. For graduality, if t v u is true then t errors more,
but otherwise behaves the same as u. In both cases, this semantic
property is formalized as a contextual property: how does swapping
out t for u in the context of a larger program change the ultimate
behavior?



22 syntax and semantics of gradually typed languages and cast calculi

C : := [·] | FromTypeAC |ToTypeAC | λx : A.C |C u | t C

| (C, t2) | (t1, C) |πiC

| if C then ut else u f | if t then C else u f | if t then ut else C

t ≡ t
t ≡ u

u ≡ t

t ≡ t′ t′ ≡ t′′

t ≡ t′′
t ≡ u

C[t] ≡ C[u]

(λx : A.t) v ≡ t[v/x] (λx.t) v ≡ t[v/x]
Γ ` v : A→ B

v ≡ λx : A.v x

πi(v1, v2) ≡ vi
Γ ` v : A1 × A2

v ≡ (π1v, π2v)

if true then ut else u f ≡ ut if false then ut else u f ≡ u f

Γ ` t : A x : Bool ∈ Γ Γ ` v : Bool

t ≡ if v then t[true/x] else t[false/x]

Γ ` t x : Bool ∈ Γ Γ ` v : Bool

t ≡ if v then t[true/x] else t[false/x]

Figure 2.7: βη equality for Multi-Language Terms

2.2.1 Reasoning about Equality

First, we discuss reasoning principles concerning when two programs
have equivalent behavior, i.e., equational reasoning principles. Specif-
ically„ we discuss βη equivalence which tell us in certain cases that
programs have the same behavior, and so rewriting one as the other
results in no observable change.

Figure 2.7 shows call-by-value βη equivalence for our gradual mul-
tilanguage. First, we have generic reasoning principles across different
types: reflexivity, symmetry, transitivity, and closure under arbitrary
contexts. Of these, context closure is most interesting: it says that if
two programs have equivalent behavior, placing them in the same
program context produces equivalent behavior. The β laws should
be uncontroversial: they are typical operational reductions stated as
contextual equivalences, for instance restricting the input of a function
to be a value before reducing. In fact, these β laws are contextual
equivalences in many dynamically typed languages, and so do not say
much about type soundness.

The η laws however are not satisfied by dynamic languages, and so
can be thought of as the difference between reasoning about dynamically



2.2 reasoning about gradually typed programs 23

typed programs and statically typed programs. The general idea of
an η law is that it says that values of each type are all equivalent to a in call-by-value

languages η

applies to values,
but pure
languages have η

for all terms and
for call-by-name
languages η is for
strict terms

value produced by an introduction form of that type, and all behavior
they exhibit is given by the elimination forms for that type.

For example, the η law for functions says that any value of function
type is equivalent to one produced by λ by simply applying the
original value to the λ-bound variable. If v is a λ function itself, this
follows already by β equivalence, but the more useful case is when
v is itself a variable. This shows that the η principle is really about
restricting the power of the context to distinguish between programs:
if every variable at function type is equivalent to a λ, that means that
the context cannot pass non-function values as inputs.

The η law for strict pairs is of a dual nature: rather than being
about terms with an output type of A1 × A2, it is concerned with
terms that have a free variable of type A1 × A2. In plain English, it
says that any term with a free variable y : A1 × A2 is equivalent to
one that immediately pattern-matches on y, and then replaces y with
the reconstructed pair. This means first and foremost that pattern-
matching on y is safe: compare to a strongly typed dynamic language
where projecting from the pair would result in a runtime type error on
non-pair inputs like booleans or functions. Second, it means that there
is no more to a value of product type than what its components are,
since the value in the continuation of the pattern match is replaced by
the reconstructed pair. This rules out things like lazy evaluation, where
a pair is a thunk that is forced when a pattern match is performed, and
also rules out “junk” in the value like metadata allowing for runtime
reflection.

These η principles provide a principled foundation for type-based
optimization and refactoring. For instance, suppose you have an input
y : A1 × A2 and construct a function that pattern matches on y: λz :
B.let (x1, x2) = y; t, Upon reviewing the code you might decide
that it is clearer to perform the pattern-match before constructing
the function, perhaps because the second component of the pair is
never used, and you want to reduce the size of the closure at runtime,
rewriting it as let (x1, x2) = y; (λz : B.t). This intuitively obvious
optimization is justified by the βη principles for pairs:

λz : B.let (x1, x2) = y; t ≈ctx let (x′1, x′2) = y; λz : B.let (x1, x2) = (x′1, x′2); t
(×η)

≈ctx let (x′1, x′2) = y; λz : B.t[x′1/x2][x′2/x1]

(×β)

≈ctx let (x1, x2) = y; λz : B.t (α)

First, the η principle says you can deconstruct x immediately, and
then the β principle simplifies the continuation, and α equivalence
fixes the change of variable names. This program equivalence would



24 syntax and semantics of gradually typed languages and cast calculi

not be valid in a dynamic language because it might introduce a
runtime error into the program if y is instantiated with a non-pair,
you are only justified in making the optimization because the type
information y : A1 × A2 is reliable.

It might seem difficult for a careful language design to violate
these η reasoning principle, but this transformation is invalid in the
transient semantics of gradual typing [87]. In transient semantics,
only the top-level constructor gives reliable information, with deeper
checks performed only as a value is inspected. For instance, in transient
semantics, the type Bool× Int includes values like (λx.x, true), which
is a pair, but the components of the pair do not match the type. Then η

expansion for pairs is not generally valid, because pattern matching on
a value like this produces a type error: let (y, z) = (λx.x, true); (y, z)
runs to a type error reporting that either λx.x is not a boolean or
that true is not a number. This limits the flexibility of type-based
optimization and refactoring.

To show that ≡ gives a valid reasoning principle, we want to prove
that if two closed terms are equivalent t ≡ u, then they have the
same behavior. More generally, if t and u are open terms, then since
βη equivalence is closed under plugging into the same context, this
means that t and u are indistinguishable when put into a larger context.
The validity of the βη equivalence relation is given by the following
theorem:

Definition 1. If · ` t : A and · ` u : A are well-typed cast calculus
programs we say they have the same behavior, written t ' u if

• t 7→∗ v and u 7→∗ v′ for some values v, v′

• t 7→∗ f and u 7→∗ f

• t ⇑ and v ⇑

Theorem 2. If t ≡ u is derivable for two closed fine-grained terms t, u, then
t f g ' u f g.

For multi-language terms,

• If t ≡ u is derivable for two closed static multilanguage terms t, u,
then tS ' t′S.

• If t ≡ u is derivable for two closed dynamic multilanguage terms t, u,
then tD ' t′D.

We will prove this in Chapter 3, using some lemmas in §2.2 at the
end of this chapter.

2.2.2 Precision and Graduality

The next reasoning principle of gradual typing we present is the gradu-
ality principle, originally called the gradual guarantee in [75]. We coined



2.2 reasoning about gradually typed programs 25

the name graduality in [56] based on an analogy with the parametricity
property of polymorphic calculi. This analogy is formally substanti-
ated in Chapter 10. The graduality principle helps us to reason about
the migration process from dynamic to static typing. The idea is that
migrating to a more statically typed style of programming should
have minimal effect on the behavior of the program: if the program was
working before, then the correctness should not be affected by adding
types. To formalize this we need to define what syntactic changes
count as migrations. This is a bit simpler to define in the fine-grained
syntax, so we define that first. As mentioned above, this also alleviates
the programmer of the need to understand all of the details of the
runtime semantics of the dynamic type checking, at the coarse-grained
level of partial correctness the behavior of the program remains the
same when types are added.

Graduality fails when types affect program behavior in ways besides
the presence or absence of errors. The original motivation for the prop-
erty was to formalize why allowing deep runtime type tests in a grad-
ual system could be problematic [11]. A type test is a predicate that
asks what type a dynamically typed value has, for instance, integer?
and boolean? in Scheme/Racket check for integers and booleans re-
spectively. An example of a deep type test is (Bool→ Bool)? which
would test if a value is a function taking booleans to booleans. Since
such a property is undecidable, the implementation must rely on
some syntactic approximation to produce a total predicate, for in-
stance checking if the function was syntactically written as a boolean
to boolean function. However such a check would violate graduality,
as the dynamically typed identity function would fail the test, while a
boolean typed variant would:

(Bool→ Bool)?(λx : ?.x) 7→ false

(Bool→ Bool)?(λx : Bool.x) 7→ true

These can be avoided by using shallow type tests, really tag tests. I.e.,
we can only ask if a value is a function at all, not what its domain and
codomain are.

In Figure 2.8 we present two relations, type precision and term pre-
cision. We define A v B, pronounced “A is more precise than B” or
“A is less dynamic than B” to hold when A and B are structurally the
same except that some subformulae of A correspond to the dynamic
type in B. In terms of migration, we think of A v B as meaning that
A is a valid choice of migrating from B to a more precise type.

Next we define term precision. Similar to type precision, we say
t v t′, pronounced “t is more precise than t′” to mean that t is a valid
migration of t′ to more precise types. This is related to type precision
in that whenever t v t′ holds, the type of t must be more precise than
the type of t′, and similarly for all of their free variables. The full form
of the judgment is then Φ ` t v t′ : A v A′, where Φ is a sequence of



26 syntax and semantics of gradually typed languages and cast calculi

ordering assumptions on free variables x v x′ : B v B′. We maintain
the invariant that if Φ ` t v t′ : A v A′, then Φl ` t : A and
Φr ` t′ : A′ where Φl extracts the lower bounds of all the assumptions
in Φ and Φr the upper bounds. The rules come in two groups: first
the cast rules and second the congruence rules. The cast rules say that
if t v t′ holds, then adding a cast to either side preserves ordering
as long as the side conditions on typing remain valid. In terms of
migration, this allows for the addition or removal of type casts, as
long as the types are still getting more precise. The remaining rules
are the congruence rules, one for each type former. For most rules, this
simply says that the term constructor is monotone, with the variable
and λ rules being the most interesting. First, the variable rule says
that if variables are assumed to be in an ordering then they are in
fact ordered. Second the λ rule allows for the type annotation on the
function to become more precise.

Next in Figures 2.9 and 2.10, we have term precision for our multi-
language syntax. Unlike the fine-grained syntax, our multilanguage
syntax does not feature a dynamic type, so there is no non-trivial
notion of type precision. Instead, migration goes directly from dy-
namic typing to a syntactic type. We can write this as a kind of
“pseudo-precision” A v dynamic where dynamic here is not a static
type but represents the “pseudo-type” of dynamically typed terms.
Term precision can be divided up into 3 different relations. First, we
might migrate a dynamically typed term to be statically typed, written
Φ ` t v t′ : A v dynamic, which as a side condition means Φl ` t : A
and Φr ` t′. Next, static terms can be a possible migration of a static
term, for instance when a subterm migrates from dynamic to static
typing. Since type precision is trivial, both terms have the same type,
written Φ ` t v t′ : A and having side condition Φl ` t : A and
Φr ` t′ : A. Finally, a dynamic term can be a possible migration of an-
other dynamic term, written Φ ` t v t′ with side condition Φl ` t and
Φr ` t′. The term precision context Φ can have assumptions of these
three forms: left typed and right untyped written x v x′ : A v dyamic,
both typed written x v x′ : A and both dynamic written x v x′.

Next, we define the appropriate semantic soundness theorem for mi-
gration in each style: the graduality principle. The graduality principle
says that making a term’s types more precise results in only additional
error checking, and otherwise does not interfere with behavior.

Definition 3. We define the error ordering t verr u for closed cast
calculus terms to mean one of the following holds:

• t 7→∗ f.

• t 7→∗ vt and u 7→∗ vu

• t ⇑ and u ⇑



2.2 reasoning about gradually typed programs 27

A v ? Bool v Bool
A v A′ B v B′

A→ B v A′ → B′
A v A′ B v B′

A× B v A′ × B′

Φ ::= · | Φ, x v x′ : A v A′

·l = ·
(Φ, x v x′ : A v A′)l = Φl , x : A

·r = ·
(Φ, x v x′ : A v A′)l = Φr, x′ : A′

Φ ` t v t′ : A v A′ A v B′

Φ ` t v t′ :: B′ : A v B′
Φ ` t v t′ : A v A′ B v A′

Φ ` t :: B v t′ : B v A′

x v A v A′ ∈ Φ

Φ ` x v x′ : A v A′

Φ, x v x′ : A v A′ ` t v t′ : B v B′

Φ ` λx : A.t v λx′ : A′.t′ : A→ B v A′ → B′

Φ ` t v t′ : A v A′ Φ ` u v u′ : B v B′

dom(A) ∼ B dom(A′) ∼ B′

Φ ` t u v t′ u′ : cod(A) v cod(A′)

∀i ∈ {1, 2}. Φ ` ti v t′i : Ai v A′i
Φ ` (t1, t2) v (t′1, t′2) : A1 × A2 v A′1 × A′2

Φ ` t v t′ : A v A′

Φ ` πit v πit′ : πi(A) v πi(A′)
Φ ` true v true : Bool v Bool

Φ ` false v false : Bool v Bool

Φ ` t v t′ : A v A′ A ∼ Bool A′ ∼ Bool

Φ ` ut v u′t : Bt v B′t Φ ` u f v u′f : B f v B′f
Φ ` if t then ut else u f v if t′ then u′t else u′f : Bt u B f v B′t u B′f

Figure 2.8: Type and Term Precision for Fine-Grained Terms



28 syntax and semantics of gradually typed languages and cast calculi

Φ ` t v t′

Φ ` FromTypeAt v t′ : A v dynamic

Φ ` t v t′ : A v dynamic

Φ ` t v FromTypeAt′ : A

Φ ` t v t′ : A

Φ ` t v ToTypeA′ t′ : A v dynamic

Φ ` t v t′ : A v dynamic

Φ ` ToTypeAt v t′

x v x′ : A ∈ Φ

Φ ` x v x′ : A

x v x′ : A v dynamic ∈ Φ

Φ ` x v x′ : A v dynamic

x v x′ ∈ Φ

Φ ` x v x′

Φ, x v x′ : A′ ` t v t′ : B

Φ ` λx : A.t v λx′ : A.t′ : A→ B

Φ, x : A v x′ dynamic ` t v t′ : B v dynamic

Φ ` λx : A.t v λx′.t′ : A→ B v dynamic

Φ, x dynamic v x′ dynamic ` t v t′ : B v dynamic

Φ ` λx.t v λx′.t′

Φ ` t v t′ : A→ B Φ ` u v u′ : A

Φ ` t u v t′ u′ : B

Φ ` t v t′ : A→ B v dynamic Φ ` u v u′ : A v dynamic

Φ ` t u v t′ u′ : B v dynamic

Φ ` t v t′ Φ ` u v u′

Φ ` t u v t′ u′

Figure 2.9: Boundary, Variable and Function Term Precision for Multi-
language Terms



2.2 reasoning about gradually typed programs 29

∀i ∈ {1, 2}. Φ ` ti v t′i : Ai

Φ ` (t1, t2) v (t′1, t′2) : A1 × A2

∀i ∈ {1, 2}. Φ ` ti v t′i : Ai v dynamic

Φ ` (t1, t2) v (t′1, t′2) : A1 × A2 v dynamic

∀i ∈ {1, 2}. Φ ` ti v t′i
Φ ` (t1, t2) v (t′1, t′2)

Φ ` t v t : A1 × A2

Φ ` πit v πit′ : Ai

Φ ` t v t : A1 × A2 v dynamic

Φ ` πit v πit′ : Ai v dynamic

Φ ` t v t

Φ ` πit v πit′

Φ ` true v true : Bool Φ ` true v true : Bool v dynamic

Φ ` true v true Φ ` false v false : Bool

Φ ` false v false : Bool v dynamic Φ ` false v false

Φ ` t v t′ : Bool Φ ` ut v u′t : B Φ ` u f v u′f : B

Φ ` if t then ut else u f v if t′ then u′t else u′f : B

Φ ` t v t′ : Bool v dynamic
Φ ` ut v u′t : B v dynamic Φ ` u f v u′f : B v dynamic

Φ ` if t then ut else u f v if t′ then u′t else u′f : B v dynamic

Φ ` t v t′ Φ ` ut v u′t Φ ` u f v u′f
Φ ` if t then ut else u f v if t′ then u′t else u′f

Figure 2.10: Product, Boolean Term Precision for Multi-language Terms



30 syntax and semantics of gradually typed languages and cast calculi

Theorem 4 (Graduality). If t, u are fine-grained terms satisfying · ` t v
u : A v B, then t f g verr u f g.

For multilanguage terms,

• If · ` t v u : A then tS verr uS.

• If · ` t v u : A v dynamic then tS verr uD.

• If · ` t v u then tD verr uD.

2.2.3 Reducing Surface Reasoning to Cast Calculus Reasoning

To give a modular development and abstract away from specific id-
iosyncrasies of surface syntax, in Chapter 3 we will focus our attention
on semantics of the cast calculus. To facilitate this, we develop sufficient
conditions on the semantics of the cast calculus in order to prove
soundness of βη equivalence and graduality for the surface languages.
To do this we define the analogues of the syntactic βη equivalence and
term precision, and prove (1) that elaboration preserves the syntactic
relation and (2) the relation for cast calculus terms implies the desired
semantic property. Since the soundness theorems are stated in terms
of the cast calculus operational semantics, we don’t need any kind of
adequacy or simulation theorem.

We define βη the same way as for the surface language, adding
casts to our notion of context.

Lemma 5. v f g, vS and vD are all values.

Proof. Clear by induction. For fine-grained terms, note that it follows
because only elimination forms introduce casts.

Lemma 6. • t[v/x] f g = t f g[v f g/x]

• t[v/x]S = tS[vS/x] if x : A

• t[v/x]S = tS[vD/x] if x dynamic

• t[v/x]D = tS[vS/x] if x : A

• t[v/x]D = tS[vD/x] if x dynamic

Proof. Clear by induction on t.

Lemma 7. For fine-grained terms, if t ≡ u then t f g ≡ u f g.
For multilanguage terms

• For typed terms, if t ≡ u then tS ≡ uS.

• For dynamic terms, if t ≡ u then tD ≡ uD.

Proof. Most cases are direct by induction, including all multilanguage
cases. We show the two most interesting fine-grained cases.



2.2 reasoning about gradually typed programs 31

C : := [·] | 〈A⇐ B〉C | λx : A.C |C u | t C

| (C, t2) | (t1, C) |πiC

| if C then ut else u f | if t then C else u f | if t then ut else C

t ≡ t
t ≡ u

u ≡ t

t ≡ t′ t′ ≡ t′′

t ≡ t′′
t ≡ u

C[t] ≡ C[u]

(λx : A.t) v ≡ t[v/x] (λx.t) v ≡ t[v/x]
Γ ` v : A→ B

v ≡ λx : A.v x

πi(v1, v2) ≡ vi
Γ ` v : A1 × A2

v ≡ (π1v, π2v)

if true then ut else u f ≡ ut if false then ut else u f ≡ u f

Γ ` t : A x : Bool ∈ Γ Γ ` v : Bool

t ≡ if v then t[true/x] else t[false/x]

Γ ` t x : Bool ∈ Γ Γ ` v : Bool

t ≡ if v then t[true/x] else t[false/x]

t ≡ 〈A⇐ A〉t

Figure 2.11: βη Equality for Cast Calculus Terms



32 syntax and semantics of gradually typed languages and cast calculi

• Case Γ ` v : A→ B, then v ≡ λx : A.v x. We need to show that

v f g ≡ (λx : A.v x) f g

which after expanding the definition of the translation means
proving

v f g ≡ λx : A.v f g (〈A⇐ A〉x)

Which because v f g is a value (Lemma 5), η in the cast calculus
and the identity cast rule.

• Case Γ ` t : A and x : Bool ∈ Γ, then t f g ≡ (if x then t[true/x] else t[false/x]) f g.
Simplifying the right we need to prove

t f g ≡ if x then 〈A⇐ A〉(t[true/x]) f g
else 〈A⇐ A〉(t[false/x]) f g

By η for booleans in the cast calculus, we know

t f g ≡ if x then t f g[true/x] else t f g[false/x]

So we need to show each branch of the if is equivalent. We cover
the true case, the other is analogous. We need to show

t f g[true/x] ≡ 〈A⇐ A〉(t[true/x]) f g

First, t f g[true/x] ≡ t[true/x] f g by Lemma 6. Then the rest
follows by the identity cast rule.

We need a similar theorem for term precision.

Lemma 8. p If Φ ` t v u : A v A′ then Φ ` t f g v u f g : A v A′

For multi-language terms,

• If Φ ` t v u : A, then Φml ` tS v uS : A v A

• If Φ ` t v u : A v dynamic, then Φml ` tS v uD : A v ?

• If Φ ` t v u, then Φml ` tD v uD : ? v ?

Proof. Most cases are straightforward by induction, we show the cases
that involve casts. Interestingly, the fine-grained cases for elimination
forms naturally break into 3 cases: both static, left static and right
dynamic and finally both dynamic, which mirrors the multilanguage
relation.

First, for fine-grained terms

•
Φ ` t v t′ : A v A′ A v B′

Φ ` t v t′ :: B′ : A v B′

We need to show

Φ ` t f g v 〈B′ ⇐ B〉t′ f g

which follows by inductive hypothesis and the cast rule.



2.2 reasoning about gradually typed programs 33

•

Φ ` t v t′ : A v A′ Φ ` t v u′ : B v B′

dom(A) ∼ B dom(A′) ∼ B′

Φ ` t u v t′ u′ : cod(A) v cod(A′)
We need to show

(?→ ?

 

t f g) (〈dom(A)⇐ B〉u f g) v (?→ ?

 

t′ f g
) (〈dom(A′)⇐ B′〉u′ f g

)

There are three cases to consider: either both A and A′ are
function types, A is a function type and A′ = ?, or both are ?.

– If A = Ai → Ao and A′ = A′i → A′o, then we need to show

Φ ` t f g (〈Ai ⇐ B〉u f g) v t′ f g
(〈A′i ⇐ B′〉u′ f g

) : Ao v A′o

First, by the application rule it is sufficient to show the
functions and their arguments are related.

* t f g v t′ f g holds by inductive hypothesis.

* 〈Ai ⇐ B〉u f g v 〈A′i ⇐ B′〉u′ f g follows which follows
by cast monotonicity and inductive hypothesis.

– If A = Ai → Ao and A′ = ?, then we need to show

Φ ` t f g (〈Ai ⇐ B〉u f g) v (〈?→ ?⇐ ?〉t′ f g
) (〈?⇐ B′〉u′ f g

) : Ao v ?

Using application monotonicity, it is sufficient to show the
functions and their arguments are related

* t f g v 〈?→ ? ⇐ ?〉t′ f g follows by the cast right rule
and inductive hypothesis.

* 〈Ai ⇐ B〉u f g v 〈? ⇐ B′〉u′ f g follows by cast mono-
tonicity and the inductive hypothesis.

– If A = A′ = ?, then we need to show

Φ ` (〈?→ ?⇐ ?〉t f g) (〈?⇐ B〉u f g) v (〈?→ ?⇐ ?〉t′ f g
) (〈?⇐ B′〉u′ f g

) : ? v ?

Using function application monotonicity it is sufficient to
show functions and arguments are related.

* 〈?→ ? ⇐ ?〉t f g v 〈?→ ? ⇐ ?〉t′ f g follows by cast
monotonicity and inductive hypothesis.

* 〈?⇐ B〉u f g v 〈?⇐ B〉u′ f g follows by cast monotonic-
ity and inductive hypothesis as well.

Next, for multi-language terms the most interesting cases are the
import rules and the rules where one side is static and the other isn’t.

• 4 import rules
Φ ` t v t′

Φ ` FromTypeAt v t′ : A v dynamic

In translation, we have by inductive hypothesis that Φml ` tD v
t′D : ? v ? and need to show Φml ` 〈A ⇐ ?〉t v t′D : A v ?
which follows directly from a cast rule since A v ?. The other
cast rules are similar.



34 syntax and semantics of gradually typed languages and cast calculi

•
Φ, x : A v x′ dynamic ` t v t′ : B v dynamic

Φ ` λx : A.t v λx′.t′ : A→ B v dynamic

By inductive hypothesis we know Φml , x v x′ : A v ? ` tS v
t′D : B v ? and we need to show Φml ` λx : A.tS v 〈? ⇐
?→ ?〉(λx : ?.t′D) : A→ B v ?.

This follows from the cast rule, and inductive hypothesis.

•
Φ ` t v t′ : A→ B v dynamic Φ ` u v u′ : A v dynamic

Φ ` t u v t′ u′ : B v dynamic

We need to show

Φml ` tS uS v (〈?→ ?⇐ ?〉tD) uD : B v ?

Which follows from inductive hypothesis and one cast right
rule.n

In the next chapter, we’ll establish that syntactic ≡ and v imply our
desired semantic properties ' and verr.



2.2 reasoning about gradually typed programs 35

Φ ` t v t′ : A v A′ B v B′

Φ ` 〈B⇐ A〉t v 〈B⇐ A′〉t′ : B v B′

Φ ` t v t′ : A v A′ B v A′

Φ ` 〈B⇐ A〉t v t′ : B v A′
Φ ` t v t′ : A v A′ A v B′

Φ ` t v 〈B′ ⇐ A′〉t′ : A v B′

x v x′ : A v A′ ∈ Φ

Φ ` x v x′ : A v A′

Φ, x v x′ : A v A′ ` t v t′ : B v B′

Φ ` λx : A.t v λx′ : A′.t′ : A→ B v A′ → B′

Φ ` t v t′ : A→ B v A′ → B′ Φ ` u v u′ : A v A′

Φ ` t u v t′ u′ : B v B′

∀i ∈ {1, 2}. Φ ` ti v t′i : Ai v A′i
Φ ` (t1, t2) v (t′1, t′2) : A1 × A2 v A′1 × A′2

Φ ` t v t′ : A1 × A2 v A′1 × A′2
Φ ` πit v πit′ : Ai v A′i

Φ ` true v true : Bool v Bool

Φ ` false v false : Bool v Bool

Φ ` t v t′ : Bool v Bool

Φ ` ut v u′t : B v B′ Φ ` u f v u′f : B v B′

Φ ` if t then ut else u f v if t′ then u′t else u′f : B v B′

Figure 2.12: Term Precision for Cast Calculus





3
G R A D UA L I T Y F R O M E M B E D D I N G P R O J E C T I O N
PA I R S

In the previous section we showed some common approaches to syntax
and operational semantics of a gradually typed language, and some
desirable relational reasoning principles that codify type-based rea-
soning and migrational reasoning. The remainder of this dissertation
will be concerned with the two related questions of (1) how to prove
these reasoning principles are valid and (2) how to design a gradual
language to ensure these principles hold. This chapter presents the
fundamental semantic technique of this work: the study of gradual
typing casts using the mathematical concept of embedding-projection
pairs and how this provides compositional semantic principles for
establishing graduality. The main results we will derive using this
technique in this chapter will be to prove the validity of βη equivalence
and of graduality for the cast calculus in the previous section, which
as shown in §2.2.3 implies analogous theorems about surface calculi.

Our approach is to introduce yet another calculus as a target of
elaboration of the cast calculus, but this time the calculus will be a
standard statically-typed λ calculus featuring recursive types serving
as a semantic metalanguage. Then we will define a simple, modular This role could

also be filled by a
denotational
semantics.

interpretation of the types, terms and type and term precision as se-
mantic properties of types and terms in our metalanguage. The central
component of this interpretation is the semantic interpretation of type
precision, which is interpreted as giving a formal syntax for certain
fundamental casts. In this calculus we will interpret the built-in dy-
namic type as a recursive type, and the built-in type casts as ordinary
terms. We then establish a simple adequacy theorem that allows us to
verify operational properties of our cast calculus by reasoning about
the translation to our semantic metalanguage. The βη equational prin-
ciples then hold in the source language because they hold in our target
calculus, which features the same type structure. To reason about the
casts, we show that the somewhat cumbersome operational semantics
of the cast calculus is simply explained by decomposition into cer-
tain casts that satisfy the property of being embedding-projection pairs.
Furthermore, these embedding-projection pairs can be defined by in-
duction over type precision derivations, providing a semantic meaning
to our notion of type migration. This chapter is

based on the
paper

“Graduality from
Embedding-
projection Pairs”
published at ICFP
2018.

We summarize the construction now. First, we define an interpreta-
tion of values of the dynamic type as a recursive sum of all the “tag
types”:

? = µX.Bool+ (?× ?) + (?→ ?)

37



38 graduality from embedding projection pairs

Syntax Semantics

gradual type A logical type |A| with ep pair Ee,A, Ep,A : |A| / |?|
cast A⇒ B Ep,B[Ee,A]

A v B ep pair Ee,A,B, Ep,A,B : |A| / |B| satisfying

Ee,B[Ee,A,B] ≈log Ee,A and Ep,A,B[Ep,B] ≈log Ep,A

term Γ ` t : A |Γ| ` JtK : |A|
term precision Φ ` t v t′ : A let Ee,Γ,Γ′Γ = Γ′; Ep,A,A′ [t] vlog t′ : A′

Figure 3.1: Overview of Embedding-Projection Pair Semantics

Next, each cast calculus type A defines a triple (|A|, Ee,A, Ep,A) of

1. A “logical type” |A| in the metalanguage that classifies the types
values.

2. An embedding-projection pair (Ee,A, Ep,A) : A / ?, where Ee,A
says how to embed a value of |A| into ? and vice-versa, Ep,A
says how to force a value of type ? to behave as an |A| value,
“projecting out” the A behavior from the ? value.

The embedding and projection correspond precisely to the two bound-
ary forms of the multilanguage syntax of gradual typing: the em-
bedding is the semantics of the boundary importing statically typed
values into dynamically typed code, and the projection the opposite
boundary importing dynamically typed values into statically typed
code. In fact, they also give us enough information to define a seman-
tics of all casts in the cast calculus, by defining the translation of an
arbitrary cast as an embedding followed by a projection:

J〈B⇐ A〉MK = Ep,B[Ee,A[JMK]]

That is, to cast from a type A to a type B, first interpret the |A| value as
a dynamic value, and then enforce the type |B| on the result. Next, we
interpret A v B as saying that there exists an embedding-projection
pair Ee,A,B, Ep,A,B : A / B, that exhibits A’s embedding (respectively
projection) as factorizing through Bs embedding (projection). That is
we show that embedding |A| into ? is equivalent to first embedding
|A| into |B| and then embedding |B| into ?, and a dual situation for the
projection. This captures an informal intuition that when A is more
precise than B, enforcing A requires enforcement of B. Furthermore,
we give a refined analysis of the structure of A v B proofs and show
that the proof rules can be interpreted as compositional rules for
constructing embedding-projection pairs.

Finally, we have term precision Φ ` t v t′ : A v A′. Our intuitive
idea of precision is that t is the result of migrating t′ to have more
precise type information, and so we want to know what the effect on
program behavior is if we swap t in for t′ in the context of a larger



3.1 a typed metalanguage 39

Types A, B : := µα. A | α | 1 | A× B | A + B | A→ B

Terms t, s : := f | x | let x = t in s | rollA t | unroll t | 〈〉 | 〈t, s〉
| let 〈x, y〉= t in s | inj1 t | inj2 t

| case t of inj1 x1. t1 | inj2 x2. t2 | λ(x : A). t | t s

Values v : := x | rollA v | 〈〉 | 〈v, v〉 | inj1 v | inj2 v | λ(x : A). t

Eval. Contexts E : := [·] | let x = E in s | rollA E | unroll E

| 〈E, t〉 | 〈v, E〉 | let 〈x, y〉= E in s

| inj1 E | inj2 E | case E of inj1 x1. t1 | inj2 x2. t2

| E s | v E

Environments Γ : := · | Γ, x : A

Substitutions γ : := · | γ, v/x

Figure 3.2: λT,f Syntax

program. Semantically we want the error approximation ordering
that is needed for the graduality theorem to hold. However, these are
closed programs, so we need to account for the fact that the inputs
should be assumed to be in an ordering relationship. To formalize this,
we can add casts to the output of t and its inputs (i.e., free variables)
so that it has the same type as t′ and then say that they are in an open
relationship:

Φr ` let Ee,Φl ,Φr Φl = Φr; Ep,A,A′ [t] vlog t′ : A′

Where let Ee,Φl ,Φr Φl = Φr; is shorthand for a sequence of let Ee,A,A′x =

x; for each x : A v A′ in Φ. We then define this error approximation
relation on open terms as a logical relation that implies that for closed
terms implies our semantic notion of graduality: if t vlog t′ then either
t errors, in which case t′ may have arbitrary behavior, or both reduce
to values or both diverge.

3.1 a typed metalanguage

The typed language we will translate into is λT,f, a call-by-value typed
lambda calculus with iso-recursive types and an uncatchable error.
Figure 3.2 shows the syntax of the language. Figure 3.3 shows some
of the typing rules; the rest are completely standard.

The types of the language are similar to the cast calculus: they
include the standard type formers of products, sums, and functions.
Rather than the specific dynamic type, we include the more general,
but standard, iso-recursive type µα. A, which is isomorphic to the
unfolding A[µα. A/α] by the terms rollµα.A · and unroll ·. As in the
source language we have an uncatchable error f.



40 graduality from embedding projection pairs

Γ ` t : A

Γ ` f : A

x : A ∈ Γ

Γ ` x : A

Γ ` t : A Γ, x : A ` s : B

Γ ` let x = t in s : B

Γ ` t : A[µα. A/α]

Γ ` rollµα.A t : µα. A

Γ ` t : µα. A

Γ ` unroll t : A[µα. A/α] Γ ` 〈〉 : 1

Γ ` t : A Γ ` s : B

Γ ` 〈t, s〉 : A× B

Γ ` t : A1 × A2 Γ, x : A1, y : A2 ` s : B

Γ ` let 〈x, y〉= t in s : B

Γ ` t : A′

Γ ` inj2 t : A + A′
Γ, x : A ` t : B

Γ ` λ(x : A). t : A→ B

Γ ` t : A→ B Γ ` s : A

Γ ` t s : B

Figure 3.3: λT,f Typing Rules

E[f] 7→0 f E[let x = v in s] 7→0 E[s[v/x]]

E[unroll (rollA v)] 7→1 E[v]

E[let 〈x1, x2〉= 〈v1, v2〉 in t] 7→0 E[t[v1/x1, v2/x2]]

E[(λ(x : A). t) v] 7→0 E[t[v/x]]

E[case (inj1 v) of inj1 x. t | inj2 x′. t′] 7→0 E[t[v/x]]

E[case (inj2 v) of inj1 x. t | inj2 x′. t′] 7→0 E[t′[v/x′]]

t 7→0 t

t 7→i t′ t′ 7→j t′′

t 7→i+j t′′

Figure 3.4: λT,f Operational Semantics



3.2 translating gradual typing 41

Figure 3.4 presents the operational semantics of the language. For
the purposes of later defining a step-indexed logical relation, we assign
a weight to each small step of the operational semantics that is 1 for
unrolling a value of recursive type and 0 for other reductions. We then
define a “quantitative” reflexive, transitive closure of the small-step
relation t 7→i t′ that adds the weights of its constituent small steps.
When the number of steps doesn’t matter, we just use 7→ and 7→∗. We
can then establish some simple facts about this operational semantics.

Lemma 9 (Subject Reduction). If · ` t : A and t 7→∗ t′ then · ` t′ : A.

Lemma 10 (Progress). If · ` t : A and t is not a value or f, then there
exists t′ with t 7→ t′.

Proof. By induction on the typing derivation for t.

Lemma 11 (Determinism). If t 7→ s and t 7→ s′, then s = s′.

3.2 translating gradual typing

Next we give our compositional semantics of the cast calculus via
translation to the metalanguage. To ensure that we can use the trans-
lated terms to reason about the cast calculus terms, we need to prove
an adequacy theorem that says that if the translation of a term termi-
nates (or errors or diverges), then so does the original cast calculus
term. To make this easier, we will provide two, observationally equiv-
alent, translations that differ only in their interpretation of casts. The
first translation uses the embedding-projection pairs and is easily
amenable to proving graduality. The second translation more directly
implements the behavior of the cast calculus and so is easier to es-
tablish an adequacy theorem. We will then prove that the two are
equivalent.

We start by defining the semantics of gradual types as described in
the previous section: a logical type with an ep pair to the dynamic type.
In fact, in defining this ep pair, it is simpler to define the semantics of
type precision as well, since the ep pair for each type is simply the one
corresponding to the proof A v ? that holds for each type. First, we
define the “logical type” |A| for each type in Figure 3.5. Booleans are
encoded as 1 + 1, functions and products are translated to themselves
and the dynamic type is a recursive sum of the interpretations of the
three tag types.

3.2.1 Constructive Type Precision

Next we define a constructive interpretation of type precision A v B
as defining an embedding-projection pair (ep pair).

Formally, we define an ep pair as follows:



42 graduality from embedding projection pairs

|?| def
= µα. (1 + 1) + (α× α) + (α→ α)

|Bool| def
= 1 + 1

|A× B| def
= |A| × |B|

|A→ B| def
= |A| → |B|

Figure 3.5: Logical Types

c : A v B

A ∈ {1, ?}
id(A) : A v A

c : A′ v A′′ d : A v A′

c ◦ d : A v A′′
tag(A) : G v ?

c : A1 v A2 d : B1 v B2

c× d : A1 × B1 v A2 × B2

c : A1 v A2 d : B1 v B2

c→ d : A1→ B1 v A2→ B2

Figure 3.6: Term Assignment for Type Precision

Definition 12. An embedding projection pair of type A / B consists
of

• An embedding Ee[· : A] : B

• A projection Ep[· : B] : A

Satisfying two properties:

• Retraction: [·] ≈log Ep[Ee[·]]

• Projection: [·] vctx Ee[Ep[·]]

We want to define an ep pair for every type precision fact A v B,
and this is naturally structured as a recursion over the proof itself. To
help make this explicit, we define a syntax for type precision proofs in
Figure 3.6. The reflexivity rule is written as an identity and transitivity
is written as a composition, which are suggestive of their semantics.
Next, there is one difference with the type precision in Figure 2.8: the
A v ? rule is restricted to have A be a tag type. This difference is
motivated by the semantics we are about to present, but first note that
it does not affect what is provable in the system:

Lemma 13. For any gradual type A, there is a derivation top(A) : A v ?.

Proof.

top(?) def
= id(?)

top(Bool) def
= tag(Bool) ◦ id(?)

top(A× B) def
= tag(?× ?) ◦ (top(A)× top(B))

top(A→ B) def
= tag(?→ ?) ◦ (top(A)→ top(B))



3.2 translating gradual typing 43

m ∈ {e, p}
e def

= p

p def
= e

Ee,id(A)
def
= [·]

Ee,tag(G)
def
= rollJ?K injG [·]

Ep,tag(G)
def
= case unroll [·] of injG x. x | else.f

Ee,c◦d
def
= Ee,c[Ee,d]

Ep,c◦d
def
= Ep,d[Ep,c]

Em,c×c′
def
= Em,c × Em,c′

Em,c→c′
def
= Em,c→ Em,c′

E× E′ def
= let 〈x, x′〉= [·] in 〈E[x], E′[x′]〉

E→ E′ def
= let x f = [·] in λxa. E′[x f (E[xa])]

Figure 3.7: Type Precision EP Pair Translation

c : A v B

A ∈ {Bool, ?}
id(A) : A v A

A 6= ? c : A v bAc
tag(bAc) : bAc v ?

tag(bAc) ◦ c : A v ?

c : A1 v A2 d : B1 v B2

c× d : A1 × B1 v A2 × B2

c : A1 v A2 d : B1 v B2

c→ d : A1→ B1 v A2→ B2

Figure 3.8: Canonical Forms for Type Precision Proofs

Next, we define the semantics of type precision proofs as embedding
projection pairs in Figure 3.7. We defer the proof of the retraction and
projection properties to §3.4.2.

Theorem 14. For any derivation c : A v B, (Ee,c, Ep,c) : |A| / |B|.
In particular, for every type |A|, there is an embedding projection pair

(Ee,top(A), Ep,top(A)) : |A| / |?|.

Proof. Proven in §3.4.

This establishes our semantics of types as coming with an ep pair
from their logical type to the dynamic type.

Next we want to extend this to an interpretation of type precision
A v B as saying there exists a unique ep pair from |A| to |B| that
factorizes the ep pairs of A and B. By Lemma 14 we know that there is
an ep pair from |A| to |B|, but there are two related problems we need
to address: it unique and does it factorize the ep pairs of A and B? As it
stands, there are multiple proofs of any given fact A v B, for instance
we can prove Int→ Int v ? as (tag(Int)→ tag(Int)) ◦ tag(→) or as



44 graduality from embedding projection pairs

ˆid(?) def
= id(?)

ˆid(Bool) def
= id(Bool)

ˆid(A1 × A2)
def
= ˆid(A1)× ˆid(A2)

ˆid(A1→ A2)
def
= ˆid(A1)→ ˆid(A2)

(tag(bAc) ◦ c) ◦̂ d def
= tag(bAc) ◦ (c ◦̂ d)

(id(A)) ◦̂ d def
= d

(c× d) ◦̂(c′ × d′) def
= (c ◦̂ c′)× (d ◦̂ d′)

(c→ d) ◦̂(c′→ d′) def
= (c ◦̂ c′)→ (d ◦̂ d′)

Figure 3.9: Type Precision Admissible Proof Terms

(tag(Int) → id(Int)) ◦ (id(?) → tag(Int)) ◦ tag(→), and on and on.
These will all be given a priori distinct interpretations as ep pairs from
|Int → Int| to |?|. This means that if we define a semantics of our
proofs there is the issue of coherence: are different proofs interpreted
as different embedding-projection pairs? We will show later that this
is not the case: all proofs of the same type precision theorem construct
contextually equivalent embedding-projection pairs. But for now, to
give a single precise semantics we define canonical forms of proofs in
Figure 3.8, and later show that the semantics of any term is equal to
that of the canonical form. To do this we add three restrictions: (1)
identity terms are restricted to base types Bool, ? (2) composition is
restricted to composition with tag(G) and (3) tag(G) only appears in
a composition. These restrictions do not affect provability because (1)
all other identities can be expanded using the congruence rules (2)
composition can all be associated away or pushed into congruence
rules and (3) tag(G) is equivalent to tag(G)oid(G).

Lemma 15. Every type precision proof has a canonical form.

Proof. Interpret id(A) as ˆid(A) and c ◦ d as c ◦̂ d using the definitions
in Figure 3.9.

Then our coherence theorem says that semantics is invariant under
this canonicalization process.

Lemma 16. If c : A v B, and Can(c) : A v B is the canonicalized proof of
c, then Ee,c ≈log Ee,Can(c) and Ep,c ≈log Ep,Can(c).

As a consequence we have that type precision implies factorization
of ep pairs to the dynamic type, and in fact more generally we have
this for any A v B v C that the ep pairs factorize:

Lemma 17. If b : A v B and c : B v C and d : A v C, then

Ee,d ≈log Ee,c[Ee,b]



3.2 translating gradual typing 45

Ep,d ≈log Ep,b[Ep,c]

Proof. By Lemma 16,

Ee,d ≈log Ee,c ◦̂ b ≈log Ee,c[Ee,b]

And dually for the projections.

Furthermore our canonicalized system gives us an easy way to
formulate the decision procedure for type precision.

Theorem 18. Given A, B it is decidable whether or not A v B.

Proof. We write a simple partial function from pairs of gradual types
to proofs of ordering.

ord(A, B) : A v B

ord(A, ?) = top(A)

ord(Bool, Bool) = Bool

ord(A→ B, A′ → B′) = ord(A, A′)→ ord(B, B′)

ord(A× B, A′ × B′) = ord(A, A′)× ord(B, B′)

3.2.2 Translations

Next we give two translations from the cast calculus to the meta-
language that differ only in their treatment of casts. Since the cast
calculus and metalanguage share so much of their syntax, most of the
translation changes nothing, only the parts that are truly components
of gradual typing need much translation.

Next, we define two elaborations of the cast calculus into the met-
alanguage in Figure 3.10. These translations are written J·Kep (the ep
pair translation) and J·Kdir (the direct translation). The two transla-
tions are mostly the same, and we use J·K to stand for either of them.
They differ only in their treatment of casts: J·Kep uses the embedding-
projection pair of casts, while J·Kdir provides an implementation that
is more directly operationally analogous to the cast calculus. Both
translations are type preserving in that if x1 : A1, . . . , xn : An ` t : A
then x1 : |A1|, . . . , xn : |An| ` JtK : |A|.

The direct cast translation E〈B⇐A〉 of the appropriate type, is defined
in Figure 3.11. Each case of the definition corresponds to one or more
rules of the operational semantics. The product, sum, and function
rules use the definitions of functorial actions of their types from
Figure 3.7. We separate them because we will use the functoriality
property in several definitions, theorems, and proofs later.



46 graduality from embedding projection pairs

JtK where if x1 : A1, . . . , xn : An ` t : A then x1 : JA1K, . . . , xn : JAnK `
JtK : JAK

J〈B⇐ A〉tKep def
= Ep,ord(A,B)[Ee,ord(A,B)JtKep]

J〈B⇐ A〉tKdir def
= E〈B⇐A〉[JtKdir]

JxK def
= x

J〈t1, t2〉K
def
= 〈Jt1K , Jt2K 〉

Jlet 〈x, y〉= t in sK def
= let 〈x, y〉= JtK in JsK

JtrueK def
= inj1 〈〉

JfalseK def
= inj2 〈〉

Jif t then s else s′K def
= case JtK of inj1 _. JsK | inj2 _. Js′K

Jλ(x : A). tK def
= λ(x : JAK ). JtK

Jt sK def
= JtK JsK

Figure 3.10: Term Translation

E〈B⇐A〉 where x : JAK ` E〈B⇐A〉[x] : JBK

E〈?⇐?〉
def
= [·]

E〈A2×B2⇐A1×B1〉
def
= E〈A2⇐A1〉 × E〈B2⇐B1〉

E〈A2→B2⇐A1→B1〉
def
= E〈A1⇐A2〉→ E〈B2⇐B1〉

E〈?⇐G〉
def
= rollJ?K injG [·]

E〈G⇐?〉
def
= case (unroll [·]) of injG x. x | else.f

E〈?⇐A〉
def
= E〈?⇐bAc〉[E〈bAc⇐A〉[·]] if A 6= ?, bAc

E〈A⇐?〉
def
= E〈A⇐bAc〉[E〈bAc⇐?〉[·]] if A 6= ?, bAc

E〈B⇐A〉
def
= let x = [·] inf if A, B 6= ? and bAc 6= bBc

Figure 3.11: Direct Cast Translation



3.2 translating gradual typing 47

3.2.3 Direct Semantics is Adequate

Next, we show that the direct semantics is adequate in that cast cal-
culus programs terminate, diverge or error if and only if their direct
semantics translations do. Later, we will show the ep pair semantics is
also adequate by showing that it is equivalent to the direct semantics
and then finally prove soundness of βη equality and graduality.

We capture this relationship between the direct semantics and the
cast calculus operational semantics in the following forward simu-
lation theorem, which says that any reduction in the cast calculus
corresponds to multiple steps in the target:

Lemma 19 (Translation Preserves Values, Evaluation Contexts).

1. For any value v, JvKdir is a value.

2. For any evaluation context E, JEKdir is an evaluation context.

Lemma 20 (Simulation of Operational Semantics). If t 7→ t′ then there
exists s with JtKdir 7→ s 7→∗ Jt′Kdir.

Proof. By cases of t 7→ t′. The non-cast cases are clear by lemma 19.

1. DynDyn

E〈?⇐?〉[JvKdir] = let x = JvKdir in x

7→ JvKdir

2. TagUp: Trivial because J〈?⇐ A〉vKdir = J〈?⇐bAc〉〈bAc⇐ A〉vKdir.

3. TagDn: Trivial because J〈A⇐ ?〉vKdir = J〈A⇐bAc〉〈bAc⇐ ?〉vKdir.

4. (TagMatch) Valid because

case (unroll rollJ?Kdir injG JvKdir) of

G. x

| else.f

7→ case injG JvKdir of

G. x

| else.f

7→ JvKdir

5. (TagMismatch) Valid because

case unroll rollJ?Kdir injG′ JvKdir of

G. x

| else.f

7→ case injG′ JvKdir of

G. x

| else.f
7→ f
= JfKdir

6. (TagMismatch’) Valid because

let x = JvKdir inf 7→ f



48 graduality from embedding projection pairs

7. Pair Valid by

E〈A2×B2⇐A1×B1〉[〈JvKdir, Jv′Kdir〉]
= let x = y in 〈JvKdir, Jv′Kdir〉〈E〈A2⇐A1〉[x], E〈B2⇐B1〉[y]〉
7→ 〈E〈A2⇐A1〉[JvKdir], E〈B2⇐B1〉[Jv′Kdir]〉
= J〈〈A2⇐ A1〉v, 〈B2⇐ B1〉v′〉Kdir

8. (Fun) Valid because

E〈A2→B2⇐A1→B1〉[JvKdir] 7→ let x f = JvKdir in

7→ λ(xa : A2). E〈B2⇐B1〉[JvKdir (E〈A1⇐A2〉[xa])]

= Jλ(xa : A2). 〈B2⇐ B1〉(v (〈A1⇐ A2〉xa))Kdir

To lift theorems for the gradual language from the typed language,
we need to establish an adequacy theorem, which says that the transla-
tion’s operational behavior determines the source. To do this we use
the following backward simulation theorem.

Lemma 21 (Translation reflects Results).

1. If JtKdir is a value, t 7→∗ v for some v with JtKdir = JvKdir.

2. If JtKdir = f, then t 7→∗ f.

Proof. By induction on t. For the non-casts, follows by inductive hy-
pothesis. For the casts, only two cases can be values:

1. 〈?⇐ ?〉t: if J〈?⇐ ?〉tKdir = JtKdir is a value then by inductive
hypothesis, t is a value, so 〈?⇐ ?〉v 7→ v.

2. 〈?⇐ G〉t: if rollJ?Kdir injG JtKdir is a value, then JtKdir is a value so
by inductive hypothesis t 7→∗ v so 〈?⇐ G〉t 7→∗ 〈?⇐ G〉v.

For the error case, there is only one case where it is possible for
JtKdir = f without t = f:

1. For 〈?⇐ ?〉s, if J〈?⇐ ?〉KdirJsKdir = JsKdir is an error then clearly
JsKdir = f so by inductive hypothesis s 7→∗ f and because casts
are strict,

〈?⇐ ?〉s 7→∗ s

Lemma 22 (Backward Simulation). If JtKdir 7→ s then there exists s′ with
t 7→ s′ and s 7→∗ Js′Kdir.

Proof. By induction on t. We show two illustrative cases, the rest follow
by the same reasoning.



3.3 reasoning about equivalence and error approximation 49

1. Jlet 〈x, y〉= t in sKdir = let 〈x, y〉= JtKdir in JsKdir. If JtKdir is not a
value, then we use the inductive hypothesis. If JtKdir is a value
and t is then by Lemma 21 t 7→∗ v and then we can reduce the
pattern-match in source and target.

2. J〈A2→ B2⇐ A1→ B1〉tKdir = (E〈A1⇐A2〉 → E〈B2⇐B1〉)[JtKdir]. If
JtKdir is not a value, we use the inductive hypothesis. Other-
wise, if it is a value and t is not, we use Lemma 21 to get
〈A2→ B2⇐ A1→ B1〉t 7→∗ 〈A2→ B2⇐ A1→ B1〉v. Then we use
the same argument as the proof of Lemma 20.

3. J〈?⇐ A〉tKdir = E〈?⇐bAc〉[E〈bAc⇐A〉[JtKdir]] then we use the same
argument as the case for 〈bAc ⇐ A〉t, e.g., the function case
above.

Theorem 23 (Adequacy).

1. JtKdir 7→∗ v if and only if t 7→∗ v with JvKdir = v.

2. JtKdir 7→∗ f if and only if t 7→∗ f.

3. JtKdir diverges if and only if t diverges

Proof. The forward direction for values and errors is given by forward
simulation Lemma 20. The backward direction for values and errors
is given by induction on JtKdir 7→∗ t′, backward simulation Lemma 22

and reflection of results lemma 21.
If t diverges, then by the backward value and error cases, it follows

that JtKdir does not run to a value or error. By type safety of the typed
language, JtKdir diverges.

Finally, if JtKdir diverges, we show that t diverges. If JtKdir 7→ s, then
by backward simulation, there exists s′ with JtKdir 7→ s′ and s 7→∗ Js′Kdir.
Since JtKdir 7→∗ Js′Kdir, we know Js′Kdir diverges, so by coinduction s′

diverges and therefore t diverges.

3.3 reasoning about equivalence and error approxima-
tion

Next we turn to the goal of proving soundness of βη equality and
graduality for our cast calculus. To do this, we will develop a composi-
tional semantic notion of error approximation, defined by induction on
types: a step-indexed logical relation. To simplify reasoning, on top of
the “implementation” of the logical relation as a step-indexed relation,
we prove many high-level lemmas so that all proofs in the next sections
are performed relative to these lemmas, and none manipulate step in-
dices directly. Using this notion, we will prove that our interpretation
of type precision as pairs of casts indeed forms embedding-projection
pairs, which will lead to a clean proof of graduality.



50 graduality from embedding projection pairs

3.3.1 Logical Relation

Our syntactic notions of βη equality and term precision are inductively
defined on the structure of terms, so it is natural to attempt to prove
our semantic soundness theorem by induction over the relatedness
derivations. However, the semantic principles that we have in mind
(equivalence and error approximation) are only defined for closed
terms, so they cannot serve as a useful inductive hypothesis for a
proof of soundness. Logical relations are a technique for extending
properties of closed terms compositionally to all terms of a language,
and so we develop a logical relation to capture a general notion of
error approximation for open terms of all types that is sound with
respect to error approximation for closed terms.

Due to the non-well-founded nature of recursive types (and the
dynamic type specifically), we develop a step-indexed logical relation
following Ahmed [2]. We define our logical relation for error approxi-
mation in Figure 3.12.

Step-indexed logical relations are often used to define a slightly
different notion of approximation: t v t′ if either both have the same
behavior or t diverges more, i.e., is less well-defined. Because our
notion of error approximation is not this standard notion of approx-
imation, we do something slightly unusual, which is we define two
logical relations v≺,v�, but the complexity is justified by the need
to establish transitivity of the logical relation, which we discuss later
(Lemma 31). For a given natural number i ∈N and type A, and closed
terms t1, t2 of type A, t1 v≺i

t,A t2 intuitively means that, if we only
inspect t1’s behavior up to i uses of unroll ·, then it appears that t1

error approximates t2. Less constructively, it means that we cannot
show that t1 does not error approximate t2 when limited to i uses
of unroll ·. However, even if we knew t1 v≺i

t,A t2 for every i ∈ N,
it still might be the case that t1 diverges, since no finite number of
unrolling can ever exhaust t1’s behavior. So we also require that we
know t1 v�i

t,A t2, which means that up to i uses of unroll on t2, it
appears that t1 error approximates t2.

The above intuition should help to understand the definition of
error approximation for terms (i.e., the relations v≺t and v�t). The
relation t1 v≺i

t,A t2 is defined by inspection of t1’s behavior: it holds
if t1 is still running after i + 1 unrolls; or if it steps to an error in fewer
than i unrolls; or if it results in a value in fewer than i unrolls and also
t2 runs to a value and those values are related for the remaining steps.
The definition of t1 v�i

t,A t2 is defined by inspection of t2’s behavior:
it holds if t2 is still running after i + 1 unrolls; or if t2 steps to an error
in fewer than i steps then t1 errors as well; or if t2 steps to a value,
either t1 errors or steps to a value related for the remaining steps.

While the relations and v�t on terms are different, fortunately,
the relations on values are essentially the same, so we abstract over



3.3 reasoning about equivalence and error approximation 51

v≺i
t,A,v�i

t,A ⊆ {t | · ` t : A}2

t1 v≺i
t,A t2

def
= (∃t′1. t1 7→i+1 t′1)

∨(∃j ≤ i. t1 7→j f)
∨(∃j ≤ i, v1 v≺

i−j
v,A v2. t1 7→j v1 ∧ t2 7→∗ v2)

t1 v�i
t,A t2

def
= (∃t′2. t2 7→i+1 t′2)

∨(∃j ≤ i. t2 7→j f∧ t1 7→∗ f)
∨(∃j ≤ i, v2. t2 7→j v2∧

(t1 7→∗ f∨ ∃v1. t1 7→∗ v1 ∧ v1 v�
i−j
v,A v2)

v≺i
v,A,v�i

v,A ⊆ {v | · ` v : A}2 where v∼ ∈ {v≺··,·,v�··,·}
v1 v∼0

v,µα.A v2
def
= >

rollµα.A v1 v∼i+1
v,µα.A rollµα.A v2

def
= v1 v∼i

v,A[α 7→µα.A] v2

〈〉 v∼i
v,1 〈〉

def
= >

〈v1, v′1〉 v∼i
v,A×A′ 〈v2, v′2〉

def
= v1 v∼i

v,A v2 ∧ v′1 v∼i
v,A′ v′2

v1 v∼i
v,A+B v2

def
= (∃(v′1 v∼i

v,A v′2) ∧ v1 = inj1 v′1 ∧ v2 = inj1 v′2)

∨(∃(v′1 v∼i
v,B v′2) ∧ v1 = inj2 v′1 ∧ v2 = inj2 v′2)

v1 v∼i
v,A→B v2

def
= ∀j ≤ i.∀(v′1 v∼

j
v,A v′2). v1 v′1 v∼i

t,B v2 v′2

· v∼i
v,· ·

def
= >

γ1, v1/x v∼i
v,Γ,x:A γ2, v2/x def

= γ1 v∼i
v,Γ γ2 ∧ v1 v∼i

v,A v2

Γ � t1 v∼ t2 : A def
= ∀i ∈N, (γ1 v∼i

v,Γ γ2). t1[γ1] v∼i
t,A t2[γ2]

Γ � t1 v t2 : A def
= Γ ` t1 v≺ t2 : A ∧ Γ ` t1 v� t2 : A

Figure 3.12: λT,f Error Approximation Logical Relation



52 graduality from embedding projection pairs

Γ � f v f : A

x : A ∈ Γ

Γ � x v x : A

Γ � t1 v t2 : A Γ, x : A � s1 v s2 : B

Γ � let x = t1 in s1 v let x = t2 in s2 : B

Γ � t1 v t2 : A[µα. A/α]

Γ � rollµα.A t1 v rollµα.A t2 : µα. A

Γ � t1 v t2 : µα. A

Γ � unroll t1 v unroll t2 : A[µα. A/α] Γ � 〈〉 v 〈〉 : 1

Γ � t1 v t2 : A Γ � s1 v s2 : B

Γ � 〈t1, s1〉 v 〈t2, s2〉 : A× B

Γ � t1 v t2 : A1 × A2 Γ, x : A1, y : A2 � s1 v s2 : B

Γ � let 〈x, y〉= t1 in s1 v let 〈x, y〉= t2 in s2 : B

Γ � t1 v t2 : A + A′ Γ, x : A � s1 v s2 : B Γ, x′ : A′ � s′1 v s′2 : B

Γ � case t1 of inj1 x. s1 | inj2 x′. s′1 v case t2 of inj1 x. s2 | inj2 x′. s′2 : B

Γ, x : A � t1 v t2 : B

Γ � λx. t1 v λx. t2 : A→ B

Γ � t1 v t1 : A→ B Γ � s1 v s2 : A

Γ � t1 s1 v t2 s2 : B

Figure 3.13: λT,f Error Approximation Congruence Rules

the cases by having the symbol v∼ to range over either v≺ or v�.
For values of recursive type, if the step-index is 0, we consider them
related, because otherwise we would need to perform an unroll to
inspect them further. Otherwise, we decrement the index and check if
they are related. Decrementing the index here is exactly what makes
the definition of the relation well-founded. For the standard types, the
value relation definition is indeed standard: pairs are related when
the two sides are related, sums must be the same case and functions
must be related when applied to any related values in the future (i.e.,
when we may have exhausted some of the available steps).

Finally, we extend these relations to open terms in the standard way:
we define substitutions to be related point-wise (similar to products)
and then say that Γ � t1 v∼ t2 : A holds if for every pair of substi-
tutions γ1, γ2 related for i steps, the terms after substitution, written
t1[γ1] and t2[γ2], are related for i steps. Then our resulting relation
Γ � t1 v t2 is defined to hold when t1 error approximates t2 up to
divergence of t1 (v≺), and up to divergence of t2 (v�).

We need the following standard lemmas.



3.3 reasoning about equivalence and error approximation 53

Lemma 24 (Downward Closure). If j ≤ i then

1. If t1 v∼i
t,A t2 then t1 v∼

j
t,A t2

2. If v1 v∼i
v,A v2 then v1 v∼

j
v,A v2.

Proof. By lexicographic induction on the pair (i, A).

Lemma 25 (Anti-Reduction). This theorem is different for the two relations
as we allow arbitrary steps on the “divergence greater-than” side.

1. If t1 v≺i
t,A t2 and t′1 7→j t1 and t′2 7→∗ t2 then t′1 v≺

i+j
t,A t′2.

2. If t1 v�i
t,A t2 and t′2 7→j t2 and t′1 7→∗ t1, then t′1 v�

i+j
t,A t′2.

A simple corollary that applies in common cases to both relations is that if
t1 v∼i

t,A t2 and t′1 7→0 t1 and t′2 7→0 t2, then t′1 v∼i
t,A t′2.

Proof. By direct inspection and downward closure (Lemma 24).

Lemma 26 (Monadic Bind). For any i ∈N, if for any j ≤ i and v1 v∼
j
t,A

v2, we can show E1[v1] v∼
j
t,A E2[v2] holds, then for any t1 v∼i

t,A t2, it is
the case that E1[t1] v∼i

t,A E2[v2].

Proof. We consider the proof for v�i
t,A, the other is similar/easier. By

case analysis of t1 v�i
t,A t2.

1. If t2 takes i + 1 steps, so does E2[t2].

2. If t2 7→j≤i f and t1 7→∗ f, then first of all E2[t2] 7→j E2[f] 7→
f. If j + 1 = i, we are done. Otherwise E2[t2] 7→j+1≤i f and

E1[t1] 7→∗ f.

3. Assume there exist j ≤ i, v1 v�
i−j
v,A v2 and t2 7→j v2 and t1 7→∗ v1.

Then by assumption, E1[v1] v�
i−j
t,E2

[v2]. Then by anti-reduction
(Lemma 25), E1[t1] v�i

t,E2
[t2].

We then prove that our logical relation is sound for observational
error approximation by showing that it is a congruence relation and
showing that if we can prove error approximation up to divergence
on the left and on the right, then we have true error approximation.

Lemma 27 (Congruence for Logical Relation). All of the congruence
rules in Figure 3.13 are valid.

Proof. Each case is done by proving the implication for v≺i and v�i.
Most cases follow by monadic bind (Lemma 26), downward closure
(Lemma 24) and direct use of the inductive hypotheses. We show some
illustrative cases.



54 graduality from embedding projection pairs

1. Given γ1 v∼i
t,Γ γ2, we need to show λ(x : A). t1[γ1] v∼i

t,A→B
λ(x : A). t2[γ2]. Since they are values, we show they are related
values. Given any v1 v∼

j
v,A v2 with j ≤ i, each side β reduces in

0 unroll steps so it is sufficient to show

t1[γ1, v′1/x] v≺j
t,B t2[γ2, v′2/x]

Which follows by inductive hypothesis and downward-closure
and the substitution relation.

Theorem 28 (Logical Relation implies Error Approximation). If · �
t1 v t2 : A, then t1 verr t2

Proof. If · � t1 v t2 : A, then since for any i, · v∼i
v,· ·, we have

t1 v∼i
v,A t2 for any i (since t1[·] = t1 and t2[·] = t2).

We do a case analysis of t1’s behavior.

1. If t1 7→i f we’re done.

2. If t1 7→i v, then because t1 v≺i
t,A t2, we know t2 7→∗ v′.

3. If t1 diverges, then for any i, t1 7→i t′1 and since t1 v�i
t,A t2, also

we must have t2 7→i t′2, so t2 diverges.

As a corollary, we also get that if we have the ordering in both
directions, then the programs have equivalent behavior.

Corollary 29. If · � t1 v t2 : A and · � t2 v t1 : A, then t1 ' t2.

So all we need to do to establish the soundness of βη equality is to
prove the validity of the generating βη equations.

3.3.2 Approximation and Equivalence Lemmas

The step-indexed logical relation is on the face of it quite complex,
especially due to the splitting of error approximation into two step-
indexed relations. However, we should view the step-indexed relation
as an “implementation” of the high-level concept of error approxima-
tion, and we work as much as possible with the error approximation
relation Γ � t1 v t2 : A. In order to do this we now prove someIn Chapter 5, we

take this approach
to its logical

conclusion by
developing a more
sophisticated logic

of error
approximation.

high-level lemmas, which are proven using the step-indexed relations,
but allow us to develop conceptual proofs of the key theorems of the
paper.

First, there is reflexivity, also known as the fundamental lemma, which
is proved using the same congruence cases as the soundness theorem
(theorem 28.) Note that by the definition of our logical relation, this is
really a kind of monotonicity theorem for every term in the language,
the first component of our graduality proof.



3.3 reasoning about equivalence and error approximation 55

Corollary 30 (Reflexivity). If Γ ` t : A then Γ � t v t : A

Proof. By induction on the typing derivation of t, in each case using
the corresponding congruence rule from Lemma 27.

It is crucial to reasoning about ep pairs is to use the transitivity prop-
erty, which is notoriously tedious to prove for step-indexed logical rela-
tions. Transitivity is often established through indirect reasoning—e.g.,
by setting up a biorthogonal (>>-closed) logical relation so one can
easily show it is complete with respect to observational equivalence,
which in turn implies that it must be transitive since observational
equivalence is easily proven transitive. One direct method for proving
transitivity, originally presented in [2], is to observe that two terms
are observationally equivalent when each divergence approximates
the other, and then prove that divergence approximation is transitive.
Because a conjunction of transitive relations is transitive, this proves
transitivity of equivalence. We have a similar issue with error approxi-
mation: the naïve logical relation for error approximation is not clearly
transitive. Inspired by the case of observational equivalence, we simi-
larly “split” our logical relation in two: v≺,w. Unlike observational
equivalence, the two relations are not the same. Instead, one v≺ is
error approximation up to divergence on the left and the other v� is
error approximation up to divergence on the right.

The proof works as follows: due to the function and open term cases,
we cannot simply prove transitivity in the limit directly. Instead we get
a kind of “asymmetric” transitivity: if t1 v≺i

t,A t2 and for any j ∈ N,

t2 v≺j
t,A t3, then we know t1 v≺i

t,A t3. We abbreviate the ∀j part as
t2 v≺ω

t,A t3 in what follows. The key to the proof is in the function and
open terms cases, which rely on reflexivity, corollary 30, as in Ahmed
[2]. Reflexivity says that when we have v1 v≺i

v,A v2 then we also have
v2 v≺ω

v,A v2, which allows us to use the inductive hypothesis.

Lemma 31 (Transitivity for Closed Terms/Values). The following are
true for any A.

1. If t1 v≺i
t,A t2 and t2 v≺ω

t,A t3 then t1 v≺i
t,A t3.

2. If v1 v≺i
t,A v2 and v2 v≺ω

t,A v3 then v1 v≺i
t,A v3.

Similarly,

1. If t1 v�ω
t,A t2 and t2 v�i

t,A t3 then t1 v�i
t,A t3.

2. If v1 v�ω
t,A v2 and v2 v�i

t,A v3 then v1 v�i
t,A v3.

Proof. We prove the v≺i
t,A and v≺i

v,A mutually by induction on (i, A).
The other logical relation is similar. Most value cases are simple uses
of the inductive hypotheses.

1. (Terms) By case analysis of t1 v≺i
t,A t2.



56 graduality from embedding projection pairs

a) If t1 7→i+1 t′1 or t1 7→j≤i f, we have the result.

b) Let j ≤ i, k ∈ N and (v1 v≺i
v,A v2) with t1 7→j v1 and

t2 7→k v2. By inductive hypothesis for values, it is sufficient
to show that t3 7→∗ v3 and v2 v≺ω

v,A v3.

Since t2 v≺ω
t,A t3, in particular we know t2 v≺k+l

t,A t3 for
every l ∈N, so since t2 7→k v2, we know that t3 7→∗ v3 and
v2 v≺l

v,A v3, for every l, i.e., v2 v≺ω
v,A v3.

2. (Function values) Suppose v1 v≺i
v,A→B v2 and v2 v≺ω

v,A→B v3.

Then, let j ≤ i and v′1 v≺
j
v,A v′2. We need to show v1 v′1 v≺

j
t,B

v3 v′2. By inductive hypothesis, it is sufficient to show v1 v′1 v≺
j
t,B

v2 v′2 and v2 v′2 v≺ω
t,B v3 v′2.

The former is clear. The latter follows by the congruence rule for
application Lemma 27 and reflexivity corollary 30 on v′2: since
· ` v′2 : A, we have v′2 v≺ω

v,A v′2.

Lemma 32 (Transitivity). If Γ ` t1 v t2 : A and Γ ` t2 v t3 : A then
Γ ` t1 v t3 : A.

Proof. The argument is essentially the same as the function value case,
invoking the fundamental property corollary 30 for each component of
the substitutions and transitivity for the closed relation Lemma 31

Next, we want to extract approximation and equivalence princi-
ples for open programs from syntactic operational properties of closed
programs. First, obviously any operational reduction is a contextual
equivalence, and the next lemma extends that to open programs.
Note that we use wv to mean approximation in both directions, i.e.,
equivalence:

Lemma 33 (Open β Reductions). Given Γ ` t : A, Γ ` t′ : A, if for every
γ : Γ, t[γ] 7→∗ t′[γ], then Γ � t wv t′ : A.

Proof. By reflexivity corollary 30 on t′, γ and anti-reduction lemma 25.

We call this open β reduction because we will use it to justify
equivalences that look like an operational reduction, but have open
values (i.e. including variables) rather than closed as in the operational
semantics. For instance,

let x = y in t wv t[y/x]

and

let 〈x, y〉= 〈x′, y′〉 in t wv t[x′/x, y′/y]

Additionally, we need to establish the validity of η expansions.



3.3 reasoning about equivalence and error approximation 57

E[let x = t in s] wv let x = t in E[s]

E[let 〈x, y〉= t in s] wv let 〈x, y〉= t in E[s]

E[case t of inj1 x. s | inj2 x′. s′] wv case t of inj1 x. E[s] | inj2 x′. E[s′]

Figure 3.14: Commuting Conversions

Lemma 34 (η Expansion).

1. For any Γ ` v : A→ B, v wv λ(x : A). v x

2. For any Γ, x : A + A′, Γ′ ` t : B,

t wv case x of inj1 y. t[inj1 y′/x] | inj2 y′. t[inj2 y′/x]

3. For any Γ, x : A× A′, Γ′ ` t : B,

t wv let 〈y, y′〉= x in t[〈y, y′〉/x]

Proof. All are consequences of lemma 33.

Next, with term constructors that involve continuations, we often
need to rearrange the programs such as the “case-of-case” transforma-
tion. These are called commuting conversions and are presented in
Figure 3.14.

Lemma 35 (Commuting Conversions). All of the commuting conversions
in Figure 3.14 are equivalences.

Proof. By monadic bind, anti-reduction and the reflexivity (lemmas 25

and 26 and corollary 30).

Next, the following theorem is the main reason we so heavily use
evaluation contexts. It is a kind of open version of the monadic bind
lemma Lemma 26.

Lemma 36 (Evaluation contexts are linear). If Γ ` t : A and Γ, x : A `
E[x] : B, then

let x = t in E[x] wv E[t]

Proof. By a commuting conversion and an open β reduction, connected
by transitivity lemmas 32, 33 and 35

let x = t in E[x] wv E[let x = t in x]

wv E[t]



58 graduality from embedding projection pairs

As a simple example, consider the following standard equivalence
of let and λ, which we will need later and prove using the above
lemmas:

Lemma 37 (Let-λ Equivalence). For any Γ, x : A ` t : B and Γ ` s : A,

(λ(x : A). t) s wv let x = s in t

Proof. First, we lift t using linearity of evaluation contexts, then an
open β-reduction, linked by transitivity:

(λ(x : A). t) s wv let x = s in

(λ(x : A). t)x

wv let x = s in

t

The concepts of pure and terminating terms are useful because
when subterms are pure or terminating, they can be moved around to
prove equivalences more easily.

Definition 38 (Pure, Terminating Terms).

1. A term Γ ` t : A is terminating if for any closing γ, either t 7→∗ f
or t 7→∗ v for some v.

2. A term Γ ` t : A is pure if for any closing γ, t 7→∗ v for some v.

The following terminology and proof are taken from Führmann
[27].

Lemma 39 (Pure Terms are Thunkable). For any pure Γ ` t : A,

let x = t in λ(y : B). x wv λ(y : B). t

Proof. There are two cases v≺,v�.

1. Let γ1 v≺i
v,Γ γ2 and define t1 = t[γ1] and t2 = t[γ2]. Then we

know t1 v≺i
t,A t2.

a) If t1 7→i+1 we’re done.

b) It’s impossible that t1 7→∗ f because t is terminating.

c) If t1 7→j≤i v1, then we know that t1 7→∗ v2 with v1 v≺
i−j
v,A v2.

Next,

let x = t1 in λ(y : B). x 7→j λ(y : B). v1

Then it is sufficient to show λ(y : B).v≺i−j
v,B→A λ(y : t2).,

i.e. that for any v′1 v≺
k≤(i−j)
v,B v′2 that

(λ(y : B). v1) v′1 v≺k
t,A (λ(y : B). t2) v′2



3.3 reasoning about equivalence and error approximation 59

The left side steps

(λ(y : B). v1) v′1 7→0 v1

And the right side steps

(λ(y : B). t1) v′2 7→0 t1 7→j v2

And v1 v≺k
v,A v2 by assumption above.

2. Let γ1 v�
i−j
Γ γ2 and define t1 = t[γ1] and t2 = t[γ2]. Then we

know t1 v�i
t,A t2.

Since t is terminating we know t1 7→∗ v1 and for some k, t2 7→k v2.
Then we need to show And we need to show λ(y : B). v1 v�i

t,B→A

λ(y : B). t2. Given any v′1 v�
k≤i
v,v′2

, we need to show

(λ(y : B). v1) v′1 v≺k
t,B (λ(y : B). t2) v′2

The β reduction takes 0 steps, then t2 starts running. If k > i,
we’re done. Otherwise, k ≤ i and we know v1 v�i−k

v,A v2 which
is the needed result.

Lemma 40 (Pure Terms are Essentially Values). If Γ ` t : A is a pure
term, then for any Γ, x : A ` s : B

let x = t in s wv s[t/x]

Proof. First, since by open β we have (λ(y : 1). t 〈〉) wv t, by congru-
ence (lemma 27)

s[t/x] wv s[(λ(y : 1). t 〈〉) 〈〉/x]

And by reverse β reduction, this is further equivalent to

let x f = λ(y : 1). t in

s[(x f 〈〉)/x]

By thunkability of t and a commuting conversion this is equivalent to:

let x = t in

let x f = λ(y : 1). x in

s[(x f 〈〉)/x]

Which by β reduction at each x in x is:

let x = t in

let x f = λ(y : 1). x in

s[x]



60 graduality from embedding projection pairs

And a final β reduction eliminates the auxiliary x f :

let x = t in

s[x]

Also, since we consider all type errors to be equal, terminating terms
can be reordered:

Lemma 41 (Terminating Terms Commute). If Γ ` t : A and Γ ` t′ : A′

and Γ, x : A, y : A′ ` s : B, then

let x = t in let x′ = t′ in s wv let x′ = t′ in let x = t in s

Proof. By symmetry it is sufficient to prove one direction. Let i ∈N.

1. Let γ1 v≺ iΓγ2. We need to show

let x = t[γ1] in

let x′ = t′[γ1] in

s[γ1]

v≺i
t,B let x′ = t′[γ2] in

let x = tγ2 in

s[γ2]

Note that this is true if the left side diverges or errors, so this is
true with no conditions on t, t′

By corollary 30, we know t[γ1] v≺i
t,A t[γ2] and t′[γ1] v≺i

t,A′

t′[γ2]. We do a joint case analysis on these two facts.

a) If t[γ1] 7→i+1, we’re done.

b) If t[γ1] 7→j≤i f, we’re done.

c) If t[γ1] 7→j≤i v1, then also t[γ2] 7→∗ v2.

i. If t′[γ1] 7→(i−j)+1, we’re done.

ii. If t′[γ1] 7→k≤(i−j) f, we’re done.

iii. If t′[γ1] 7→k≤(i−j) v′1, then t′[γ2] 7→∗ v′2 with v′1 v≺
i−(j+k)
v,A′

v′2 and the result follows by corollary 30 for s because
we know

s[γ1, v1/x, v′1/x′] v≺i−(j+k)
t,A′ s[γ2, v2/x, v′2/x′]

2. Let γ1 v�i
v,Γ γ2. We need to show

let x = t[γ1] in

let x′ = t′[γ1] in

s[γ1]

v�i
t,B let x′ = t′[γ2] in

let x = tγ2 in

s[γ2]

By corollary 30, we know t[γ1] v�i
t,A t[γ2] and t′[γ1] v�i

t,A′

t′[γ2]. We do a joint case analysis on these two facts.



3.4 casts from embedding-projection pairs 61

a) If t′[γ2] 7→i+1, we’re done.

b) If t′[γ2] 7→j≤i f and t′[γ1] 7→∗ f. In this case we know
the right hand side errors, so we must show the left side
errors. Since t is terminating, either t[γ1] 7→∗ f (done) or
t[γ1] 7→∗ v1. In the latter case we are also done because:

let x = t[γ1] in

let x′ = t′[γ1] in

s[γ1]

7→∗ let x′ = t′[γ1] in

s[γ1, v/x]

7→∗ f

c) If t′[γ2] 7→j≤i v′2 then either t′[γ1] 7→∗ f or t′[γ1] 7→∗

v′1 v≺
i−j
v,A′ v′2. Next, consider t[γ2].

i. If t[γ2] 7→(i−j)+1 we’re done.

ii. If t[γ2] 7→k≤(i−j) f, then we know also that t[γ1] 7→∗ f
so we’re done.

iii. If t[γ2] 7→k≤(i−j) v2, then either t[γ1] 7→∗ f or t[γ1] 7→∗

v1 v≺
i−(j+k)
v,A v2. If t′[γ1] or t[γ1] errors, we’re done,

otherwise both return values and the result follows by
corollary 30 for s.

3.4 casts from embedding-projection pairs

In this section, we show how the casts in the cast calculus can be bro-
ken down into embedding-projection pairs. We will define embedding-
projection pairs using our logical relation as the relevant ordering, and
then prove the coherence theorem for the semantics of type precision
derivations. Finally, we will show that the direct cast semantics is
equivalent to the embedding-projection pair semantics, enabling our
proofs of soundness of ≡ and graduality.

3.4.1 Embedding-Projection Pairs

First, we define ep pairs with respect to logical approximation.

Definition 42 (EP Pair). A embedding-projection pair (Ee, Ep) : A / B
is a pair of an embedding Ee[· : A] : B and a projection Ep[· : B] : A
satisfying

x : A � x wv Ep[Ee[x]] : A Retraction

y : B � Ee[Ep[y]] v y : B Projection

Next, we prove that in any embedding-projection pair that em-
beddings are pure (always produce a value) and that projections are



62 graduality from embedding projection pairs

terminating (either error or produce a value). This agrees with our
intuitions about casts: embedding a term in a (more) dynamic type
should not produce any first-order errors, and for graduality to be true,
adding a cast to a less dynamic type should not have any observable
effects other than error. Paired with the lemmas we’ve proven aboutIn this language,

purity of
embeddings and

termination of
projections

follows from the
ep pair properties

alone. However,
the reasoning

depends on the
fact that the

language only has
divergence and

error as effects. In
Chapter 5 instead
purity will be an
additional axiom

for embeddings,
while termination

will not be
explicitly

assumed for
projections.

pure and terminating programs in the previous section, we will be
able to prove theorems about ep pairs more easily.

Lemma 43 (Embeddings are Pure). If Ee, Ep : A / B is an embedding-
projection pair then x : A ` Ee[x] : B is pure.

Proof. The ep pair property states that

x : A � Ep[Ee[x]] wv x : A

Given any value · ` v : A, by Lemma 30, we know

v v≺0
t,A Ep[Ee[v]]

and since v 7→0 v, this means there exists v′ such that Ep[Ee[v]] 7→∗ v′,
and since Ep is an evaluation context, this means there must exist v′′

with Ep[Ee[v]] 7→∗ Ep[v′′] 7→∗ v′.

Lemma 44 (Projections are Terminating). If Ee, Ep : A / B is an
embedding-projection pair then y : B ` Ep[y] : A is terminating.

Proof. The ep pair property states that

y : B � Ee[Ep[y]] v y : B

Given any v : B, by Lemma 30, we know

Ee[Ep[v]] v�0
t,B v

so therefore either Ee[Ep[v]] 7→∗ f, which because Ee is pure means
Ep[v] 7→∗ f, or Ee[Ep[v]] 7→∗ v′ which by strictness of evaluation
contexts means Ep[v] 7→∗ v′′ for some v′′.

3.4.2 Type Precision Semantics produce Coherent EP Pairs

Next we turn to the task of proving that the embedding-projection pair
semantics defined in §3.2.1 does in fact produce embedding-projection
pairs, and that furthermore this semantics is coherent in that any two
derivations produce equivalent ep pairs.

To start, we we need to prove that the identity pair is an ep pair,
which is the semantics of reflexivity:

Lemma 45 (Identity EP Pair). For any type A, [·], [·] : A / A.

Proof. Trivial.



3.4 casts from embedding-projection pairs 63

Second, if we compose the embeddings one way and projections the
opposite way, the result is an ep pair, by congruence.

Lemma 46 (Composition of EP Pairs). For any ep pairs Ee,1, Ep,1 : A1 /

A2 and Ee,1, Ee,2 : A2 / A3, Ee,2[Ee,2], Ep,1[Ep,2] : A1 / A3.

Proof. By monadic bind Lemma 26.

Next, we need to use functoriality of the actions of type constructors,
meaning that the action of the type interacts well with identity and
composition of evaluation contexts. First, we show that applying the
functorial action of product and function types to identity functions
produces identity functions.

Lemma 47 (Identity Expansion).

[·]× [·] wv [·] and [·]→ [·] wv [·]

Proof. All are instances of η expansion.

In a call-by-value language, the composition is not preserved in gen-
eral for the action of the product type, but composition of terminating
programs is preserve because their order of evaluation is irrelevant.
This is sufficient, since we are applying this construction to embed-
dings and projections, which by Lemmas 43 and 44 are terminating.
Also notice that when composing using the functorial action of the
function type→, the composition flips on the domain side, because
the function type is contravariant in its domain.

Lemma 48 (Functoriality for Terminating Programs). The following
equivalences are true for any well-typed, terminating evaluation contexts.

(E2 × E′2)[E1 × E′1] wv (E2[E1])× (E′2[E
′
1])

(E2→ E′2)[E1→ E′1] wv (E1[E2])→ (E′2[E
′
1])

Proof. 1. (→) We need to show (after a commuting conversion)

let x f = [·] in

let y f = λxa. E′1[x f (E1[xa])] in

λya. E′2[y f (E2[ya])]

wv let x f = [·] in

λya. E′2[E
′
1[x f (E1[E2[ya]])]]



64 graduality from embedding projection pairs

First, we substitute for y f and then lift the argument E2[ya] out
and β reduce:

let x f = [·] in

let y f = λxa. E′1[x f (E1[xa])] in

λya. E′2[y f (E2[ya])]

wv let x f = [·] in

λya. E′2[(λxa. E′1[x f (E1[xa])]) (E2[ya])]

wv let x f = [·] in

λya. let xa = E2[ya] in

E′2[(λxa. E′1[x f (E1[xa])]) xa]

wv let x f = [·] in

λya. let xa = E2[ya] in

E′2[E
′
1[x f (E1[xa])]]

wv let x f = [·] in

λya. E′2[E
′
1[x f (E1[E2[ya]])]]

2. (×) We need to show

let 〈x, x′〉= xp in

let 〈y, y′〉= 〈E1[x], E′1[x
′]〉 in

〈E2[y], E′2[y
′]〉

wv let 〈x, x′〉= xp in

〈E2[E1[x]], E′2E′1[x
′]〉

First, we make the evaluation order explicit, then re-order using
the fact that terminating programs commute lemma 41.



3.4 casts from embedding-projection pairs 65

let 〈x, x′〉= xp in

let 〈y, y′〉= 〈E1[x], E′1[x
′]〉 in

〈E2[y], E′2[y
′]〉

wv let 〈x, x′〉= xp in

let x1 = E1[x] in

let x′1 = E′1[x
′] in

let 〈y, y′〉= 〈x1, x′1〉 in

let x2 = E2[y] in

let x′2 = E′2[y
′] in

〈x2, x′2〉

wv let 〈x, x′〉= xp in

let x1 = E1[x] in

let x′1 = E′1[x
′] in

let x2 = E2[x1] in

let x′2 = E′2[x
′
1] in

〈x2, x′2〉

wv let 〈x, x′〉= xp in

let x1 = E1[x] in

let x2 = E2[x1] in

let x′1 = E′1[x
′] in

let x′2 = E′2[x
′
1] in

〈x2, x′2〉

wv let 〈x, x′〉= xp in

〈E2[E1[x]], E′2[E
′
1[x
′]]〉

With these cases covered, we can show the casts given by type
precision really are ep pairs.

Lemma 49 (Type Precision Derivations denote EP Pairs).

Proof of Theorem 14. We seek to probe that for any derivation c : A v B,
that Ee,c, Ep,c : JAK / JBK are an ep pair. We proceed by induction on
the derivation c.

1. (Identity) Ee,id(A), Ep,id(A) : JAK / JAK. This case is immediate by
corollary 30.

2. (Composition)
Ee,c, Ep,c : JA1K / JA2K Ee,c′ , Ep,c′ : JA2K / JA3K

Ee,c′ [Ee,c], Ep,c[Ep,c′ ] : JA1K / JA3K
.

We need to show the retract property:

x : JA1K � Ep,c[Ep,c′ [Ee,c′ [Ee,c[x]]]] wv x : JA1K



66 graduality from embedding projection pairs

and the projection property:

y : JA3K � Ee,c′ [Ee,c[Ep,c[Ep,c′ [y]]]] v y : JA3K

Both follow by congruence and the inductive hypothesis, we
show the projection property:

Ee,c′ [Ee,c[Ep,c[Ep,c′ [y]]]] v Ee,c′ [Ep,c′ [y]]
(inductive hyp, cong Lemma 27)

v y (inductive hyp)

3. (Tag)
rollJ?K injG [·], case unroll [·] of

JGK. x

| else. x

f : JAK / JBK
.

The retraction case follows by β reduction

case unroll rollJ?K injG x of

injG xG. xG

| else.f

wv x

For the projection case, we need to show

rollJ?K injG

case unroll y of

injG xG. xG

| else.f

 v y

First, on the left side, we do a commuting conversion (lemma 35)
and then use linearity of evaluation contexts to reduce the cases
to error:

rollJ?K injG

case unroll y of

injG xG. xG

| else.f

 wv case unroll y of

injG xG. rollJ?K injG xG

| else. rollJ?K injG f

wv case unroll y of

injG xG. rollJ?K injG xG

| else.f



3.4 casts from embedding-projection pairs 67

Next, we η-expand the right hand side

y wv rollJ?K unroll y

wv case unroll y of

injB xB. rollJ?K injB xB

inj+ x+. rollJ?K inj+ x+
inj× x×. rollJ?K inj× x×
inj→ x→. rollJ?K inj→ x→

The result follows by congruence because f v t for any t.

4. (Functions)
Ee,c, Ep,c : A1 / A2 Ee,c′ , Ep,c′ : B1 / B2

Ep,c→ Ee,c′ , Ee,c→ Ep,c′ : JA1K→ JB1K / JA2K→ JB2K
We prove the projection property, the retraction proof is similar.
We want to show

y : JA2K→ JB2K � (Ee,c→ Ep,c′)[(Ep,c→ Ee,c′)[y]] v y : JA2K→ JB2K

Since embeddings and projections are terminating, we can apply
functoriality Lemma 48 to show the left hand side is equivalent
to

((Ep,c[Ee,c])→ (Ep,c′ [Ee,c′ ]))[y]

which by congruence and inductive hypothesis is v:

([·]→ [·])[y]

which by identity extension lemma 47 is equivalent to y.

5. (Products) By the same argument as the function case.

Next, key to proving our coherence theorem is the fact that the
admissible rules for reflexivity ( ˆid(A)) and composition c ◦̂ d defined in
Figure 3.9 are equivalent to the identity and composition of evaluation
contexts. First, we show, ˆid(A) is the identity by identity extension.

Lemma 50 (Reflexivity Proofs denote Identity). For every A, Ee,îd(A) wv
[·] and Ep,îd(A) wv [·].

Proof. By induction on A, using the identity extension lemma.

Second, we prove our key decomposition theorem. While the compo-
sition theorem says that the composition of any two ep pairs is an ep
pair, the decomposition theorem is really a theorem about the coherence
of our type precision proofs. It says that given any ep pair given by
c : A1 v A3, if we can find a middle type A2, then we can decom-
pose c’s ep pairs into a composition. This theorem is used extensively,
especially in the proof of the gradual guarantee.



68 graduality from embedding projection pairs

Lemma 51 (Decomposition of Upcasts, Downcasts). For any derivations
c : A1 v A2 and c′ : A2 v A3, the upcasts and downcasts given by their
composition c′ ◦̂ c are equivalent to the composition of their casts given by
c, c′:

x : JA1K � Ee,c′ ◦̂ c[x] wv Ee,c′ [Ee,c[x]] : JA3K

y : JA3K � Ep,c′ ◦̂ c[y] wv Ep,c[Ep,c′ [y]] : JA1K

Proof. By induction on the pair c, following the recursive definition of
c ◦̂ c′.

1. (tag(G) ◦ c) ◦̂ d def
= tag(G) ◦ (c ◦̂ d). By inductive hypothesis and

strict associativity of composition of evaluation contexts.

2. id(A1) ◦̂ d def
= d reflexivity.

3. (c × d) ◦̂(c′ × d′) def
= (c ◦̂ c′) × (d ◦̂ d′) By inductive hypothesis

and functoriality lemma 48.

4. (c→ d) ◦̂(c′→ d′) def
= (c ◦̂ c′)→ (d ◦̂ d′) By inductive hypothesis

and functoriality lemma 48.

The identity and decomposition lemmas are then enough to prove
that the semantics of type precision proofs is coherent.

Proof of Theorem 16. We seek to prove that for any c : A1 v A2, if
Can(c) : A1 v A2 is the canonicalized proof, then their corresponding
embeddings and projections are equal. The proof follows by induction
on c. If c is and identity, we use Lemma 50 and if c is a composition
we use Lemma 51.

Finally, now that we have established the meaning of type precision
derivations and proven the decomposition theorem, we can dispense
with direct manipulation of derivations. So we define the following
notation for ep pairs that just uses the types:

Definition 52 (EP Pair Semantics). Given c : A v B, we define Ee,A,B =

Ee,c, and Ep,A,B = Ep,c.

3.4.3 Casts Factorize into EP Pairs

Next, we prove the equivalence between the direct semantics and ep
pair semantics.

First, when A v B, the direct cast semantics for a cast from A to B
is the equivalent to the embedding of A into B and vice-versa for the
projection.

Lemma 53 (Upcasts and Downcasts are Casts). If A v B then E〈B⇐A〉 wv
Ee,A,B and E〈A⇐B〉 wv Ep,A,B.



3.4 casts from embedding-projection pairs 69

Proof. By induction following the recursive definition of E〈B⇐A〉

1. E〈?⇐?〉
def
= [·] By reflexivity.

2. E〈A2×B2⇐A1×B1〉
def
= E〈A2⇐A1〉 × E〈B2⇐B1〉 By inductive hypothesis

and congruence.

3. E〈A2→B2⇐A1→B1〉
def
= E〈A1⇐A2〉→ E〈B2⇐B1〉 By inductive hypothe-

sis and congruence.

4. E〈?⇐G〉
def
= rollJ?K injG [·] By reflexivity

5. E〈G⇐?〉
def
= case unroll [·] of injG x. x | else.f By reflexivity.

6. (A 6= ?, bAc) E〈?⇐A〉
def
= E〈?⇐bAc〉[E〈bAc⇐A〉[·]] By inductive hy-

pothesis and decomposition of ep pairs.

7. (A 6= ?, bAc) E〈A⇐?〉
def
= E〈A⇐bAc〉[E〈bAc⇐?〉[·]] By inductive hy-

pothesis and decomposition of ep pairs.

8. (A, B 6= ?∧ bAc 6= bBc) E〈B⇐A〉
def
= let x = [·] inf. Not possible

that A v B.

Next, we show that the “general” casts of the gradual language can
be factorized into a composition of an upcast followed by a downcast.
First, we show that factorizing through any type is equivalent to fac-
torizing through the dynamic type, as a consequence of the retraction
property of ep pairs.

Lemma 54 (Any Factorization is equivalent to Dynamic). For any
A1, A2, A′ with A1 v A′ and A2 v A′, Ep,A2,?[Ee,A1,?] wv Ep,A2,A′ [Ee,A1,A′ ].

Proof. By decomposition and the retraction property:

Ep,A2,?[Ee,A1,?] wv Ep,A2,?[Ep,A′,?[Ee,A′,?[Ee,A1,?]]] wv Ep,A2,A′ [Ee,A1,A′ ]

By transitivity of equivalence, this means that factorization through
one B is as good as any other. So to prove that every cast factors as an
upcast followed by a downcast, we can choose whatever middle type
is most convenient. This lets us choose the simplest type possible in
the proof. For instance, when factorizing a function cast 〈A2→ B2⇐
A1→ B1〉, we can use the function tag type as the middle type ?→ ?
and then the equivalence is a simple use of the inductive hypothesis
and the functoriality principle.



70 graduality from embedding projection pairs

Lemma 55 (Every Cast Factors as Upcast, Downcast). For any A1, A2, A′

with A1 v A′ and A2 v A′, the cast from A1 to A2 factorizes through A′:

x : JAK � E〈A2⇐A1〉[x] wv Ep,A2,A′ [Ee,A1,A′ [x]] : JA2K

Proof. 1. If A1 v A2, then we choose A′ = A2 and we need to show
that

E〈A2⇐A1〉 wv Ep,A2,A2 [Ee,A1,A2 ]

this follows by lemma 53 and lemma 50.

2. If A2 v A1, we use a dual argument to the previous case. We
choose A′ = A1 and we need to show that

E〈A2⇐A1〉 wv Ep,A1,A2 [Ee,A1,A1 ]

this follows by lemma 53 and lemma 50.

3. E〈A2×B2⇐A1→B1〉
def
= E〈A2⇐A1〉→ E〈B2⇐B1〉 We choose A′ = ?→ ?.

By inductive hypothesis,

E〈A1⇐A2〉 wv Ep,A1,?[Ee,A2,?] and E〈B2⇐B1〉 wv Ep,B2,?[Ee,B1,?]

Then the result holds by functoriality:

E〈A2→B2⇐A1→B1〉 = E〈A1⇐A2〉→ E〈B2⇐B1〉

wv (Ep,A1,?[Ee,A2,?])→ (Ep,B2,?[Ee,B1,?])

wv (Ee,A2,?→ Ep,B2,?)[Ep,A1,?→ Ee,B1,?]

= Ep,A2→B2,?→?[Ee,A1→B2,?→?]

4. (Products) Same argument as function case.

5. (A1, A2 6= ? ∧ bA1c 6= bA2c) E〈A2⇐A1〉
def
= let x = [·] inf We

choose A′ = ?, so we need to show:

let x = [·] inf wv Ep,A2,?[Ee,A1,?]

By embedding, projection decomposition this is equivalent to

let x = [·] inf wv Ep,A2,bA2c[Ep,bA2c,?[Ee,A1,bA1c[Ee,A1,bA1c]]]

Which holds by open β because the embedding Ee,A1,bA1c is pure
and bA1c 6= bA2c.

And since the only difference between direct and ep pair semantics
is the interpretation of casts, we get the equivalence between direct
and ep pair semantics overall:

Corollary 56. For any cast calculus term Γ ` t : A, |Γ| � JtKdir wv JtKep :
|A|

Proof. By induction over t, using either congruence or equivalence of
the two cast semantics.



3.5 soundness of βη equality 71

3.5 soundness of βη equality

Now that we have proved some lemmas about casts, we can easily
prove the soundness of βη.

Theorem 57. If Γ ` t ≡ u : A in the cast calculus, then |Γ| ` JtKep ≡
JuKep : |A|

Proof. Congruence cases follow from the congruence Theorem 27, β

cases follow from Lemma 33, η cases follow from Lemma 34, reflexivity
(Lemma 30) and transitivity (Lemma 32). Finally, the identity cast
axiom follows from Lemma 47.

Theorem 58. If · ` t ≡ u : A in the cast calculus, then t ' u.

Proof. First, by Theorem 57, JtKep ' JuKep. By Corollary 56, this means
JtKdir ' JuKdir. Then by adequacy Theorem 23, this means t ' u.

3.6 graduality from ep pairs

To prove the graduality theorem, we first prove that term precision in
the cast calculus implies logical ordering of their translations. However,
our logical relation is a homogeneous relation in that it only relates terms
of the same type, whereas term precision relates terms where one has a
more precise type (and context) than the other. So instead we prove
(at the end of this section) that terms are ordered up to insertion of
casts on the more precisely typed side. We define this as our notion of
“logical term precision” for metalanguage terms:

Definition 59. Let Φ : Γ1 v Γ2 and A1 v B hold in the cast calculus
and let |Γ1| ` t1 : |A1| and |Γ2| ` t2 : |A2| be terms of the metalan-
guage. We define the logical term precision ordering as follows:

Φ � t1 v t2 : A1 v A2 = |Γ2| � let Ep,JΓ1K,JΓ2K = |Γ1|; Ee,A1,A2 [t1] v t2 : |A2|

It is most natural to define this ordering by casting the more pre-
cisely typed term to the lest precise typing because we are interested
in what happens when we migrate from a less precise typing to a more
precise typing, in which case the more precise term will be placed in
a context that expects the less precise typing.

Then our fundamental property for logical graduality is the fol-
lowing, which says that syntactic term precision in the cast calculus
implies logical term precision of the translations.

Theorem 60 (Logical Graduality). If Φ ` t1 v t2 : A1 v A2, then

Φ � Jt1K v Jt2K : A1 v A2

By adequacy, and the purity of embeddings, this is sufficient to
prove graduality of the cast calculus.



72 graduality from embedding projection pairs

Theorem 61 (Graduality). If · ` t v u : A v B, then t verr u.

Proof. First, by logical graduality, we know

Ee,A,B[JtKep] verr JuKep

Since embeddings are pure, this means

JtKep verr JuKep

Then by adequacy of the ep pair semantics, we have

t verr u

.

The remainder of this section is then dedicated to proving our
logical graduality lemma. Now that we are in the realm of logical
approximation, we have all the lemmas of §3.3.2 at our disposal, and
we now start putting them to work. First, we show that at least with
logical term precision, the decision to cast the more precise term to
the type of the less precise term was arbitrary. Instead, we might have
embedded the inputs on the right hand side or projected the output of
the right, and all these definitions would be equivalent. The property
we need is that the upcast and downcast are adjoint (in the language
of category theory), also known as a Galois connection, which is a basic
consequence of the definition of ep pair:

Lemma 62 (EP Pairs are Adjoint). For any ep pair (Ee, Ep) : A1 / A2,
and terms Γ ` t1 : A1, , Γ ` t2 : A2,

Γ � Ee[t1] vlog t2 : A2 iff Γ � t1 vlog Ep[t2] : A1

Proof. The two proofs are dual .

Γ � t1 vlog Ep[Ee[t1]] : A1
EP Pair

Γ � Ee[t1] vlog t2 : A2
Assumption

Γ � Ep[Ee[t1]] vlog Ep[t2] : A1
Congruence

Γ � t1 vlog Ep[t2] : A1
Transitivity

Γ � Ee[t1] vlog Ep[t2] : A1
Assumption

Γ � t1 vlog Ee[Ep[t2]] : A1
Congruence

Γ � Ee[Ep[t2]] vlog t2
EP Pair

Γ � Ee[t1] vlog t2 : A2
Transitivity



3.6 graduality from ep pairs 73

Φ � t1 v t2 : A1 v A2 A1 v B2 (A2 v B2 ∨ B2 v A2)

Φ � t1 v E〈B2⇐A2〉[t2] : A1 v B2
Cast-Right

Φ � t1 v t2 : A1 v A2 B1 v A2 (A1 v B1 ∨ B1 v A1)

Φ � E〈B1⇐A1〉[t1] v t2 : B1 v A2
Cast-Left

Figure 3.15: Term Precision Upcast, Downcast Rules

Lemma 63 (Adjointness on Inputs). If Γ, x1 : A1 ` t1 : B and Γ, x2 :
A2 ` t2 : B, and Ee, Ep : A1 / A2, then

Γ, x1 : A1 � t1 vlog let x2 = Ee[x1] in t2 : B

iff

Γ, x2 : A2 � let x1 = Ep[x2] in t1 vlog t2 : B

Proof. By a similar argument to lemma 62

This adjointness implies that our definition of logical term precision
by embedding the more precise term with the more imprecise typing
is equivalent to the 3 other apparent choices of definition based on
whether we use the more or less precise input context and the more
or less precise output type. This allows freedom in proofs to use
whichever is most convenient for the case at hand.

Lemma 64 (Alternative Formulations of Logical Term Precision). The
following are all equivalent to Φ � t1 v t2 : A1 v A2 (where Φ : Γ1 v Γ2)

1. |Γ1| � Ee,A1,A2 t1 vlog let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in t2 : |A2|

2. |Γ1| � t1 vlog let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in Ep,A1,A2 t2 : |A2|

3. |Γ1| � let JΓ1K= Ep,Γ1,Γ2 [JΓ2K] in t1 vlog Ep,A1,A2 t2 : |A2|

4. |Γ1| � Ee,A1,A2 let JΓ1K= Ep,Γ1,Γ2 [JΓ2K] in t1 vlog t2 : |A2|

Proof. By induction on Γ1, using lemma 62 and Lemma 63

Finally, to prove the graduality theorem, we do an induction over all
the cases of syntactic term precision. Most important is the cast case
〈B1⇐ A1〉t1 v 〈B2⇐ A2〉t2 which is valid when A1 v A2 and B1 v B2.
We break up the proof into 4 atomic steps using the factorization of
general casts into an upcast followed by a downcast (lemma 55):
E〈A2⇐A1〉 wv Ep,A2,?[Ee,A1,?]. The four steps are upcast on the left,
downcast on the left, upcast on the right, and downcast on the right.
These are presented as rules for logical term precision in Figure 3.15.
Each of the inference rules accounts for two cases. The Cast-Right



74 graduality from embedding projection pairs

rule says first that if t1 vlog t2 : A1 v A2 that it is OK to cast t2 to
B2, as long as B2 is more dynamic than A1, and the cast is either an
upcast or downcast. Here, our explicit inclusion of A1 v B2 in the
syntax of the term precision judgment should help: the rule says that
adding an upcast or downcast to t2 results in a more dynamic term
than t1, whenever it is even sensible to ask: i.e., if it were not the case that
A1 v B2, the judgment would not be well-formed, so the judgment
holds whenever it makes sense! The Cast-Left rule is dual.

These 4 rules, combined with our factorization of casts into upcast
followed by downcast suffice to prove the congruence rule for casts:

Jt1K v Jt2K : A1 v A2

Jt1K v Ee,A2,?[Jt2K] : A1 v ?
Cast-Right

Ee,A1,?[Jt1K] v Ee,A2,?[Jt2K] : ? v ?
Cast-Left

Ep,B1,?[Ee,A1,?[Jt1K]] v Ee,A2,?[Jt2K] : B1 v ?
Cast-Left

Ep,B1,?[Ee,A1,?[Jt1K]] v Ep,B2,?[Ee,A2,?[Jt2K]] : B1 v B2
Cast-Right

Φ � J〈B1⇐ A1〉t1K v J〈B2⇐ A2〉t2K : B1 v B2
lemma 55

Next, we show the 4 rules are valid, as simple consequences of the
ep pair property and the decomposition theorem. Also note that while
there are technically 4 cases, each comes in a pair where the proofs
are exactly dual, so conceptually speaking there are only 2 arguments.

Lemma 65 (Upcast, Downcast Precision). The four rules in Figure 3.15
are valid.

Proof. In each case we choose which case of lemma 64 is simplest.

1. Cast-Left with A1 v B1 v A2. We need to show Ee,B1,A2 [Ee,A1,B1 [t1]] v
let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

t2

. By decomposition and congruence,

Ee,B1,A2 [Ee,A1,B1 [t1]] wv Ee,A1,A2

so the conclusion holds by transitivity and the premise.

2. Cast-Right with A1 v B2 v A2. We need to show let JΓ1K= Ep,Γ1,Γ2 [JΓ2K] in

t1

v

Ep,A1,B2 [Ep,B2,A2 [t2]]. By decomposition and congruence,

Ep,A1,B2 [Ep,B2,A2 [t2]] wv Ep,A1,A2 [t2]

, so the conclusion holds by transitivity and the premise.

3. Cast-Left with B1 v A1 v A2. We need to show

Ep,B1,A1 [let JΓ1K= Ep,Γ1,Γ2 [JΓ2K] in

t1

] v Ep,B1,A2 [t2]



3.6 graduality from ep pairs 75

. By decomposition, Ep,B1,A2 [t2] wv Ep,B1,A1 [Ep,A1,A2 [t2]], so by
transitivity it is sufficient to show

Ep,B1,A1 [let JΓ1K= Ep,Γ1,Γ2 [JΓ2K] in t1] v Ep,B1,A1 [Ep,A1,A2 [t2]]

which follows by congruence and the premise.

4. Cast-Right with A1 v A2 v B2. We need to show Ee,A1,B2 [t1] v
Ee,A2,B2 [let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

t2

].

By decomposition, Ee,A1,B2 [t1] wv Ee,A2,B2 [Ee,A1,A2 [t1]], so by tran-
sitivity it is sufficient to show

Ee,A2,B2 [Ee,A1,A2 [t1]] v Ee,A2,B2 [let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in t2]

which follows by congruence and the premise.

Finally, we prove the graduality theorem by induction on syntactic
term precision derivations, finishing the proof of logical graduality.

Proof of Theorem 60. By induction on syntactic term precision rules, we
show that if Γ1 v Γ2 ` t1 v t2 : A1, then Φ � Jt1K v Jt2K : A1 v A2.

1. To show
Φ � Jt1K v Jt2K : B1 v B2

Φ � J〈B1⇐ A1〉t1K v J〈B2⇐ A2〉t2K : B1 v B2
we use

lemma 65 and the argument above.

2.
Φ 3 x1 v x2 : A1 v A2

Φ � x1 v x2 : A1 v A2
We need to show:

JΓ1K � Ee,A1,A2 [x1] v let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

x2

Since embeddings are pure (Lemmas lemmas 40 and 43) we can
substitute them in and then the two sides are literally the same.

let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

x2

wv x2[Ee,Ai
1,Ai

2
[xi

1]/xi
2] = Ee,A1,A2 [x1]

3. Φ � true v true : Bool v Bool. Expanding definitions, we need
to show that

Ee,Bool,Bool[true] v true

which follows immediately from the definition because Ee,Bool,Bool =

[·]

4. Φ � false v false : Bool v Bool Analogous to previous case.



76 graduality from embedding projection pairs

5.

Φ � t1 v t2 : Bool v Bool

Φ � s1 v s2 : B1 v B2 Φ � s′1 v s′2 : B1 v B2

Φ �
if t1 then s1 else s′1

v
if t2 then s2 else s′2

: B1 v B2

Expanding defi-

nitions, we need to show

Ee,B1,B2 [if Jt1K then Js1K else Js′1K] v let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

if Jt2K then Js2K else Js′2K

First, we do some simple rewrites: on the left side, we use a
commuting conversion to push the embedding into the continu-
ations:

Ee,B1,B2 [if Jt1K then Js1K else Js′1K] wv if Jt1K then Ee,B1,B2Js1K else Ee,B1,B2Js′1K

And on the right side we use the fact that embeddings are pure
and so can be moved freely:

let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

if Jt2K then Js2K else Js′2K

wv

if

let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

Jt2K

 then

let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

Js2K


else

let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

Js2K


So the result follows by congruence and inductive hypothesis.

6.
Φ � t1 v t2 : A1 v A2 Φ � s1 v s2 : B1 v B2

Φ � 〈t1, s1〉 v 〈t2, s2〉 : A1 × B1 v A2 × B2
. Expanding def-

initions, we need to show

Ee,A1×B1,A2×B2〈Jt1K, Js1K〉 v let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

〈Jt2K, Js2K〉

On the right, we duplicate the embeddings, justified by lem-
mas 40 and 43, to set up congruence:

let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

〈Jt2K, Js2K〉
wv 〈let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

Jt2K

, let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

Js2K

〉



3.6 graduality from ep pairs 77

On the left, we use linearity of evaluation contexts to lift the
terms out, then perform some open β reductions and put the
terms back in:

Ee,A1×B1,A2×B2〈Jt1K, Js1K〉 wv let x = Jt1K in

let y = Js1K in

let 〈x, y〉= 〈x, y〉 in 〈Ee,A1,A2 x, Ee,B1,B2 y〉

(open β, 33) wv let x = Jt1K in

let y = Js1K in

〈Ee,A1,A2 x, Ee,B1,B2 y〉
(linearity, 36) wv 〈Ee,A1,A2Jt1K, Ee,B1,B2Js1K〉

With the final step following by congruence (lemma 27) and the
premise:

〈Ee,A1,A2Jt1K, Ee,B1,B2Js1K〉 v 〈let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

Jt2K

, let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

Js2K

〉

7.

Φ � t1 v t2 : A1 × A′1 v A2 × A′2
Φ, x1 v x2 : A1 v A2 � t′1 v t′2 : B1 v B2

Φ �
let 〈x1 : A1, x′1 : A′〉= t1 in t′1

v
let 〈x2 : A2, x′2 : A′2〉= t2 in t′2

: B1 v B2

Expanding definitions,

we need to show

JΓ1K � Ee,B1,B2 let 〈x1, x′1〉= Jt1K in Jt′1K v let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

let 〈x2, x′2〉= Jt2K in Jt′2K

: JB2K

On the right side, in anticipation of a use of congruence, we
push the embeddings in lemmas 40 and 43:

let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

let 〈x2, x′2〉= Jt2K in Jt′2K

wv let 〈x2, x′2〉=

let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

Jt2K

 in

let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

Jt′2K



78 graduality from embedding projection pairs

On the left side, we perform a commuting conversion, ep expand
the discriminee and do some open β reductions to simplify the
expression.

Ee,B1,B2 let 〈x1, x′1〉= Jt1K in Jt′1K

wv let 〈x1, x′1〉= Jt1K in Ee,B1,B2Jt′1K

(ep pair, 14) wv let 〈x1, x′1〉= Ep,A1×A′1,A2×A′2
Ee,A1×A′1,A2×A′2

Jt1K in

Ee,B1,B2Jt′1K

(definition) = let 〈x1, x′1〉= let 〈x2, x′2〉= Ee,A1×A′1,A2×A′2
Jt1K in

〈Ep,A1,A2 x2, Ep,A′1,A′2
x2〉

in

Ee,B1,B2Jt′1K

(linearity, 36) wv let 〈x1, x′1〉= let 〈x2, x′2〉= Ee,A1×A′1,A2×A′2
Jt1K in

let x1 = Ep,A1,A2 x2 in

let x′1 = Ep,A′1,A′2
x′2 in

〈x1, x′1〉

in

Ee,B1,B2Jt′1K

(comm. conv., 35) wv let 〈x2, x′2〉= Ee,A1×A′1,A2×A′2
Jt1K in

let x1 = Ep,A1,A2 x2 in

let x′1 = Ep,A′1,A′2
x′2 in

let 〈x1, x′1〉= 〈x1, x′1〉 in

Ee,B1,B2Jt′1K

(open β, 33) wv let 〈x2, x′2〉= Ee,A1×A′1,A2×A′2
Jt1K in

let x1 = Ep,A1,A2 x2 in

let x′1 = Ep,A′1,A′2
x′2 in

Ee,B1,B2Jt′1K

The final step is by congruence and adjointness on inputs (lem-
mas 27 and 63):

let 〈x2, x′2〉= Ee,A1×A′1,A2×A′2
Jt1K in

let x1 = Ep,A1,A2 x2 in

let x′1 = Ep,A′1,A′2
x′2 in

Ee,B1,B2Jt′1K

v let 〈x2, x′2〉=

let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

Jt2K

 in

let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

Jt′2K

8.
Φ, x1 v x2 : A1 v A1 � t1 v t2 : B1 v B2

Φ � λ(x1 : A1). t1 v λ(x2 : A2). t2 : A1→ B1 v A2→ B2
. Expand-

ing definitions, we need to show

JΓ1K � let x f = λ(x1 : JA1K). Jt1K in

λ(x2 : A2). Ee,B1,B2 x f (Ep,A1,A2 x2)

v let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

λ(x2 : A2). Jt2K



3.6 graduality from ep pairs 79

First we simplify by performing some open β reductions on the
left and let-λ equivalence and a commuting conversion (lem-
mas 33, 35 and 37):

let x f = λ(x1 : JA1K). Jt1K in

λ(x2 : A2). Ee,B1,B2 x f (Ep,A1,A2 x2)

wv λ(x2 : A2). Ee,B1,B2 let x1 = Ep,A1,A2 x2 in

Jt1K

wv λ(x2 : A2). let x1 = Ep,A1,A2 x2 in

Ee,B1,B2Jt1K

and on the right, we move the embedding into the body, which is
justified because embeddings are essentially values (lemmas 40

and 43):

let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

λ(x2 : A2). Jt2K

wv λ(x2 : A2). let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

Jt2K

The final step is justified by congruence lemma 27 and adjoint-
ness on inputs lemma 63 and the premise:

λ(x2 : A2). let x1 = Ep,A1,A2 x2 in

Ee,B1,B2Jt1K

wv λ(x2 : A2). let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

Jt2K

9.
Φ � t1 v t2 : A1→ B1 v A2→ B2 Φ � s1 v s2 : A1 v A2

Φ � t1 s1 v t2 s2 : B1 v B2
. Ex-

panding definitions, we need to show

JΓ1K � Ee,B1,B2Jt1K Js1K v let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

Jt2K Js2K

: JB2K

First, we duplicate the embedding on the right hand side, jus-
tified by purity of embeddings, to set up a use of congruence
later:

let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

Jt2K Js2K

wvlet JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

Jt2K


let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

Js2K





80 graduality from embedding projection pairs

Next, we use linearity of evaluation contexts lemma 36 so that
we can do reductions at the application site without worrying
about evaluation order:

Ee,B1,B2Jt1K Js1K wv let x f = Jt1K in

let xa = Js1K in

Ee,B1,B2 x f xa

Next, we ep-expand x f (theorem 14) and perform some β reduc-
tions, use the ep property and then reverse the use of linearity.

let x f = Jt1K in

let xa = Js1K in

Ee,B1,B2 x f xa

wv let x f = Jt1K in

let xa = Js1K in

Ee,B1,B2 Ep,A1→B1,A2→B2 Ee,A1→B1,A2→B2 x f xa

(open β, 33) wv let x f = Jt1K in

let xa = Js1K in

Ee,B1,B2 Ep,B1,B2

(
Ee,A1→B1,A2→B2 x f

)
(Ee,A1,A2 xa)

(ep pair, 14) v let x f = Jt1K in

let xa = Js1K in(
Ee,A1→B1,A2→B2 x f

)
(Ee,A1,A2 xa)

(linearity, 36) wv (Ee,A1→B1,A2→B2Jt1K) (Ee,A1,A2Js1K)

With the final step being congruence lemma 27:

(Ee,A1→B1,A2→B2Jt1K) (Ee,A1,A2Js1K)

wv

let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

Jt2K


let JΓ2K= Ee,Γ1,Γ2 [JΓ1K] in

Js2K



3.7 related work and discussion

differences with New and Ahmed [56] The presentation
here is mostly the same as in the original paper New and Ahmed [56],
but there are a few notable differences. First, I model surface syntax
and reasoning about surface programs in the previous chapter, since
this is where programmer reasoning is relevant, including explicitly
describing βη equality. Second, the surface calculi here have only
booleans, since these are typically supported by a dynamic language,
whereas in that paper we supported arbitrary sums. Finally, the origi-
nal paper heavily used intermediate semantic notions of contextual
equivalence and contextual error approximation, and defines the grad-
uality theorem in terms of these. Instead I simply define semantic



3.7 related work and discussion 81

equivalence and approximation for closed terms, and then define a
logical relation that is sound with respect to this notion. Since our syn-
tactic relations of βη equivalence and term precision are closed under
program contexts, defining this intermediate notion is unnecessary.

types as ep pairs The interpretation of types as retracts of a single
domain originated in Scott [67] and is a common tool in denotational
semantics, especially in the presence of a convenient universal domain.
A retraction is a pair of morphisms s : A→ B, r : B→ A that satisfy
the retraction property r ◦ s = idA, but not necessarily the projection
property s ◦ r verr idB. Thus ep pair semantics can be seen as a more
refined retraction semantics. Retractions have been used to study
interaction between typed and untyped languages, e.g., see Benton [9]
and (Favonia), Benton, and Harper [21].

Embedding-projection pairs are used extensively in domain theory
as a technical device for solving non-well-founded domain equations,
such as the semantics of a dynamic type. In this paper, our error-
approximation ep pairs do not play this role, and instead the retraction
and projection properties are desirable in their own right for their
intuitive meaning for type checking.

Many of the properties of our embedding-projection pairs are an-
ticipated in Henglein [38] and Thatte [80]. Henglein [38] defines a
language with a notion of coercion A B that corresponds to general
casts, with primitives of tagging tc! : tc(?, . . .)  ? and untagging
tc? : ? tc(?, . . .) for every type constructor “tc”. Crucially, Henglein
notes that tc!; tc? is the identity modulo efficiency and that tc?; tc!
errors more than the identity. Furthermore, they define classes of “pos-
itive” and “negative” coercions that correspond to embeddings and
projections, respectively, and a “subtyping” relation that is the same
as type precision. They then prove several theorems analogous to our
results:

1. (Retraction) For any pair of positive coercion p : A  B, and
negative coercion n : B A, they show that p; n is equal to the
identity in their equational theory.

2. (Almost projection) Dually, they show that n; p is equal to the
identity assuming that tc?; tc! is equal to the identity for every
type constructor.

3. They show every coercion factors as a positive cast to ? followed
by a negative cast to ?.

4. They show that A ≤ B if and only if there exists a positive
coercion A B and a negative coercion B A.

They also prove factorization results that are similar to our factoriza-
tion definition of semantic type precision, but it is unclear if their
theorem is stronger or weaker than ours. One major difference is that



82 graduality from embedding projection pairs

their work is based on an equational theory of casts, whereas ours is
based on notions of observational equivalence and approximation of a
standard call-by-value language. Furthermore, in defining our notion
of observational error approximation, we provide a more refined pro-
jection property, justifying their use of the term “safer” to compare
p; e and the identity.

The system presented in Thatte [80], called “quasi-static typing”
is a precursor to gradual typing that inserts type annotations into
dynamically typed programs to make type checking explicit. There
they prove a desirable soundness theorem that says their type insertion
algorithm produces an explicitly coercing term that is minimal in that
it errors no more than the original dynamic term. They prove this
minimality theorem with respect to a partial order w defined as a
logical relation over a domain-theoretic semantics that (for the types
they defined) is analogous to our error ordering for the operational
semantics. However, they do not define our operational formulation of
the ordering as contextual approximation, linked to the denotational
definition by the adequacy result, nor that any casts form embedding-
projection pairs with respect to this ordering.

Finally, we note that neither of these papers [38, 80] extends the
analysis to anything like graduality.

semantics of casts Superficially similar to the embedding-
projection pair semantics are the threesome casts of Siek and Wadler [72].
A threesome cast factorizes an arbitrary cast A⇒ B through a third
type C as a downcast A ⇒ C followed by an upcast C ⇒ B, whereas
ep-pair semantics factorizes a cast as an upcast A⇒ ? followed by a
downcast ?⇒ B. Threesome casts can be used to implement gradual
typing in a space-efficient manner, the third type C is used to collapse
a sequence of arbitrarily many casts into just the two. EP-pair seman-
tics does not directly provide an efficient implementation, in fact it
is one of the most naïve implementation techniques. However, we
have shown that using ep pairs helps prove graduality, and we view
them as the nice specification, whereas threesomes are a principled
implementation technique.

Recently, work on dependent interoperability [15, 16] has identified
Galois connections as a semantic formulation for casting between more
and less precise types in a non-gradual dependently typed language,
and conjectures that this should relate to type precision. We confirm
their conjecture in showing that the casts in gradual typing satisfy the
slightly stronger property of being embedding-projection pairs and
used it to explain the cast semantics of gradual typing and graduality.

pairs of projections and blame One of the main inspira-
tions for this work is the analysis of contracts in Findler and Blume
[24]. Most relevant for our purposes is the notion of contracts as



3.7 related work and discussion 83

error projections and the refinement to pairs of projections. While sim-
ple assertion-based contracts are presented by boolean predicates,
higher-order contracts instead coerce values to behave according to the
specification [24].

An error projection c on a type B is a function from B to itself
satisfying two properties:

1. Idempotence: c ◦ c = c

2. Projection: c verr id

The intuition is that c “forces” a value of B to behave according to some
specification. Idempotence says that once something is forced to satisfy
the specification, forcing it again makes no observable difference
because it already satisfies the specification. Projection is analogous
to graduality: it says that enforcing a contract only adds errors to a
value’s behavior. Here verr is not formally defined but is analogous to
the error ordering in the graduality theorem.

There is a close technical connection between error projections and
embedding-projection pairs. First, from any embedding-projection
pair from A to B I can construct an error projection on B. Given an
embedding e : A → B and corresponding projection p : B → A,
the composite e ◦ p : B → B is an error projection. Idempotence
follows from the retraction property, and projection from the projection
property of ep pairs. In a sufficiently rich semantic setting, any error
projection c can be “split” into an embedding-projection pair from Bc to
B, where the elements of the domain Bc are defined to be the elements
of B that are invariant under the projection: c(b) = b. Intuitively these
elements are the ones that “satisfy” the contract: invariance means
that applying the contract results in no observable change in behavior.
This constitutes an equivalence between the concepts of an ep pair
and an error projection, so my work can be seen as a continuation of
this work that emphasizes a more intrinsically typed view of contracts.
Furthermore, Findler and Blume [24] models contracts as pairs of
projections, one of which enforces the positive aspect of the contract
and the other the negative. I argue that this idea is better modeled
by embedding-projection pairs: the embedding enforces the negative
aspects and the projection the positive aspects, but similar to “manifest”
contracts [32] this is encoded in the type system so the embedding
and projection are typed and mediate between a more precise and less
precise type.

Findler and Blume’s analysis of blame was adapted to gradual typ-
ing in Wadler and Findler [88] and plays a complementary role to our
analysis: they use the precision relation to help prove the blame sound-
ness theorem, whereas we use it to prove graduality. We discuss the
relationship between blame safety and purity of embeddings/linearity
of projections in Chapter 5





Part II

G R A D UA L T Y P E T H E O RY: A X I O M AT I Z I N G
G R A D UA L T Y P I N G





4
I N T R O D U C T I O N T O PA RT I I

We have now seen how embedding-projection pairs can provide a
basis for the semantics of a simple gradually typed language that
satisfies graduality and type-based reasoning principles. In the next
chapter, we explore the extent to which these reasoning principles
limit the design space of gradual typing: what design choices are left
to make once we are committed to graduality and βη equality? It turns
out that the “wrapping” semantics of casts is the only semantics that
satisfies graduality and βη equality. This theorem can be employed to
produce violations of βη equality in alternative semantics that satisfy
graduality.

We prove this theorem by taking an axiomatic approach to gradual
typing, i.e. axiomatizing the semantic term precision property to
additionally be closed under our desired βη equalities. As mentioned
previously, βη equality is quite sensitive to evaluation order, so to
maximize the generality of our result, we base our axiomatics on
Call-by-push-value (CBPV), a metalanguage that includes as fragments
call-by-value, call-by-name and “lazy” evaluation orders.

In Chapter 5, we review our framework, called Gradual Type Theory
(GTT) and show how the semantics of casts are derivable from βη

equality. Then in Chapter 6, we show how we can use the standard
elaborations of call-by-value, call-by-name and “lazy” evaluation or-
ders into GTT to show how the single theory of GTT reproduces
previously disparate approaches to cast semantics for different evalua-
tion orders. Finally, in Chapter 7, we construct operational models of
GTT by translation to CBPV.

Chapters 5 and 7 are based on New, Licata, and Ahmed [60], while
Chapter 6 is novel material.

87





5
G R A D UA L T Y P E T H E O RY

5.1 goals

Note: the contents
of this section are
based on the
paper Gradual
Type Theory
co-authored with
Amal Ahmed and
Daniel Licata and
published at
POPL 2018

In the previous chapters I have shown that the view of gradual types as
embedding-projection pairs into the dynamic type helps to prove type
soundness and graduality of a gradual language, i.e., that the theory
of embedding-projection pairs is sufficient to develop the metatheory
of some sound gradual languages. The goal of the work presented in
this section is to study the converse: to what extent is the theory of
embedding-projection pairs inherent to the study of sound gradually
typed languages? We will also address another fundamental question:
how much is the design of gradually typed languages constrained by
the requirements of βη equality and graduality? The gradual typing
and contract literature exhibits a great deal of work on the “design
space” of cast semantics. Which of these designs validate our desired
reasoning principles?

These seemingly disparate questions will both be addressed us-
ing the same technique: an axiomatization of the reasoning prin-
ciples we desire: graduality and βη equivalence. Then we will see
the embedding-projection pair semantics is a natural consequence of
graduality, and that in some cases, the behavior of casts is uniquely
determined by the constraints of βη equality and graduality.

5.1.1 Exploring the Design Space

The linchpin to the design of a gradually typed language is the seman-
tics of the casts. These runtime checks ensure that typed reasoning
principles are valid by checking types of dynamically typed code at
the boundary between static and dynamic typing. For instance, when
a statically typed function f : Num→ Num is applied to a dynamically
typed argument x : ?, the language runtime must check if x is a num-
ber, and otherwise raise a dynamic type error. A programmer familiar
with dynamically typed programming might object that this is overly
strong: for instance, if f is just a constant function f = λx : Num.0 then
why bother checking if x is a number since the body of the program
does not seem to depend on it? The reason the value is rejected is
because the annotation x : Num should introduce an assumption that
that the programmer, compiler and automated tools can rely on for
behavioral reasoning in the body of the function. For instance, if the
variable x is guaranteed to only be instantiated with numbers, then the
programmer is free to replace 0 with x− x or vice-versa. However, if x

89



90 gradual type theory

can be instantiated with a closure, then x− x will raise a runtime type
error while 0 will succeed, violating the programmers intuition about
the correctness of refactorings. We can formalize such relationships
by observational equivalence of programs: the two closures λx : Num.0
and λx : Num.x− x are indistinguishable to any other program in the
language.

The above is precisely the difference between gradual typing and
so-called optional typing: in an optionally typed language (Hack, Type-
Script, Flow), annotations are checked for consistency but are unreli-
able to the user, so do not provide a sound foundation for reasoning in
general. We have very much of the syntactic discipline of static typing
but very little of the semantic rewards. In a gradually typed language,
type annotations should relieve the programmer of the burden of
reasoning about incorrect inputs, as long as we are willing to accept
that the program as a whole may crash, which is already a possibility
in many effectful statically typed languages.

However, the dichotomy between gradual and optional typing is not
as firm as one might expect. There have been many different proposed
semantics of run-time type checking: “transient” cast semantics [87]
only checks the head connective of a type (number, function, list,
. . . ), “eager” cast semantics [39] checks run-time type information
on closures, whereas “lazy” cast semantics [25] will always delay
a type-check on a function until it is called (and there are other
possibilities, see e.g. [31, 73]). The extent to which these different
semantics have been shown to validate type-based reasoning has
been limited to syntactic gradual type soundness and blame soundness
theorems. In their strongest form, these theorems say: “If t is a closed
program of type A then it diverges, or reduces to a runtime error
blaming dynamically typed code, or reduces to a value that satisfies
A to a certain extent.” However, the theorem at this level of generality
is quite weak, and justifies almost no program equivalences without
more information. Saying that a resulting value satisfies type A might
be a strong statement, but in transient semantics constrains only the
head connective. The blame soundness theorem might also be quite
strong, but depends on the definition of blame, which is part of the
operational semantics of the language being defined.

We argue that existing gradual type soundness theorems are only
indirectly expressing the actual desired properties of the gradual lan-
guage, which are program equivalences in the typed portion of the code that
are not valid in the dynamically typed portion. These typed equiva-
lences are essential for ensuring that any reasoning about refactoring
or optimization of code that is valid in a fully static setting is also
valid for statically typed portions of a gradually typed program. Thus,
preserving appropriate typed equivalences—the ones that justify refac-
toring and optimization—should be one of the criteria that gradually
typed languages should satisfy.



5.1 goals 91

So what are the program equivalences that hold in statically typed
portions of the code but not in dynamically typed portions? They
typically include β-like principles, which arise from computation steps,
as well as η equalities, which express the uniqueness or universality of
certain constructions.

The η law of the untyped λ-calculus, which states that any λ-term
M ≡ λx.Mx, is restricted in a typed language to only hold for terms
of function type M : A → B (i.e., λ is the unique/universal way of
making an element of the function type). This famously “fails” to
hold in call-by-value languages in the presence of effects: if M is a
program that prints "hello" before returning a function, then M will
print now, whereas λx.Mx will only print when given an argument.
But this can be accommodated with one further modification: the η

law is valid in simple call-by-value languages1 (e.g. SML) if we have a
“value restriction” V ≡ λx.Vx.

The above illustrates that η/extensionality rules must be stated for
each type connective, and be sensitive to the effects/evaluation order
of the terms involved. For instance, the η principle for the boolean
type Bool in call-by-value is that for any term M with a free variable
x : Bool, M is equivalent to a term that performs an if statement on x:

M ≡ if x then M[true/x] else M[false/x].

If we have an if form that is strongly typed (i.e., errors on non-
booleans) then this tells us that it is safe to run an if statement on
any input of boolean type (in CBN, by contrast an if statement forces
a thunk and so is not necessarily safe). In addition, even if our if

statement does some kind of coercion, this tells us that the term M
only cares about whether x is “truthy” or “falsy” and so a client is free
to change e.g. one truthy value to a different one without changing
behavior.

This η principle justifies a number of program optimizations, such
as dead-code and common subexpression elimination, and hoisting
an if statement outside of the body of a function if it is well-scoped:

λx.if y then M else N ≡ if y then λx.M else λx.N.

Any eager datatype, one whose elimination form is given by pattern
matching such as 0,+, 1,×, list, has a similar η principle which en-
ables similar reasoning, such as proofs by induction. The η principles
for lazy types in call-by-name support dual behavioral reasoning about
lazy functions, records, and streams.

1 This does not hold in languages with some intensional feature of functions such as
reference equality. We discuss the applicability of our main results more generally in
§5.4.



92 gradual type theory

5.1.2 An Axiomatic Approach to Gradual Typing

In this paper, we systematically study questions of program equiv-
alence for a class of gradually typed languages by working in an
axiomatic theory of gradual program equivalence, a language and logic
we call gradual type theory (GTT). Gradual type theory is the combina-
tion of a language of terms and gradual types with a simple logic for
proving program equivalence and error approximation (equivalence up
to one program erroring when the other does not) results. The logic
axiomatizes the equational properties gradual programs should sat-
isfy, and offers a high-level syntax for proving theorems about many
languages at once: if a language models gradual type theory, then it
satisfies all provable equivalences/approximations. Due to its type-
theoretic design, different axioms of program equivalence are easily
added or removed. The critical benefit of gradual type theory (GTT) is
that it can be used both to explore language design questions and to
verify behavioral properties of specific programs, such as correctness
of optimizations and refactorings.

To get off the ground, we take two properties of the gradual lan-
guage for granted. First, we assume a compositionality property: that
any cast from A to B can be factored through the dynamic type ?, i.e.,
the cast 〈B⇐ A〉t is equivalent to first casting up from A to ? and then
down to B: 〈B ⇐ ?〉〈? ⇐ A〉t. These casts often have quite different
performance characteristics, but should have the same extensional
behavior: of the cast semantics presented in Siek, Garcia, and Taha
[73], only the partially eager detection strategy violates this principle,
and this strategy is not common.

The second property we take for granted is that the language satis-
fies graduality, that if we change the types in a program to be more
precise the program will either produce the same behavior as the
original or raise a dynamic type error. Conversely, if a program does
not error and some types are made “less precise” then behavior does
not change.

Next, we study what program equivalences are provable in GTT
under various assumptions. Our central application is to study when
the β, η equalities are satisfied in a gradually typed language. We
approach this problem by a surprising tack: rather than defining the
behavior of dynamic type casts and then verifying or invalidating the
β and η equalities, we assume the language satisfies β and η equality
and then show that certain reductions of casts are in fact program
equivalence theorems deducible from the axioms of GTT.

The cast reductions that we show satisfy all three constraints are
those given by the “lazy cast semantics” [25, 73]. As a contrapositive,
any gradually typed language for which these reductions are not
program equivalences is not a model of the axioms of gradual type
theory. This mean the language violates either compositionality, the



5.1 goals 93

gradual guarantee, or one of the β, η axioms—and in practice, it is
usually η.

For instance, a transient semantics, where only the top-level connec-
tives are checked, violates η for strict pairs

x : A1 × A2 ` (let (x1, x2) = x; 0) 6≡ 0

because the top-level connectives of A1 and A2 are only checked when
the pattern match is introduced. As a concrete counterexample to con-
textual equivalence, let A1, A2 all be String. Because only the top-level
connective is checked, (0, 1) is a valid value of type String× String,
but pattern matching on the pair ensures that the two components are
checked to be strings, so the left-hand side raises a type error:

let (x1, x2) = (0, 1); 0 7→ f.

On the right-hand side, with no pattern match, 0 is returned. This
means simple program changes that are valid in a typed language,
such as changing a function of two arguments to take a single pair of
those arguments, are invalidated by the transient semantics. In sum-
mary, transient semantics is “lazier” than the types dictate, catching
errors only when the term is inspected.

As a subtler example, in call-by-value “eager cast semantics” the
βη principles for all of the eager datatypes (0,+, 1,×, lists, etc.) will
be satisfied, but the η principle for the function type → is violated:
there are values V : A → A′ for which V 6= λx : A.Vx. For instance,
take an arbitrary function value V : A→ String for some type A, and
let V ′ = 〈A→ ? ⇐ A→ String〉V be the result of casting it to have
a dynamically typed output. Then in eager semantics, the following
programs are not equivalent:

λx : A.V ′x 6= V ′ : A→ ?

We cannot observe any difference between these two programs by
applying them to arguments, however, they are distinguished from
each other by their behavior when cast. Specifically, if we cast both
sides to A → Number, then 〈A→ Number ⇐ A→ ?〉(λx : A.V ′x) is
a value, but 〈A→ Number ⇐ A→ ?〉V ′ reduces to an error because
Number is incompatible with String. However this type error might
not correspond to any actual typing violation of the program involved.
For one thing, the resulting function might never be executed. Further-
more, in the presence of effects, it may be that the original function
V : A→ String never returns a string (because it diverges, raises an
exception or invokes a continuation), and so that same value casted
to A → Number might be a perfectly valid inhabitant of that type.
In summary the “eager” cast semantics is in fact overly eager: in its
effort to find bugs faster than “lazy” semantics it disables the very
type-based reasoning that gradual typing should provide.



94 gradual type theory

While criticisms of transient semantics on the basis of type sound-
ness have been made before [33], our development shows that the η

principles of types are enough to uniquely determine a cast semantics,
and helps clarify the trade-off between eager and lazy semantics of
function casts.

5.1.3 Technical Overview of GTT

In this chapter, we develop an axiomatic gradual type theory GTT for a
unified language that includes both call-by-value/eager types and call-
by-name/lazy types (Sections 5.2, 5.3). Later in Chapter 7, we show
that it is sound for contextual equivalence via a logical relations model.
Because the η principles for types play a key role in our approach,
it is necessary to work in a setting where we can have η principles
for both eager and lazy types. We use Levy’s Call-by-Push-Value [45]
(CBPV), which fully and faithfully embeds both call-by-value and
call-by-name evaluation with both eager and lazy datatypes,2 and
underlies much recent work on reasoning about effectful programs [8,
47]. GTT can prove results in and about existing call-by-value gradually
typed languages, and also suggests a design for call-by-name and full
call-by-push-value gradually typed languages.

A type precision relation A v A′ (read: A is more precise than A′,
as in Siek et al. [75] and naïve subtyping [88]) controls which casts
exist: a type precision A v A′ induces an upcast from A to A′ and a
downcast from A′ to A. Then, a term precision judgement is used for
equational/approximational reasoning about programs. Term preci-
sion relates two terms whose types are related by type precision, and
the upcasts and downcasts are each specified by certain term precision
judgements holding. This specification axiomatizes only the properties
of casts needed to ensure the graduality theorem, and not their precise
behavior, so cast reductions can be proved from it, rather than stipu-
lated in advance. The specification defines the casts “uniquely up to
equivalence”, which means that any two implementations satisfying it
are behaviorally equivalent.

We generalize this axiomatic approach to call-by-push-value (§5.2),
where there are both eager/value types and lazy/computation types.
This is both a subtler question than it might at first seem, and has a
surprisingly nice answer: we find that upcasts are naturally associated
with eager/value types and downcasts with lazy/computation types,
and that the modalities relating values and computations induce the
downcasts for eager/value types and upcasts for lazy/computation
types. Moreover, this analysis articulates an important behavioral
property of casts that was proved operationally for call-by-value in
[56] but missed for call-by-name in [58]: upcasts for eager types and

2 The distinction between “lazy” vs “eager” casts above is different than lazy vs. eager
datatypes.



5.2 axiomatic gradual type theory 95

downcasts for lazy types are both “pure” in a suitable sense, which
enables more refactorings and program optimizations. In particular,
we show that these casts can be taken to be (and are essentially forced
to be) “complex values” and “complex stacks” (respectively) in call-by-
push-value, which corresponds to a behavioral property of thunkability
and linearity [53]. We argue in §5.4 that this property is related to
blame soundness.

Our gradual type theory naturally has two dynamic types, a dy-
namic eager/value type and a dynamic lazy/computation type, where
the former can be thought of as a sum of all possible values, and the
latter as a product of all possible behaviors. At the language design
level, gradual type theory can be used to prove that, for a variety
of eager/value and lazy/computation types, the “lazy” semantics of
casts is the unique implementation satisfying β, η and graduality (§5.3).
These behavioral equivalences can then be used in reasoning about
optimizations, refactorings, and correctness of specific programs.

5.1.4 Contributions.

The main contributions of the chapter are as follows.

1. We present Gradual Type Theory in §5.2, a simple axiomatic
theory of gradual typing. The theory axiomatizes three simple
assumptions about a gradual language: compositionality, gradu-
ality, and type-based reasoning in the form of η equivalences.

2. We prove many theorems in the formal logic of Gradual Type
Theory in §5.3. These include the unique implementation theo-
rems for casts, which show that for each type connective of GTT,
the η principle for the type ensures that the casts must imple-
ment the lazy contract semantics. Furthermore, we show that
upcasts are always pure functions and dually that downcasts
are always strict functions, as long as the base type casts are
pure/strict.

In the following chapters, we will substantiate that our axiomatic
theory is reasonable by (1) in Chapter 6 showing that GTT justifies
surface language evaluation orders by elaborating them into GTT
and (2) in Chapter 7 by constructing operational models of GTT that
explicitly construct interpretations of the dynamic types as recursive
types and give an operational semantics for which our axiomatic
semantics is sound.

5.2 axiomatic gradual type theory

In this section we introduce the syntax of Gradual Type Theory, an
extension of Call-by-push-value [45] to support the constructions



96 gradual type theory

A ::= ? | UB | 0 | A1 + A2 | 1 | A1 × A2

B ::= ¿ | FA | > | B1 & B2 | A→ B

T ::= A | B

V ::=
〈A′ � A〉V | x | thunk M | abort V | inl V | inr V | case V{x1.V1 | x2.V2}
| () | split V to ().V′ | (V1, V2) | let (x, y) = V; V′

M, S ::=
〈B � B′〉M | • | fB | force V | abort V | case V{x1.M1 | x2.M2}
| split V to ().M | let (x, y) = V; M

| ret V | x ← M; N | {} | (M1, M2) | πM | π′M | λx : A.M | M V

E ::= V | M

Γ ::= · | Γ, x : A

∆ ::= · | • : B

Φ ::= · | Φ, x v x′ : A v A′

Ψ ::= · | • v • : B v B′

Figure 5.1: GTT Type and Term Syntax

of gradual typing. First we introduce call-by-push-value and then
describe in turn the gradual typing features: dynamic types, casts, and
the precision orderings on types and terms.

5.2.1 Background: Call-by-Push-Value

We present the syntax of GTT types and terms in Figure 5.1, and
the typing rules in Figure 5.2. GTT is an extension of CBPV, so we
first present CBPV as the unshaded rules in Figure 5.1. CBPV makes
a distinction between value types A and computation types B, where
value types classify values Γ ` V : A and computation types classify
computations Γ ` M : B. Effects are computations: for example, we
might have an error computation fB : B of every computation type,
or printing print V; M : B if V : string and M : B, which prints V
and then behaves as M.

value types and complex values The value types include
eager products 1 and A1 × A2 and sums 0 and A1 + A2, which behave
as in a call-by-value/eager language (e.g. a pair is only a value when
its components are). The notion of value V is more permissive than
one might expect, and expressions Γ ` V : A are sometimes called
complex values to emphasize this point: complex values include not



5.2 axiomatic gradual type theory 97

Γ ` V : A and Γ | ∆ ` M : B

UpCast

Γ ` V : A A v A′

Γ ` 〈A′ � A〉V : A′

DnCast

Γ | ∆ ` M : B′ B v B′

Γ | ∆ ` 〈B � B′〉M : B

Var

Γ, x : A, Γ′ ` x : A

Hole

Γ | • : B ` • : B

Err

Γ | · ` fB : B

UI
Γ | · ` M : B

Γ ` thunk M : UB

UE
Γ ` V : UB

Γ | · ` force V : B

FI
Γ ` V : A

Γ | · ` ret V : FA

FE
Γ | ∆ ` M : FA Γ, x : A | · ` N : B

Γ | ∆ ` x ← M; N : B

0E
Γ ` V : 0

Γ | ∆ ` abort V : T

+Il
Γ ` V : A1

Γ ` inl V : A1 + A2

+Ir
Γ ` V : A2

Γ ` inr V : A1 + A2

+E
Γ ` V : A1 + A2

Γ, x1 : A1 | ∆ ` E1 : T
Γ, x2 : A2 | ∆ ` E2 : T

Γ | ∆ ` case V{x1.E1 | x2.E2} : T

1I

Γ ` () : 1

1E
Γ ` V : 1 Γ | ∆ ` E : T

Γ | ∆ ` split V to ().E : T

×I
Γ ` V1 : A1 Γ ` V2 : A2

Γ ` (V1, V2) : A1 × A2

×E
Γ ` V : A1 × A2

Γ, x : A1, y : A2 | ∆ ` E : T

Γ | ∆ ` let (x, y) = V; E : T

→I
Γ, x : A | ∆ ` M : B

Γ | ∆ ` λx : A.M : A→ B

→E
Γ | ∆ ` M : A→ B Γ ` V : A

Γ | ∆ ` M V : B

>I

Γ | ∆ ` {} : >

&I
Γ | ∆ ` M1 : B1 Γ | ∆ ` M2 : B2

Γ | ∆ ` (M1, M2) : B1 & B2

&E
Γ | ∆ ` M : B1 & B2

Γ | ∆ ` πM : B1

&E’
Γ | ∆ ` M : B1 & B2

Γ | ∆ ` π′M : B2

Figure 5.2: GTT Typing



98 gradual type theory

only closed runtime values, but also open values that have free value
variables (e.g. x : A1, x2 : A2 ` (x1, x2) : A1× A2), and expressions that
pattern-match on values (e.g. p : A1 × A2 ` let (x1, x2) = p; (x2, x1) :
A2× A1). Thus, the complex values x : A ` V : A′ are a syntactic class
of “pure functions” from A to A′ (though there is no pure function
type internalizing this judgement), which can be treated like values
by a compiler because they have no effects (e.g. they can be dead-
code-eliminated, common-subexpression-eliminated, and so on). In
focusing [7] terminology, complex values consist of left inversion
and right focus rules. For each pattern-matching construct (e.g. case
analysis on a sum, splitting a pair), we have both an elimination rule
whose branches are values (e.g. let (x1, x2) = p; V) and one whose
branches are computations (e.g. let (x1, x2) = p; M). To abbreviate
the typing rules for both in Figure 5.2, we use the following convention
defined in Figure 5.1: E for either a complex value or a computation,
and T for either a value type A or a computation type B, and a
judgement Γ | ∆ ` E : T for either Γ ` V : A or Γ | ∆ ` M : B .this is a bit of an

abuse of notation
because ∆ is not

present in the
former

Complex values can be translated away without loss of expressiveness
by moving all pattern-matching into computations (see §7.3), at the
expense of using a behavioral condition of thunkability [53] to capture
the properties complex values have, such as being reordered, (de-
)duplicated, etc.

shifts A key notion in CBPV is the shift types FA and UB, which
mediate between value and computation types: FA is the computation
type of potentially effectful programs that return a value of type
A, while UB is the value type of thunked computations of type B.
The introduction rule for FA is returning a value of type A (ret V),
while the elimination rule is sequencing a computation M : FA with
a computation x : A ` N : B to produce a computation of a B
(x ← M; N). While any closed complex value V is equivalent to an
actual value, a computation of type FA might perform effects (e.g.
printing) before returning a value, or might error or diverge and not
return a value at all. The introduction and elimination rules for U are
written thunk M and force V, and say that computations of type B
are bijective with values of type UB. As an example of the action of the
shifts, 0 is the empty value type, so F0 classifies effectful computations
that never return, but may perform effects (and then, must e.g. diverge
or error), while UF0 is the value type where such computations are
thunked/delayed and considered as values. 1 is the trivial value type,
so F1 is the type of computations that can perform effects with the
possibility of terminating successfully by returning (), and UF1 is
the value type where such computations are delayed values. UF is a
monad on value types [51], while FU is a comonad on computation
types.



5.2 axiomatic gradual type theory 99

computation types The computation type constructors in CBPV
include first the lazy unit > and lazy product B1 & B2, which behave as
in a call-by-name language (e.g. a component of a lazy pair is evaluated
only when it is projected). Functions A → B have a value type as
input and a computation type as a result. The equational theory of
effects in CBPV computations may be surprising to those familiar only
with call-by-value, because at higher computation types effects have
a call-by-name-like equational theory. For example, at computation
type A → B, we have an equality print c; λx.M = λx.print c; M.
Intuitively, the reason is that A → B is not treated as an observable
type (one where computations are run): the states of the operational
semantics are only those computations of type FA for some value
type A. Thus, “running” a function computation means supplying it
with an argument, and applying both of the above to an argument
V is defined to result in print c; M[V/x]. This does not imply that
the corresponding equations holds for the call-by-value function type,
which we discuss below. As another example, all computations are
considered equal at type >, even computations that perform different
effects (print c vs. {} vs. f), because there is by definition no way
to extract an observable type FA from a computation of type >.
Consequently, U> is isomorphic to 1.

complex stacks Just as the complex values V are a syntactic class
terms that have no effects, CBPV includes a judgement for “stacks”
S, a syntactic class of terms that reflect all effects of their input. A
stack Γ | • : B ` S : B′ can be thought of as a linear/strict function
from B to B′, which must use its input hole • exactly once at the head
redex position. Consequently, effects can be hoisted out of stacks,
because we know the stack will run them exactly once and first.
For example, there will be contextual equivalences S[f/•] = f and
S[print V; M] = print V; S[M/•]. Just as complex values include
pattern-matching, complex stacks include pattern-matching on values
and introduction forms for the stack’s output type. For example,
• : B1 & B2 ` (π′•, π•) : B2 & B1 is a complex stack, even though it
mentions • more than once, because running it requires choosing a
projection to get to an observable of type FA, so each time it is run it
uses • exactly once. In focusing terms, complex stacks include both
left and right inversion, and left focus rules. In the equational theory
of CBPV, F and U are adjoint, in the sense that stacks • : FA ` S : B
are bijective with values x : A ` V : UB, as both are bijective with
computations x : A ` M : B.

To compress the presentation in Figure 5.2, we use a typing judge-
ment Γ | ∆ ` M : B with a “stoup”, a typing context ∆ that is either
empty or contains exactly one assumption • : B, so Γ | · ` M : B is a
computation, while Γ | • : B ` M : B′ is a stack. The typing rules for
> and & treat the stoup additively (it is arbitrary in the conclusion



100 gradual type theory

and the same in all premises); for a function application to be a stack,
the stack input must occur in the function position. The elimination
form for UB, force V, is the prototypical non-stack computation (∆
is required to be empty), because forcing a thunk does not use the
stack’s input.

embedding call-by-value and call-by-name To translate
from call-by-value (CBV) to CBPV, a CBV expression x1 : A1, . . . , xn :
An ` e : A is interpreted as a computation x1 : Av

1, . . . , xn : Av
n `

ev : FAv, where call-by-value products and sums are interpreted as ×
and +, and the call-by-value function type A→ A′ as U(Av → FA′v).
Thus, a call-by-value term e : A→ A′, which should mean an effectful
computation of a function value, is translated to a computation ev :
FU(Av → FA′v). Here, the comonad FU offers an opportunity to
perform effects before returning a function value—so under translation
the CBV terms print c; λx.e and λx.print c; e will not be contextually
equivalent. To translate call-by-name (CBN) to CBPV, a judgement x1 :
B1, . . . , xm : Bm ` e : B is translated to x1 : UB1

n, . . . , xm : UBm
n ` en :

Bn, representing the fact that call-by-name terms are passed thunked
arguments. Product types are translated to > and ×, while a CBN
function B→ B′ is translated to UBn → B′n with a thunked argument.
Sums B1 + B2 are translated to F(UB1

n + UB2
n), making the “lifting”

in lazy sums explicit. Call-by-push-value subsumes call-by-value and
call-by-name in that these embeddings are full and faithful: two CBV
or CBN programs are equivalent if and only if their embeddings into
CBPV are equivalent, and every CBPV program with a CBV or CBN
type can be back-translated.

extensionality/η principles The main advantage of CBPV
for our purposes is that it accounts for the η/extensionality principles
of both eager/value and lazy/computation types, because value types
have η principles relating them to the value assumptions in the context
Γ, while computation types have η principles relating them to the
result type of a computation B. For example, the η principle for sums
says that any complex value or computation x : A1 + A2 ` E : T is
equivalent to case x{x1.E[inl x1/x] | x2.E[inr x2/x]}, i.e. a case on
a value can be moved to any point in a program (where all variables
are in scope) in an optimization. Given this, the above translations
of CBV and CBN into CBPV explain why η for sums holds in CBV
but not CBN: in CBV, x : A1 + A2 ` E : T is translated to a term
with x : A1 + A2 free, but in CBN, x : B1 + B2 ` E : T is translated to
a term with x : UF(UB1 + UB2) free, and the type UF(UB1 + UB2)

of monadic computations that return a sum does not satisfy the η

principle for sums in CBPV. Dually, the η principle for functions in
CBPV is that any computation M : A→ B is equal to λx.M x. A CBN
term e : B→ B′ is translated to a CBPV computation of type UB→ B′,



5.2 axiomatic gradual type theory 101

to which CBPV function extensionality applies, while a CBV term
e : A → A′ is translated to a computation of type FU(A → FA′),
which does not satisfy the η rule for functions. We discuss a formal
statement of these η principles with term precision below.

5.2.2 Gradual Typing in GTT

Next, we discuss the additions that make CBPV into our gradual type
theory GTT.

the dynamic type(s) A dynamic type plays a key role in gradual
typing, and since GTT has two different kinds of types, we have a
new question of whether the dynamic type should be a value type,
or a computation type, or whether we should have both a dynamic
value type and a dynamic computation type. Our modular, type-
theoretic presentation of gradual typing allows us to easily explore
these options, though we find that having both a dynamic value ? and
a dynamic computation type ¿ gives the most natural implementation
(see Chapter 7). Thus, we add both ? and ¿ to the grammar of types in
Figure 5.1. We do not give introduction and elimination rules for the
dynamic types, because we would like constructions in GTT to imply
results for many different possible implementations of them. Instead,
the terms for the dynamic types will arise from type precision and
casts.

5.2.2.1 Type Precision

The type precision relation of gradual type theory is written A v
A′ and read as “A is more precise than A′”; intuitively, this means
that A′ supports more behaviors than A. Our previous work [56,
58] analyzes this as the existence of an upcast from A to A′ and a
downcast from A′ to A which form an embedding-projection pair
(ep pair) for term error approximation (an ordering where runtime
errors are minimal): the upcast followed by the downcast is a no-op,
while the downcast followed by the upcast might error more than the
original term, because it imposes a run-time type check. Syntactically,
type precision is defined (1) to be reflexive and transitive (a preorder),
(2) where every type constructor is monotone in all positions, and
(3) where the dynamic type is greatest in the type precision ordering.
This last condition, the dynamic type is the most dynamic type, implies
the existence of an upcast 〈? � A〉 and a downcast 〈A � ?〉 for
every type A: any type can be embedded into it and projected from it.
However, this by design does not characterize ? uniquely—instead, it
is open-ended exactly which types exist (so that we can always add
more), and some properties of the casts are undetermined; we will
exploit this freedom in Chapter 7 when we explore some additional
types and axioms.



102 gradual type theory

A v A′ and B v B′

VTyRefl

A v A

VTyTrans

A v A′ A′ v A′′

A v A′′

CTyRefl

B v B′

CTyTrans

B v B′ B′ v B′′

B v B′′

VTyTop

A v ?

UMon

B v B′

UB v UB′

+Mon

A1 v A′1 A2 v A′2
A1 + A2 v A′1 + A′2

×Mon

A1 v A′1 A2 v A′2
A1 × A2 v A′1 × A′2

CTyTop

B v ¿

FMon

A v A′

FA v FA′

&Mon

B1 v B′1 B2 v B′2
B1 & B2 v B′1 & B′2

→Mon

A v A′ B v B′

A→ B v A′ → B′

Precision contexts
· dyn−vctx

Φ dyn−vctx A v A′

Φ, x v x′ : A v A′ dyn−vctx

· dyn−cctx
B v B′

(• v • : B v B′) dyn−cctx

Figure 5.3: GTT Type Precision and Precision Contexts

This extends in a straightforward way to CBPV’s distinction be-
tween value and computation types in Figure 5.3: there is a type
precision relation for value types A v A′ and for computation types
B v B′, which (1) each are preorders (VTyRefl, VTyTrans, CTyRefl,
CTyTrans), (2) every type constructor is monotone (+Mon, ×Mon,
&Mon ,→Mon) where the shifts F and U switch which relation is be-
ing considered (UMon, FMon), and (3) the dynamic types ? and ¿ are
the most dynamic value and computation types respectively (VTyTop,
CTyTop). For example, we have U(A → FA′) v U(? → F?), which
is the analogue of A → A′ v ? → ? in call-by-value: because → pre-
serves embedding-retraction pairs, it is monotone, not contravariant,
in the domain [56, 58].

5.2.2.2 Casts

It is not immediately obvious how to add type casts to CBPV, because
CBPV exposes finer judgemental distinctions than previous work
considered. However, we can arrive at a first proposal by considering



5.2 axiomatic gradual type theory 103

how previous work would be embedded into CBPV. In the previous
work on both CBV and CBN [56, 58] every type precision judgement
A v A′ induces both an upcast from A to A′ and a downcast from
A′ to A. Because CBV types are associated to CBPV value types and
CBN types are associated to CBPV computation types, this suggests
that each value type precision A v A′ should induce an upcast and a
downcast, and each computation type precision B v B′ should also
induce an upcast and a downcast. In CBV, a cast from A to A′ typically
can be represented by a CBV function A → A′, whose analogue in
CBPV is U(A → FA′), and values of this type are bijective with
computations x : A ` M : FA′, and further with stacks • : FA `
S : FA′. This suggests that a value type precision A v A′ should
induce an embedding-projection pair of stacks • : FA ` Su : FA′

and • : FA′ ` Sd : FA, which allow both the upcast and downcast
to a priori be effectful computations. Dually, a CBN cast typically
can be represented by a CBN function of type B→ B′, whose CBPV
analogue is a computation of type UB→ B′, which is equivalent with
a computation x : UB ` M : B′, and with a value x : UB ` V : UB′.
This suggests that a computation type precision B v B′ should induce
an embedding-projection pair of values x : UB ` Vu : UB′ and x :
UB′ ` Vd : UB, where both the upcast and the downcast again may a
priori be (co)effectful, in the sense that they may not reflect all effects
of their input.

However, this analysis ignores an important property of CBV casts
in practice: upcasts always terminate without performing any effects,
and in some systems upcasts are even defined to be values, while only
the downcasts are effectful (introduce errors). For example, for many
types A, the upcast from A to ? is an injection into a sum/recursive
type, which is a value constructor. Our previous work on a logical
relation for call-by-value gradual typing [56] proved that all upcasts
were pure in this sense as a consequence of the embedding-projection
pair properties (but their proof depended on the only effects being
divergence and type error). In GTT, we can make this property explicit
in the syntax of the casts, by making the upcast 〈A′ � A〉 induced
by a value type precision A v A′ itself a complex value, rather than
computation. On the other hand, many downcasts between value
types are implemented as a case-analysis looking for a specific tag
and erroring otherwise, and so are not complex values.

We can also make a dual observation about CBN casts. The downcast
arising from B v B′ has a stronger property than being a computation
x : UB′ ` M : B as suggested above: it can be taken to be a stack • :
B′ ` 〈B � B′〉• : B, because a downcasted computation evaluates the
computation it is “wrapping” exactly once. One intuitive justification
for this point of view, which we make precise in Chapter 7, is to
think of the dynamic computation type ¿ as a recursive product of all
possible behaviors that a computation might have, and the downcast



104 gradual type theory

as a recursive type unrolling and product projection, which is a stack.
From this point of view, an upcast can introduce errors, because the
upcast of an object supporting some “methods” to one with all possible
methods will error dynamically on the unimplemented ones.

These observations are expressed in the (shaded) UpCast and
DnCasts rules for casts in Figure 5.2: the upcast for a value type
precision is a complex value, while the downcast for a computation
type precision is a stack (if its argument is). Indeed, this description
of casts is simpler than the intuition we began the section with: rather
than putting in both upcasts and downcasts for all value and compu-
tation type precisions, it suffices to put in only upcasts for value type
precisions and downcasts for computation type precisions, because of
monotonicity of type precision for U/F types. The downcast for a value
type precision A v A′, as a stack • : FA′ ` 〈FA � FA′〉• : FA
as described above, is obtained from FA v FA′ as computation
types. The upcast for a computation type precision B v B′ as a
value x : UB ` 〈UB′ � UB〉x : UB′ is obtained from UB v UB′

as value types. Moreover, we will show below that the value upcast
〈A′ � A〉 induces a stack • : FA ` . . . : FA′ that behaves like an
upcast, and dually for the downcast, so this formulation implies the
original formulation above.

We justify this design in two ways in the remainder of the paper. In
Chapter 7, we show how to implement casts by a contract translation
to CBPV where upcasts are complex values and downcasts are com-
plex stacks. However, one goal of GTT is to be able to prove things
about many gradually typed languages at once, by giving different
models, so one might wonder whether this design rules out useful
models of gradual typing where casts can have more general effects.
In Theorem 85, we show instead that our design choice is forced for
all casts, as long as the casts between ground types and the dynamic
types are values/stacks.

5.2.2.3 Term Precision: Judgements and Structural Rules

The final piece of GTT is the term precision relation, a syntactic judge-
ment that is used for reasoning about the behavioral properties of
terms in GTT. To a first approximation, term precision can be thought
of as syntactic rules for reasoning about contextual approximation rel-
ative to errors (not divergence), where E v E′ means that either E
errors or E and E′ have the same result. However, a key idea in GTT is
to consider a heterogeneous term precision judgement E v E′ : T v T′

between terms E : T and E′ : T′ where T v T′—i.e. relating two terms
at two different types, where the type on the right is less precise than
the type on the right. This judgement structure allows simple axioms
characterizing the behavior of casts [58] and axiomatizes the graduality
property [75]. Here, we break this judgement up into value precision
V v V ′ : A v A′ and computation precision M v M′ : B v B′. To



5.2 axiomatic gradual type theory 105

Φ ` V v V′ : A v A′ and Φ | Ψ ` M v M′ : B v B′

TmDynRefl

Γ v Γ | ∆ v ∆ ` E v E : T v T

TmDynVar

Φ, x v x′ : A v A′, Φ′ ` x v x′ : A v A′

TmDynTrans

Γ v Γ′ | ∆ v ∆′ ` E v E′ : T v T′

Γ′ v Γ′′ | ∆′ v ∆′′ ` E′ v E′′ : T′ v T′′

Γ v Γ′′ | ∆ v ∆′′ ` E v E′′ : T v T′′

TmDynValSubst

Φ ` V v V′ : A v A′

Φ, x v x′ : A v A′, Φ′ | Ψ ` E v E′ : T v T′

Φ | Ψ ` E[V/x] v E′[V′/x′] : T v T′

TmDynHole

Φ | • v • : B v B′ ` • v • : B v B′

TmDynStkSubst

Φ | Ψ ` M1 v M′1 : B1 v B′1
Φ | • v • : B1 v B′1 ` M2 v M′2 : B2 v B′2
Φ | Ψ ` M2[M1/•] v M′2[M

′
1/•] : B2 v B′2

Figure 5.4: GTT Term Precision (Structural and Congruence Rules)

support reasoning about open terms, the full form of the judgements
are

• Γ v Γ′ ` V v V ′ : A v A′ where Γ ` V : A and Γ′ ` V ′ : A′ and
Γ v Γ′ and A v A′.

• Γ v Γ′ | ∆ v ∆′ ` M v M′ : B v B′ where Γ | ∆ ` M : B and
Γ′ | ∆′ ` M′ : B′.

where Γ v Γ′ is the pointwise lifting of value type precision, and
∆ v ∆′ is the analogous lifting of computation type precision. We
write Φ : Γ v Γ′ and Ψ : ∆ v ∆′ as syntax for “zipped” pairs
of contexts that are pointwise related by type precision, x1 v x′1 :
A1 v A′1, . . . , xn v x′n : An v A′n, which correctly suggests that one
can substitute related terms for related variables. We will implicitly
zip/unzip pairs of contexts, and sometimes write e.g. Γ v Γ to mean
x v x : A v A for all x : A in Γ.

The main point of our rules for term precision is that there are
no type-specific axioms in the definition beyond the βη-axioms that the
type satisfies in a non-gradual language. Thus, adding a new type
to gradual type theory does not require any a priori consideration
of its gradual behavior in the language definition; instead, this is
deduced as a theorem in the type theory. The basic structural rules
of term precision in Figure 5.4 and Figure 5.5 say that it is reflexive
and transitive (TmDynRefl, TmDynTrans), that assumptions can be
used and substituted for (TmDynVar, TmDynValSubst, TmDynHole,
TmDynStkSubst), and that every term constructor is monotone (the
Cong rules). While we could add congruence rules for errors and casts,
these follow from the axioms characterizing their behavior below.



106 gradual type theory

+IlCong

Φ ` V v V′ : A1 v A′1
Φ ` inl V v inl V′ : A1 + A2 v A′1 + A′2

+IrCong

Φ ` V v V′ : A2 v A′2
Φ ` inr V v inr V′ : A1 + A2 v A′1 + A′2

+ECong

Φ ` V v V′ : A1 + A2 v A′1 + A′2
Φ, x1 v x′1 : A1 v A′1 | Ψ ` E1 v E′1 : T v T′

Φ, x2 v x′2 : A2 v A′2 | Ψ ` E2 v E′2 : T v T′

Φ | Ψ ` case V{x1.E1 | x2.E2} v case V{x′1.E′1 | x′2.E′2} : T′

0ECong

Φ ` V v V′ : 0 v 0

Φ | Ψ ` abort V v abort V′ : T v T′

1ICong

Φ ` () v () : 1 v 1

1ECong

Φ ` V v V′ : 1 v 1
Φ | Ψ ` E v E′ : T v T′

Φ | Ψ ` split V to ().E v split V to ().′E′ : T v T′

×ICong

Φ ` V1 v V′1 : A1 v A′1
Φ ` V2 v V′2 : A2 v A′2

Φ ` (V1, V2) v (V′1, V′2) : A1 × A2 v A′1 × A′2

→ICong

Φ, x v x′ : A v A′ | Ψ ` M v M′ : B v B′

Φ | Ψ ` λx : A.M v λx′ : A′.M′ : A→ B v A′ → B′

×ECong

Φ ` V v V′ : A1 × A2 v A′1 × A′2
Φ, x v x′ : A1 v A′1, y v y′ : A2 v A′2 | Ψ ` E v E′ : T v T′

Φ | Ψ ` let (x, y) = V; E v let (x′, y′) = V′; E′ : T v T′

→ECong

Φ | Ψ ` M v M′ : A→ B v A′ → B′ Φ ` V v V′ : A v A′

Φ | Ψ ` M V v M′ V′ : B v B′

UICong

Φ | · ` M v M′ : B v B′

Φ ` thunk M v thunk M′ : UB v UB′

UECong

Φ ` V v V′ : UB v UB′

Φ | · ` force V v force V′ : B v B′

FICong

Φ ` V v V′ : A v A′

Φ | · ` ret V v ret V′ : FA v FA′

FECong

Φ | Ψ ` M v M′ : FA v FA′

Φ, x v x′ : A v A′ | · ` N v N′ : B v B′

Φ | Ψ ` x ← M; N v x′ ← M′; N′ : B v B′

>ICong

Φ | Ψ ` {} v {} : > v >

&ICong

Φ | Ψ ` M1 v M′1 : B1 v B′1 Φ | Ψ ` M2 v M′2 : B2 v B′2
Φ | Ψ ` (M1, M2) v (M′1, M′2) : B1 & B2 v B′1 & B′2

&ECong

Φ | Ψ ` M v M′ : B1 & B2 v B′1 & B′2
Φ | Ψ ` πM v πM′ : B1 v B′1

&E’Cong

Φ | Ψ ` M v M′ : B1 & B2 v B′1 & B′2
Φ | Ψ ` π′M v π′M′ : B2 v B′2

Figure 5.5: GTT Term Precision (Congruence Rules)



5.2 axiomatic gradual type theory 107

We will often abbreviate a “homogeneous” term precision (where
the type or context precision is given by reflexivity) by writing e.g.
Γ ` V v V ′ : A v A′ for Γ v Γ ` V v V ′ : A v A′, or Φ ` V v V ′ : A
for Φ ` V v V ′ : A v A, and similarly for computations. The entirely
homogeneous judgements Γ ` V v V ′ : A and Γ | ∆ ` M v M′ : B
can be thought of as a syntax for contextual error approximation (as
we prove below). We write V wv V ′ (“equiprecision”) to mean term
precision relations in both directions (which requires that the types are
also equiprecise Γ wv Γ′ and A v A′), which is a syntactic judgement
for contextual equivalence.

5.2.2.4 Term Precision Axioms

Finally, we assert some term precision axioms that describe the behav-
ior of programs. The cast universal properties at the top of Figure 5.6,
following New and Licata [58], say that the defining property of an
upcast from A to A′ is that it is the most precise term of type A′ that
is less precise that x, a “least upper bound”. That is, 〈A′ � A〉x is a
term of type A′ that is less precise that x (the “bound” rule), and for
any other term x′ of type A′ that is less precise than x, 〈A′ � A〉x is
more precise than x′ (the “best” rule). Dually, the downcast 〈B � B′〉•
is the most dynamic term of type B that is more precise than •, a
“greatest lower bound”. These defining properties are entirely inde-
pendent of the types involved in the casts, and do not change as we
add or remove types from the system.

We will show that these defining properties already imply that
the shift of the upcast 〈A′ � A〉 forms a Galois connection/adjunc-
tion with the downcast 〈FA � FA′〉, and dually for computation
types (see Theorem 73). They do not automatically form a Galois
insertion/coreflection/embedding-projection pair, but we can add this
by the retract axioms in Figure 5.6. Together with other theorems of
GTT, these axioms imply that any upcast followed by its corresponding
downcast is the identity (see Theorem 74).

This specification of casts leaves some behavior undefined: for ex-
ample, we cannot prove in the theory that 〈F1 + 1 � F?〉〈? � 1〉
reduces to an error. We choose this design because there are valid
models in which it is not an error, for instance if the unique value of 1
is represented as the boolean true. In Chapter 7, we show additional
axioms that fully characterize the behavior of the dynamic type.

The type universal properties in the middle of the figure, which
are taken directly from CBPV, assert the βη rules for each type as
(homogeneous) term equiprecisions—these should be understood as
having, as implicit premises, the typing conditions that make both
sides type check, in equiprecise contexts.

The final axioms assert properties of the run-time error term f: it is
the most precise term (has the fewest behaviors) of every computation
type, and all complex stacks are strict in errors, because stacks force



108 gradual type theory

their evaluation position. We state the first axiom in a heterogeneous
way, which includes congruence Γ v Γ′ ` fB v fB′ : B v B′.

5.3 theorems in gradual type theory

In this section, we show that the axiomatics of gradual type theory
determine most properties of casts, which shows that these behaviors
of casts are forced in any implementation of gradual typing satisfying
graduality and β, η.

5.3.1 Derived Cast Rules

As noted above, monotonicity of type precision for U and F means
that we have the following as instances of the general cast rules:

Lemma 66 (Shifted Casts). The following are derivable:

Γ | ∆ ` M : FA′ A v A′

Γ | ∆ ` 〈FA � FA′〉M : FA

Γ ` V : UB B v B′

Γ ` 〈UB′ � UB〉V : UB′

Proof. They are instances of the general upcast and downcast rules,
using the fact that U and F are congruences for type precision, so in
the first rule FA v FA′, and in the second, UB v UB′.

The cast universal properties in Figure 5.6 imply the following
seemingly more general rules for reasoning about casts:

Lemma 67 (Upcast and downcast left and right rules). The following
are derivable:

A v A′ Φ ` V v V ′ : A v A′

Φ ` V v 〈A′′ � A′〉V ′ : A v A′′
UpR

Φ ` V v V ′′ : A v A′′

Φ ` 〈A′ � A〉V v V ′′ : A′ v A′′
UpL

B′ v B′′ Φ | Ψ ` M′ v M′′ : B′ v B′′

Φ | Ψ ` 〈B � B′〉M′ v M′′ : B v B′′
DnL

Φ | Ψ ` M v M′′ : B v B′′

Φ | Ψ ` M v 〈B′ � B′′〉M′′ : B v B′′
DnR

Proof. For upcast left, substitute V ′ into the axiom x v 〈A′′ � A′〉x :
A′ v A′′ to get V ′ v 〈A′′ � A′〉V ′, and then use transitivity with the
premise.

For upcast right, by transitivity of

x v x′ : A v A′ ` 〈A′ � A〉x v x′ : A′ v A′ x′ v x′′ : A′ v A′′ ` x′ v x′′ : A′ v A′′



5.3 theorems in gradual type theory 109

Cast Universal Properties

Bound Best

Up x : A ` x v 〈A′ � A〉x : A v A′ x v x′ : A v A′ ` 〈A′ � A〉x v x′ : A′

Down • : B′ ` 〈B � B′〉• v • : B v B′ • v • : B v B′ ` • v 〈B � B′〉• : B

Retract Axiom
x : A ` 〈FA � F ?〉(ret (〈?� A〉x)) v ret x : FA

x : UB ` 〈B � ¿〉(force (〈U¿� UB〉x)) v force x : B

Type Universal Properties

Type β η

+
case inl V{x1.E1 | . . .} wv E1[V/x1]

case inr V{. . . | x2.E2} wv E2[V/x2]

E wv case x{x1.E[inl x1/x]

| x2.E[inr x2/x]}
where x : A1 + A2 ` E : T

0 − E wv abort x

where x : 0 ` E : T

× let (x1, x2) = (V1, V2); E wv E[V1/x1, V2/x2]
E wv let (x1, x2) = x; E[(x1, x2)/x]

where x : A1 × A2 ` E : T

1 split () to ().E wv E
x : 1 ` E wv split x to ().E[()/x] : T

where x : 1 ` E : T

U force thunk M wv M x : UB ` x wv thunk force x : UB

F x ← ret V; M wv M[V/x] • : FA ` M wv x ← •; M[ret x/•]
→ (λx : A.M)V wv M[V/x] • : A→ B ` • wv λx : A. • x : A→ B

&
π(M, M′) wv M

π′(M, M′) wv M′
• : B1 & B2 ` • wv (π•, π′•)

> - • : > ` • wv {}

Error Properties

ErrBot

Γ′ | · ` M′ : B′

Γ v Γ′ | · ` f v M′ : B v B′

StkStrict

Γ | x : B ` S : B′

Γ | · ` S[fB] v fB′ : B′

Figure 5.6: GTT Term Precision Axioms



110 gradual type theory

we have

x v x′′ : A v A′′ ` 〈A′ � A〉x v x′′ : A′ v A′′

Substituting the premise into this gives the conclusion.
For downcast left, substituting M′ into the axiom 〈B � B′〉• v • :

B v B′ gives 〈B � B′〉M v M, and then transitivity with the premise
gives the result.

For downcast right, transitivity of

• v •′ : B v B′ ` • v •′ : B v B′ •′ v •′′ : B′ v B′′ ` •′ v 〈B′ � B′′〉•′′

gives • v •′′ : B v B′′ ` • v 〈B′ � B′′〉•′′, and then substitution of
the premise into this gives the conclusion.

In sequent calculus terminology, in the term precision judgement
an upcast is left-invertible, while a downcast is right-invertible, in
the sense that any time we have a conclusion with a upcast on the
left/downcast on the right, we can without loss of generality apply
these rules (this comes from upcasts and downcasts forming a Galois
connection). We write the A v A′ and B′ v B′′ premises on the
non-invertible rules to emphasize that the premise is not necessarily
well-formed given that the conclusion is.

We did not include explicit congruence rules for casts in Figure 5.5
because they are derivable:

Lemma 68 (Cast congruence rules). The following congruence rules for
casts are derivable:

A v A′ A′ v A′′

x v x′ : A v A′ ` 〈A′′ � A〉x v 〈A′′ � A′〉x′ : A′′

A v A′ A′ v A′′

x : A ` 〈A′ � A〉x v 〈A′′ � A〉x : A′ v A′′

B v B′ B′ v B′′

•′ v •′′ : B′ v B′′ ` 〈B � B′〉•′ v 〈B � B′′〉•′′ : B

B v B′ B′ v B′′

•′′ : B′′ ` 〈B � B′′〉•′′ v 〈B′ � B′′〉•′′ : B v B′

Proof. In all cases, uses the invertible and then non-invertible rule
for the cast. For the first rule, by upcast left, it suffices to show x v
x′ : A v A′ ` x v 〈A′′ � A′〉x′ : A v A′′ which is true by upcast
right, using x v x′ in the premise. The other cases follow by a similar
argument.

Next, while in GTT we assume the existence of upcast values from
value precision and downcast stacks from computation precision,



5.3 theorems in gradual type theory 111

sometimes we can prove that certain terms satisfy the following defi-
nition of “downcast value” and “upcast stack”.

In GTT, we assert the existence of value upcasts and computation
downcasts for derivable type precision relations. While we do not
assert the existence of all value downcasts and computation upcasts, we
can define the universal property that identifies a term as such:

Definition 69 (Upcast stack/Value downcast). 1. If B v B′, a stack
upcast from B to B′ is a stack • : B ` 〈〈B′ � B〉〉• : B′ that satisfies
the computation precision rules of an upcast • : B ` • v 〈〈B′ � B〉〉• : B v B′

and • v •′ : B v B′ ` 〈〈B′ � B〉〉• v •′ : B′.

2. If A v A′, a value downcast from A′ to A is a complex value
x : A′ ` 〈〈A � A′〉〉x : A that satisfies the value preci-
sion rules of a downcast x : A′ ` 〈〈A � A′〉〉x v x : A v A′ and
x v x′ : A v A′ ` x v 〈〈A � A′〉〉x′ : A.

One convenient application of this is that we can simplify the state-
ment of several properties by “forgetting” that an upcast 〈A′ � A〉 is
a value, and instead using a derivable upcast 〈〈FA′ � FA〉〉 as defined
in the following (and dually for computation types)

Definition 70 (Upcast stacks/Downcast values). If A v A′, then we
define

〈〈FA′ � FA〉〉E = x ← E; ret 〈A′ � A〉x.

which is an upcast stack.
If B v B′ then we define

〈〈UB � UB′〉〉V = thunk (〈B � B′〉(force V))

which is a downcast value.

5.3.2 Type-Generic Properties of Casts

The universal property axioms for upcasts and downcasts in Figure 5.6
define them uniquely up to equiprecision (wv): anything with the same
property is behaviorally equivalent to a cast.

Theorem 71 (Specification for Casts is a Universal Property).

1. If A v A′ and x : A ` V : A′ is a complex value such that
x : A ` x v V : A v A′ and x v x′ : A v A′ ` V v x′ : A′ then x :
A ` V wv 〈A′ � A〉x : A′.

2. If B v B′ and •′ : B′ ` S : B is a complex stack such that
•′ : B′ ` S v •′ : B v B′ and • v •′ : B v B′ ` • v S : B then •′ :
B′ ` S wv 〈B � B′〉•′ : B



112 gradual type theory

Proof. For the first part, to show 〈A′ � A〉x v V, by upcast left, it
suffices to show x v V : A v A′, which is one assumption. To show
V v 〈A′ � A〉x, we substitute into the second assumption with
x v 〈A′ � A〉x : A v A′, which is true by upcast right.

For the second part, to show S v 〈B � B′〉•′, by downcast right, it
suffices to show S v •′ : B v B′, which is one of the assumptions. To
show 〈B � B′〉•′ v S, we substitute into the second assumption with
〈B � B′〉•′ v •′, which is true by downcast left.

Casts satisfy an identity and composition law:

Theorem 72 (Casts (de)composition). For any A v A′ v A′′ and B v
B′ v B′′:

1. x : A ` 〈A� A〉x wv x : A

2. x : A ` 〈A′′ � A〉x wv 〈A′′ � A′〉〈A′ � A〉x : A′′

3. • : B ` 〈B � B〉• wv • : B

4. • : B′′ ` 〈B � B′′〉• wv 〈B � B′〉(〈B′ � B′′〉•) : B v B

Proof. We use Theorem 71 in all cases, and show that the right-hand
side has the universal property of the left.

1. Both parts expand to showing x v x : A v A ` x v x : A v A,
which is true by assumption.

2. First, we need to show x v 〈A′′ � A′〉(〈A′ � A〉x) : A v A′′.
By upcast right, it suffices to show x v 〈A′ � A〉x : A v A′,
which is also true by upcast right.

For x v x′′ : A v A′′ ` 〈A′′ � A′〉(〈A′ � A〉x) v x′′, by
upcast left twice, it suffices to show x v x′′ : A v A′′, which is
true by assumption.

3. Both parts expand to showing • : B ` • v • : B, which is true by
assumption.

4. To show • v •′′ : B v B′′ ` • v 〈B � B′〉(〈B′ � B′′〉•), by
downcast right (twice), it suffices to show • : B v •′′ : B′′ ` • v
•′′ : B v B′′, which is true by assumption. Next, we have to show
〈B � B′〉(〈B′ � B′′〉•) v • : B v B′′, and by downcast left, it
suffices to show 〈B′ � B′′〉• v • : B′ v B′′, which is also true
by downcast left.

In particular, this composition property implies that the casts into and
out of the dynamic type are coherent, for example if A v A′ then
〈?� A〉x wv 〈?� A′〉〈A′ � A〉x.



5.3 theorems in gradual type theory 113

Theorem 73 (Casts form Galois Connections). If A v A′, then the
following hold

1. •′ : FA′ ` 〈〈FA′ � FA〉〉〈FA � FA′〉•′ v •′ : FA′

2. • : FA ` • v 〈FA � FA′〉〈〈FA′ � FA〉〉• : FA

If B v B′, then the following hold

1. x : UB′ ` 〈UB′ � UB〉〈〈UB � UB′〉〉x v x : UB′

2. x : UB ` x v 〈〈UB � UB′〉〉〈UB′ � UB〉x : UB

Proof.

1. By η for F types, •′ : FA′ ` •′ wv x′ ← •′; ret x′ : FA′, so it
suffices to show

x ← 〈FA � FA′〉•′; ret (〈A′ � A〉x) v x′ : A′ ← •′; ret x′

By congruence, it suffices to show 〈FA � FA′〉•′ v •′ : FA v
FA′, which is true by downcast left, and x v x′ : A v A′ `
ret (〈A′ � A〉x) v ret x′ : A′, which is true by congruence for
ret, upcast left, and the assumption.

2. By η for F types, it suffices to show

• : FA ` • ← x; ret x v x ← •; 〈FA � FA′〉(ret (〈A′ � A〉x)) : FA

so by congruence,

x : A ` ret x v 〈FA � FA′〉(ret (〈A′ � A〉x))

By downcast right, it suffices to show

x : A ` ret x v (ret (〈A′ � A〉x)) : FA v FA′

and by congruence

x : A ` x v ((〈A′ � A〉x)) : A v A′

which is true by upcast right.

3. By η for U types, it suffices to show

x : UB′ ` 〈UB′ � UB〉(thunk (〈B � B′〉force x)) v thunk (force x) : UB′

By upcast left, it suffices to show

x : UB′ ` (thunk (〈B � B′〉force x)) v thunk (force x) : UB v UB′

and by congruence

x : UB′ ` 〈B � B′〉force x v force x : B v B′

which is true by downcast left.



114 gradual type theory

4. By η for U types, it suffices to show

x : UB ` thunk (force x) v thunk (〈B � B′〉(force (〈UB′ � UB〉x))) : UB

and by congruence

x : UB ` (force x) v (〈B � B′〉(force (〈UB′ � UB〉x))) : B

By downcast right, it suffices to show

x : UB ` (force x) v (force (〈UB′ � UB〉x)) : B v B′

and by congruence

x : UB ` x v (〈UB′ � UB〉x) : B v B′

which is true by upcast right.

The retract property says roughly that x wv 〈T′ � T〉〈T′ � T〉x
(upcast then downcast does not change the behavior), strengthening
the v of Theorem 73. In Figure 5.6, we asserted the retract axiom
for casts with the dynamic type. This and the composition property
implies the retraction property for general casts:

Theorem 74 (Retract Property for General Casts). If A v A′ and
B v B′, then

1. • : FA ` 〈〈FA′ � FA〉〉〈FA � FA′〉• wv • : FA

2. x : UB ` 〈〈UB � UB′〉〉〈UB′ � UB〉x wv x : UB

Proof. We need only to show the v direction, because the converse is
Theorem 73.

1. Substituting ret (〈A′ � A〉x) into Theorem 73’s

• : FA ` • v x ← •; 〈FA � FA′〉(ret (〈A′ � A〉x)) : FA

and β-reducing gives

x : A ` ret (〈A′ � A〉x) v 〈FA � F?〉(ret (〈?� A′〉〈A′ � A〉x))

Using this, after η-expanding • : FA on the right and using
congruence for bind, it suffices to derive as follows:

〈FA � FA′〉(ret (〈A′ � A〉x)) v congruence

〈FA � FA′〉〈FA′ � F?〉(ret (〈?� A′〉〈A′ � A〉x)) v composition

〈FA � F?〉(ret (〈?� A〉x)) v retract axiom for 〈?� A〉
ret x



5.3 theorems in gradual type theory 115

2. After using η for U and congruence, it suffices to show

x : UB ` 〈B � B′〉(force (〈UB′ � UB〉x)) v force x : B

Substituting x : UB ` 〈UB′ � UB〉x : UB′ into Theorem 73’s

x : UB′ ` x v thunk (〈B′ � ¿〉(force (〈U¿� UB′〉x))) : UB′

gives

x : UB ` 〈UB′ � UB〉x v thunk (〈B′ � ¿〉(force (〈U¿� UB′〉〈UB′ � UB〉x))) : UB′

So we have

〈B � B′〉(force 〈UB′ � UB〉x) v
〈B � B′〉force (thunk (〈B′ � ¿〉(force (〈U¿� UB′〉〈UB′ � UB〉x)))) v β

〈B � B′〉(〈B′ � ¿〉(force (〈U¿� UB′〉〈UB′ � UB〉x))) v composition

〈B � ¿〉(force (〈U¿� UB〉x)) v retract axiom for 〈B � ¿〉
ret x v composition

5.3.3 Deriving Behavior of Casts

We now come to the central technical consequence of the axioms
of GTT, that we can derive the behavior of most casts from just η

principles and our definition of upcasts and downcasts as least upper
bounds and greatest lower bounds, respectively.

Together, the universal property for casts and the η principles for
each type imply that the casts must behave as in “wrapping” cast
semantics, which we will demonstrate more explicitly in Chapter 6:

Theorem 75 (Cast Unique Implementation Theorem for +,×,→, &).
All of the equivalences in Figure 5.7 are derivable.

Proof. The proofs are at the end of this subsection, using the upcast/-
downcast lemmas 79,80 which we define shortly.

For each value type connective, we derive the semantics of the
upcast and the semantics of the corresponding downcast where F is
applied to the connective. Dually for the computation type connectives
we derive the downcast and the upcast where a U is applied. Note that
all of the definitions of casts are essentially the same as the definitions
of the operational behavior given in the “wrapping” semantics of
gradual typing.

Notably, for the eager product × and the function type →, we
derive that two a priori different implementations both satisfy the
specification and so are equivalent. The two implementations differ
in that one evaluates the downcast for the left side of the pair first,



116 gradual type theory

〈A′1 + A′2
� A1 + A2〉s wv case s{x1.inl (〈A′1 � A1〉x1) | x2.inr (〈A′2 � A2〉x2)}

〈F(A′1 + A′2) � F(A1 + A2)〉• wv (s : (A′1 + A′2))← •; case s

{x′1.x1 ← (〈FA1 � FA′1〉(ret x′1));

ret (inl x1)

| x′2.x2 ← (〈FA2 � FA′2〉(ret x′2));

ret (inr x2)

}

〈A′1 × A′2
� A1 × A2〉p wv let (x1, x2) = p; (〈A′1 � A1〉x1, 〈A′2 � A2〉x2)

〈F(A′1 × A′2) � F(A1 × A2)〉• wv p′ ← •; let (x′1, x′2) = p′;

x1 ← 〈FA1 � FA′1〉ret x′1;

x2 ← 〈FA2 � FA′2〉ret x′2; ret (x1, x2)

wv p′ ← •; let (x′1, x′2) = p′;

x2 ← 〈FA2 � FA′2〉ret x′2;

x1 ← 〈FA1 � FA′1〉ret x′1; ret (x1, x2)

〈B1 & B2 � B′1 & B′2〉• wv (〈B1 � B′1〉π•, 〈B2 � B′2〉π′•)

〈U(B′1 & B′2)
� U(B1 & B2)〉p

wv thunk {π 7→ force (〈UB′1
� UB1〉(thunk π(force p)))

| π′ 7→ force (〈UB′2
� UB2〉(thunk π′(force p)))

}

〈A→ B � A′ → B′〉• wv λx.〈B � B′〉(• (〈A′ � A〉x))

〈U(A′ → B′)� U(A→ B)〉 f wv thunk (λx′.x ← 〈FA � FA′〉(ret x′);

force (〈UB′ � UB〉(thunk ((force f ) x)))

wv thunk (λx′.force 〈UB′ � UB〉(thunk (x ← 〈FA � FA′〉(ret x′);

(force f ) x)))

Figure 5.7: Derivable Cast Behavior for +,×, &,→



5.3 theorems in gradual type theory 117

whereas the other evaluates the downcast for the right side of the
pair first. It makes sense operationally that these two are equivalent,
since all either can do is error. If we were to incorporate blame, then
each side might raise a different error but would blame the same
party. There is a similar (non-)choice for the function type, which is
intuitively the choice between enforcing domain or codomain first.
This might seem unusual at first glance, since how can the codomain
contract be enforced before the function is called with an input? The
answer is that when the B = FA then the upcast of the output will first
force the evaluation of the function, but when B is a CBPV function
type we see a similar ambiguity to the strict product. In particular, a
call-by-value two-argument function A1, A2 → A3 can be represented
by the CBPV type A1 → A2 → FA3, and this ambiguity between
enforcing the domain and codomain first arises as the ambiguity of
in which order a multi-argument function contract should enforce its
multiple domain contracts. As with the product, the orderings turn
out to be equivalent.

We can similarly derive cast implementations for the “double shifts”:

Theorem 76 (Cast Unique Implementation Theorem for UF, FU). Let
A v A′ and B v B′.

1. x : UFA ` 〈UFA′ � UFA〉x wv thunk (〈〈FA′ � FA〉〉(force x)) :
UFA′

2. • : FUB′ ` 〈FUB � FUB′〉• wv x′ : UB′ ← •; ret (〈UB � UB′〉x)

Proof. Again, at the end of this subsection.

While we can prove each of these cases directly, the proofs are
fairly repetitive and similar. Instead we package up the proof principle
into a couple of lemmas which abstract over the details of the proof.
First, since all of these proof principles are parameterized, we need
to formally define parameterized types in order to prove our general
lemmas.

Definition 77. Let a type constructor C be a (value or computation)
type that well-formed according to the grammar in Figure 5.1 with
additional hypotheses X val type and Y comp type standing for value
or computation types, respectively. We write C[A/X] and C[B/Y] for
the substitution of a type for a variable.

For example,

X1 val type, X2 val type ` X1 + X2 val type

Y comp type ` UY val type

X1 val type, X2 val type ` F(X1 + X2) comp type

are type constructors.



118 gradual type theory

Observe that all type constructors are monotone in type precision,
because we included a congruence rule for every type constructor in
Figure 5.3:

Lemma 78 (Monotonicity of Type Constructors). For any type construc-
tor X val type ` C, if A v A′ then C[A/X] v C[A′/x]. For any type
constructor Y comp type ` C, if B v B′ then C[B/Y] v C[B′/Y].

Proof. Induction on C. In the case for a variable X or Y, A v A′ or
B v B′ by assumption. In all other cases, the result follows from
the inductive hypotheses and the congruence rule for type preci-
sion for the type constructor (Figure 5.3). For example, in the case
for +, A1[A/x] v A1[A′/x] and A2[A/x] v A2[A′/x], so A1[A/x] +
A2[A/x] v A1[A′/x] + A2[A′/x].

The following lemma helps show that a complex value

〈〈C[A′i/Xi, B′i/Yi]
� C[Ai/Xi, Bi/Yi]〉〉

is an upcast from C[Ai/Xi, Bi/Yi] to C[A′i/Xi, B′i/Yi]. It reduces to
verification of 3 properties: well-typedness, monotonicity and identity
extension. Of these, only identity extension is non-trivial to prove.

Lemma 79 (Upcast Lemma). Let X1 val type, . . . Xn val type, Y1 comp type, . . . Yn comp type `
C val type be a value type constructor. We abbreviate the instantiation
C[A1/X1, . . . , An/Xn, B1/Yi, . . . , Bm/Ym] by C[Ai, Bi].

Suppose 〈〈C[A′i, B′i]� C[Ai, Bi]〉〉− is a complex value (depending on C
and each of Ai, A′i, Bi,B

′
i) such that

1. (Well-typedness) For all value types Ai and A′i with each of Ai v A′i,
and all computation types Bi and B′i with all Bi v B′i,

x : C[Ai, Bi] ` 〈〈C[A′i, B′i]� C[Ai, Bi]〉〉x : C[A′i, B′i]

2. (Monotonicity) For all Al
i ,A

r
i ,A

l′
i ,Ar′

i ,Bi
l ,Bi

r,Bi
l′,Bi

r′, such that each of
Al

i v Ar
i , Al

i v Al′
i , Ar

i v Ar′
i and similarly Bl

i v Br
i , Bl

i v Bl′
i , Br

i v
Br′

i ,

Φ ` 〈〈C[Ar
i , Br

i ]
� C[Al

i , Bl
i ]〉〉x v 〈〈C[Ar′

i , Br′
i ]
� C[Al′

i , Bl′
i ]〉〉x′ : C[Ar

i , Br
i ] v C[Ar′

i , Br′
i ]

where Φ = x v x′ : C[Al
i , Bl

i ] v C[Ar
i , Br

i ]

3. (Identity Extension) For all value types A1 and all computation types
Bi,

x : C[Ai, Bi] ` 〈〈C[Ai, Bi]
� C[Ai, Bi]〉〉x wv x : C[Ai, Bi]

Then 〈〈C[A′i, B′i]� C[Ai, Bi]〉〉 satisfies the universal property of an upcast,
so by Theorem 71

x : C[Ai, Bi] ` 〈〈C[A′i, B′i]� C[Ai, Bi]〉〉x wv 〈C[A′i, B′i]� C[Ai, Bi]〉x : C[A′i, B′i]

Moreover, the left-to-right direction uses only the left-to-right direction of
identity extension, and the right-to-left uses only the right-to-left direction.



5.3 theorems in gradual type theory 119

Proof. First, we show that 〈〈C[A′i, B′i]� C[Ai, Bi]〉〉 satisfies the univer-
sal property of an upcast.

To show

x v x′ : C[Ai, Bi] v C[A′i, B′i] ` 〈〈C[A′i, B′i]� C[Ai, Bi]〉〉x v x′ : C[A′i, B′i]

monotonicity gives that

〈〈C[A′i, B′i]� C[Ai, Bi]〉〉x v 〈〈C[A′i, B′i]� C[A′i, B′i]〉〉x′ : C[A′i, B′i]

but by the left-to-right direction of identity extension the right hand
side is more precise than x′, so transitivity gives the result.

〈〈C[A′i, B′i]� C[Ai, Bi]〉〉x v x′

To show

x v 〈〈C[A′i, B′i]� C[Ai, Bi]〉〉x : C[Ai, Bi] v C[A′i, B′i]

By monotonicity, we have

〈〈C[Ai, Bi]
� C[Ai, Bi]〉〉x v 〈〈C[A′i, B′i]� C[Ai, Bi]〉〉x : C[Ai, Bi] v C[A′i, B′i]

so transitivity with the right-to-left direction of identity extension
gives the result:

x v 〈〈C[A′i, B′i]� C[Ai, Bi]〉〉x

Then Theorem 71 implies that 〈〈C[A′i, B′i]� C[Ai, Bi]〉〉 is equivalent
to 〈C[A′i, B′i]� C[Ai, Bi]〉.

We have then also the exact dual lemma for downcasts:

Lemma 80 (Downcast Lemma). Let X1 val type, . . . Xn val type, Y1 comp type, . . . Yn comp type `
C comp type be a computation type constructor. We abbreviate the instantia-
tion
C[A1/X1, . . . , An/Xn, B1/Yi, . . . , Bm/Ym] by C[Ai, Bi].

Suppose 〈〈C[Ai, Bi] � C[A′i, B′i]〉〉− is a complex stack (depending on C
and each of Ai, A′i, Bi,B

′
i) such that

1. (Well-typedness) For all value types Ai and A′i with each of Ai v A′i,
and all computation types Bi and B′i with all Bi v B′i,

• : C[A′i, B′i] ` 〈〈C[Ai, Bi] � C[A′i, B′i]〉〉• : C[Ai, Bi]

2. (Monotonicity) For all Al
i ,A

r
i ,A

l′
i ,Ar′

i ,Bi
l ,Bi

r,Bi
l′,Bi

r′, such that each of
Al

i v Ar
i , Al

i v Al′
i , Ar

i v Ar′
i and similarly Bl

i v Br
i , Bl

i v Bl′
i , Br

i v
Br′

i ,

Φ ` 〈〈C[Al
i , Bl

i ] � C[Ar
i , Br

i ]〉〉• v 〈〈C[Al′
i , Bl′

i ] � C[Ar′
i , Br′

i ]〉〉•′ : C[Al
i , Bl

i ] v C[Ar
i , Br

i ]

where Φ = • v •′ : C[Ar
i , Br

i ] v C[Ar′
i , Br′

i ]



120 gradual type theory

3. (Identity Extension) For all value types A1 and all computation types
Bi,

• : C[Ai, Bi] ` 〈〈C[Ai, Bi] � C[Ai, Bi]〉〉• wv • : C[Ai, Bi]

Then 〈〈C[Ai, Bi] � C[A′i, B′i]〉〉 satisfies the universal property of a downcast,
so by Theorem 71

• : C[A′i, B′i] ` 〈〈C[Ai, Bi] � C[A′i, B′i]〉〉• wv 〈C[Ai, Bi] � C[A′i, B′i]〉• : C[Ai, Bi]

Moreover, the left-to-right direction uses only the left-to-right direction of
identity extension, and the right-to-left uses only the right-to-left direction of
identity extension.

Proof. The proof is the exact dual of the proof of Lemma 79.

As an example derivation we prove the case for a downcast for
function types:

〈A→ B � A′ → B′〉• wv λx.〈B � B′〉(• (〈A′ � A〉x))

Here the type constructor is X val type, Y comp type ` X → Y comp type.
We apply the downcast lemma with the definition being

〈〈A→ B � A′ → B′〉〉 = λx.〈B � B′〉(• (〈A′ � A〉x))

Then well-typedness clearly holds, and monotonicity follows by con-
gruence for all constructors and Lemma 68 for the casts. Finally, for
identity extension we need to show

λx.〈B � B〉(• (〈A� A〉x)) wv • : A→ B

First, by the decomposition theorem 72 this is equivalent to

λx. • x wv • : A→ B

Which is precisely η equivalence for→. The cases for the other con-
nectives proceed similarly.

5.3.4 Proof of Theorem 75

Proof. 1. Sums upcast. We use Lemma 79 with the type constructor
X1 val type, X2 val type ` X1 + X2 val type. Suppose A1 v A′1
and A2 v A′2 and let

s : A1 + A2 ` 〈〈A′1 + A′2 � A1 + A2〉〉s : A′1 + A′2

stand for

case s{x1.inl (〈A′1 � A1〉x1) | x2.inr (〈A′2 � A2〉x2)}



5.3 theorems in gradual type theory 121

This clearly satisfies the typing requirement and monotonicity.

Finally, for identity extension, we need to show

case s{x1.inl (〈A1
� A1〉x1) | x2.inr (〈A2

� A2〉x2)} wv s

which is true because 〈A1
� A1〉 and 〈A2

� A2〉 are the iden-
tity, and using “weak η” for sums, case s{x1.inl x1 | x2.inr x2} wv
x, which is the special case of the η rule in Figure 5.6 for the
identity complex value:

case s{x1.inl (〈A1
� A1〉x1) | x2.inr (〈A2

� A2〉x2)} wv
case s{x1.inl (x1) | x2.inr (x2)} wv

s

2. Sums downcast. We use the downcast lemma with X1 val type, X2 val type `
F(X1 + X2) comp type. Let

•′ : F(A′1 + A′2) ` 〈〈F(A1 + A2) � F(A′1 + A′2)〉〉•′ : F(A1 + A2)

stand for

(s : (A′1 + A′2))← •; case s{x′1.x1 ← (〈FA1 � FA′1〉(ret x′1)); ret (inl x1) | . . .}

(where, as in the theorem statement, inr branch is analogous).
This clearly satisfies typing and monotonicity.

Finally, for identity extension, we show

(s : (A1 + A2))← •; case s{x1.x1 ← (〈FA1 � FA1〉(ret x1)); ret (inl x1) | . . .} wv
(s : (A1 + A2))← •; case s{x1.x1 ← ((ret x1)); ret (inl x1) | . . .} wv
(s : (A1 + A2))← •; case s{x1.ret (inl x1) | x2.ret (inr x2)} wv
(s : (A1 + A2))← •; ret s wv
•

using the downcast identity, β for F types, η for sums, and η for
F types.

3. Eager product upcast. We use Lemma 79 with the type construc-
tor X1 val type, X2 val type ` X1 × X2 val type. Let

p : A1 × A2 ` 〈〈A′1 × A′2 � A1 × A2〉〉s : A′1 × A′2

stand for

let (x1, x2) = p; (〈A′1 � A1〉x1, 〈A′2 � A2〉x2)

which clearly satisfies the typing requirement and monotonicity.

Finally, for identity extension, using η for products and the fact
that 〈A� A〉 is the identity, we have

let (x1, x2) = p; (〈A1
� A1〉x1, 〈A2

� A2〉x2) wv let (x1, x2) = p; (x1, x2) wv p



122 gradual type theory

4. Eager product downcast.

We use the downcast lemma with X1 val type, X2 val type `
F(X1 × X2) comp type. Let

•′ : F(A′1× A′2) ` 〈〈F(A1 × A2) � F(A′1 × A′2)〉〉•′ : F(A1× A2)

stand for

p′ ← •; let (x′1, x′2) = p′; x1 ← 〈FA1 � FA′1〉ret x′1; x2 ← 〈FA2 � FA′2〉ret x′2; ret (x1, x2)

which clearly satisfies the typing requirement and monotonicity.

Finally, for identity extension, we show

p← •; let (x1, x2) = p; x1 ← 〈FA1 � FA1〉ret x1; x2 ← 〈FA2 � FA′2〉ret x2; ret (x1, x2) wv
p← •; let (x1, x2) = p; x1 ← ret x1; x2 ← ret x2; ret (x1, x2) wv
p← •; let (x1, x2) = p; ret (x1, x2) wv
p← •; ret p wv
•

using the downcast identity, β for F types, η for eager products,
and η for F types.

An analogous argument works if we sequence the downcasts of
the components in the opposite order:

p′ ← •; let (x′1, x′2) = p′; x2 ← 〈FA2 � FA′2〉ret x′2; x1 ← 〈FA1 � FA′1〉ret x′1; ret (x1, x2)

(the only facts about downcasts used above are congruence and
the downcast identity), which shows that these two implementa-
tions of the downcast are themselves equiprecise.

5. Lazy product downcast. We use Lemma 80 with the type con-
structor Y1 comp type, Y2 comp type ` Y1 & Y2 val type. Let

•′ : B′1 & B′2 ` 〈〈B1 & B2 � B1 & B2〉〉•′ : B1 & B2

stand for

(〈B1 � B′1〉π•′, 〈B2 � B′2〉π′•′)

which clearly satisfies the typing requirement and monotonicity.

For identity extension, we have, using 〈B � B〉 is the identity
and η for &,

(〈B1 � B1〉π•, 〈B2 � B2〉π′•) wv (π•, π′•) wv •

6. Lazy product upcast.

We use Lemma 79 with the type constructor Y1 comp type, Y2 comp type `
U(Y1 & Y2) val type. Let

p : U(B1 & B2) ` 〈〈U(B1 & B2)
� U(B1 & B2)〉〉p : U(B′1 & B′2)



5.3 theorems in gradual type theory 123

stand for

thunk (force (〈UB′1 � UB1〉(thunk π(force p))), force (〈UB′2 � UB2〉(thunk π′(force p))))

which clearly satisfies the typing requirement and monotonicity.
Finally, for identity extension, using η for times, β and η for U
types, and the fact that 〈A� A〉 is the identity, we have

thunk (force (〈UB1
� UB1〉(thunk π(force p))), force (〈UB2

� UB2〉(thunk π′(force p)))) wv
thunk (force (thunk π(force p)), force (thunk π′(force p))) wv

thunk (π(force p), π′(force p)) wv
thunk (force p) wv

p

7. Function downcast.

We use Lemma 80 with the type constructor X val type, Y comp type `
X → Y comp type. Let

•′ : A′ → B′ ` 〈〈A→ B � A′ → B′〉〉•′ : A→ B

stand for

λx.〈B � B′〉(• (〈A′ � A〉x))

which clearly satisfies the typing requirement and monotonicity.

For identity extension, we have, using 〈A � A〉 and 〈B � B〉
are the identity and η for→,

λx.〈B � B〉(• (〈A� A〉x)) wv λx.(• (x)) wv •

8. Function upcast. We use Lemma 79 with the type constructor
X val type, Y comp type ` U(X → Y) val type. Suppose A v
A′ as value types and B v B′ as computation types and let

p : U(A→ B) ` 〈〈U(A→ B)� U(A→ B)〉〉p : U(A′ → B′)

stand for

thunk (λx′.x ← 〈FA � FA′〉(ret x′); force (〈UB′ � UB〉(thunk (force ( f ) x))))

which clearly satisfies the typing requirement and monotonicity.
Finally, for identity extension, using η for→, β for F types and
β/η for U types, and the fact that 〈B � B〉 and 〈A � A〉 are
the identity, we have

thunk (λx.x ← 〈FA � FA〉(ret x); force (〈UB� UB〉(thunk (force ( f ) x)))) wv
thunk (λx.x ← (ret x); force (thunk (force ( f ) x))) wv

thunk (λx.force (thunk (force ( f ) x))) wv
thunk (λx.(force ( f ) x)) wv

thunk (force ( f )) wv
f



124 gradual type theory

9. z : 0 ` 〈A � 0〉z wv absurd z : A is immediate by η for 0 on
the map z : 0 ` 〈A� 0〉z : A.

proof of theorem 76

Proof. 1. We apply the upcast lemma with the type constructor
X val type ` UFX val type. The term thunk (〈〈FA′ � FA〉〉(force x))
has the correct type and clearly satisfies monotonicity. Finally,
for identity extension, we have

thunk (〈〈FA� FA〉〉(force x)) wv
thunk ((force x)) wv

x

using η for U types and the identity principle for 〈〈FA� FA〉〉
(proved analogously to Theorem 72).

2. We use the downcast lemma with Y comp type ` FUY comp type,
where x′ : UB′ ← •; ret (〈〈UB � UB′〉〉x) clearly satisfies typ-
ing and monotonicity.

Finally, for identity extension, we have

x : B← •; ret (〈〈B � B〉〉x) wv
x : B← •; ret (x) wv

•

using the identity principle for 〈〈B � B〉〉 (proved analogously
to Theorem 72) and η for F types.

5.3.5 Upcasts must be Values, Downcasts must be Stacks

While it may seem like an arbitrary choice to define upcasts as val-
ues and downcasts as stacks, rather than the a priori more general
definition that upcasts from A to A′ are effectful terms x : A ` FA′,
which is equivalent to assuming that they are given by a stack upcast
〈FA′ � FA〉 and dually that computations be given by an a priori
non-linear term z : UB′ ` UB, which is equivalent to a value downcast
〈UB � UB′〉. We show now that this choice is essentially forced upon
us, under the mild assumption that certain “ground” up/downcasts
are values/stacks. For this section, we define a ground type3 to be
generated by the following grammar:

G ::= 1 | ?× ? | 0 | ? + ? | U¿ G ::= ?→ ¿ | > | ¿ & ¿ | F?

3 In gradual typing, “ground” is used to mean a one-level unrolling of a dynamic type,
not first-order data.



5.3 theorems in gradual type theory 125

Let GTTG be the fragment of GTT where the only primitive casts are
those between ground types and the dynamic types, i.e. the cast terms
are restricted to 〈?� G〉V, 〈FG � F?〉, 〈G � ¿〉E, 〈U¿� UG〉E.

Lemma 81 (Casts are Admissible). In GTTG, it is admissible that

1. for all A v A′ there is a complex value 〈〈A′ � A〉〉 satisfying the
universal property of an upcast and a complex stack 〈〈FA � FA′〉〉
satisfying the universal property of a downcast

2. for all B v B′ there is a complex stack 〈〈B � B′〉〉 satisfying the
universal property of a downcast and a complex value 〈〈UB′ � UB〉〉
satisfying the universal property of an upcast.

Proof. At the end of this subsection.

The admissibility theorem is proved by induction over a restricted
form of type precision derivations. similar to the one developed in
Figure 3.

Definition 82 (Ground type precision). Let A v′ A′ and B v′ B′ be
the relations defined by the rules in Figure 5.3 with the axioms A v ?
and B v ¿ restricted to ground types—i.e., replaced by G v ? and
G v ¿.

Lemma 83. For any type A, A v′ ?. For any type B, B v′ ¿.

Proof. By induction on the type. For example, in the case for A1 +

A2, we have by the inductive hypothesis A1 v′ ? and A2 v′ ?, so
A1 + A2 v′ ? + ? v ? by congruence and transitivity, because ? + ? is
ground. In the case for FA, we have A v ? by the inductive hypothesis,
so FA v F? v ¿.

Lemma 84 (v and v′ agree). A v A′ iff A v′ A′ and B v B′ iff B v′ B′

Proof. The “if” direction is immediate by induction because every rule
of v′ is a rule of v. To show v is contained in v′, we do induction on
the derivation of v, where every rule is true for v′, except A v ? and
B v ¿, and for these, we use Lemma 83.

Proof. To streamline the exposition above, we stated Theorem 72, The-
orem 75 Theorem 76 as showing that the “definitions” of each cast
are equiprecise with the cast that is a priori postulated to exist (e.g.
〈A′′ � A〉 wv 〈A′′ � A′〉〈A′ � A〉). However, the proofs factor
through Theorem 71 and Lemma 79 and Lemma 80, which show
directly that the right-hand sides have the desired universal property—
i.e. the stipulation that some cast with the correct universal property
exists is not used in the proof that the implementation has the desired
universal property. Moreover, the proofs given do not rely on any
axioms of GTT besides the universal properties of the “smaller” casts



126 gradual type theory

used in the definition and the βη rules for the relevant types. So these
proofs can be used as the inductive steps here, in GTTG.

By induction on type precision A v′ A′ and B v′ B′.
(We chose not to make this more explicit above, because we believe

the equational description in a language with all casts is a clearer
description of the results, because it avoids needing to hypothesize
terms that behave as the smaller casts in each case.)

We show a few representative cases:
In the cases for G v ? or G v ¿, we have assumed appropriate casts
〈?� G〉 and 〈FG � F?〉 and 〈G � ¿〉 and 〈U¿� UG〉.

In the case for identity A v A, we need to show that there is
an upcast 〈〈A � A〉〉 and a downcast 〈〈FA � FA〉〉 The proof of
Theorem 72 shows that the identity value and stack have the correct
universal property.

In the case where type precision was concluded by transitivity
between A v A′ and A′ v A′′, by the inductive hypotheses we get
upcasts 〈〈A′ � A〉〉 and 〈〈A′′ � A′〉〉, and the proof of Theorem 72

shows that defining 〈〈A′′ � A〉〉 to be 〈〈A′′ � A′〉〉〈〈A′ � A〉〉 has
the correct universal property. For the downcast, we get 〈〈FA � FA′〉〉
and 〈〈FA′ � FA′′〉〉 by the inductive hypotheses, and the proof of
Theorem 72 shows that their composition has the correct universal
property.

In the case where type precision was concluded by the congruence
rule for A1 + A2 v A′1 + A′2 from Ai v A′i, we have upcasts 〈〈A′i �
Ai〉〉 and downcasts 〈〈FAi � FA′i〉〉 by the inductive hypothesis, and
the proof of Theorem 72 shows that the definitions given there have
the desired universal property.

In the case where type precision was concluded by the congruence
rule for FA v FA′ from A v A′, we obtain by induction an upcast A v
A′ and a downcast 〈〈FA � FA′〉〉. We need a downcast 〈〈FA � FA′〉〉,
which we have, and an upcast 〈〈UFA � UFA′〉〉, which is constructed
as in Theorem 76.

As discussed in §5.2.2.2, rather than an upcast being a complex
value x : A ` 〈A′ � A〉x : A′, an a priori more general type would
be a stack • : FA ` 〈FA′ � FA〉• : FA′, which allows the upcast to
perform effects; dually, an a priori more general type for a downcast
• : B′ ` 〈B � B′〉• : B would be a value x : UB′ ` 〈UB � UB′〉x : UB,
which allows the downcast to ignore its argument. The following
shows that in GTTG, if we postulate such stack upcasts/value down-
casts as originally suggested in §5.2.2.2, then in fact these casts must
be equal to the action of U/F on some value upcasts/stack downcasts,
so the potential for effectfulness/non-linearity affords no additional
flexibility.

Theorem 85 (Upcasts are Necessarily Values, Downcasts are Necessar-
ily Stacks). Suppose we extend GTTG with the following postulated stack



5.3 theorems in gradual type theory 127

upcasts and value downcasts (in the sense of Definition 69): For every type
precision A v A′, there is a stack upcast • : FA ` 〈FA′ � FA〉• : FA′,
and for every B v B′, there is a complex value downcast x : UB′ ` 〈UB �
UB′〉x : UB.

Then there exists a value upcast 〈〈A′ � A〉〉 and a stack downcast
〈〈B � B′〉〉 such that

• : FA ` 〈FA′ � FA〉• wv (x : A← •; ret (〈〈A′ � A〉〉x))
x : UB′ ` 〈UB � UB′〉x wv (thunk (〈〈B � B′〉〉(force x)))

Proof. Lemma 81 constructs 〈〈A′ � A〉〉 and 〈〈B � B′〉〉, so the proof
of Theorem 76 (which really works for any 〈〈A′ � A〉〉 and 〈〈B � B′〉〉
with the correct universal properties, not only the postulated casts)
implies that the right-hand sides of the above equations are stack
upcasts and value downcasts of the appropriate type. Since stack
upcasts/value downcasts are unique by an argument analogous to
Theorem 71, the postulated casts must be equal to these.

Indeed, the following a priori even more general assumption pro-
vides no more flexibility:

Theorem 86 (Upcasts are Necessarily Values, Downcasts are Neces-
sarily Stacks II). Suppose we extend GTTG only with postulated monadic
upcasts x : UFA ` 〈UFA′ � UFA〉x : UFA′ for every A v A′ and
comonadic downcasts • : FUB′ ` 〈FUB � FUB′〉• : FUB for every
B v B′.

Then there exists a value upcast 〈〈A′ � A〉〉 such that

x : UFA ` 〈UFA′ � UFA〉x wv thunk (x : A← force x; ret (〈〈A′ � A〉〉x))

and a stack downcast 〈〈B � B′〉〉 such that

• : FUB′ ` 〈FUB � FUB′〉• wv x′ : UB′ ← •;
ret (thunk (〈〈B � B′〉〉(force x)))

In CBV terms, the monadic upcast is like an upcast from A to A′

taking having type (1 → A) → A′, i.e. it takes a thunked effectful
computation of an A as input and produces an effectful computation
of an A′.

Proof. Again, Lemma 81 constructs 〈〈A′ � A〉〉 and 〈〈B � B′〉〉, so the
proof of Theorem 76 gives the result.

5.3.6 Equiprecision and Isomorphism

Since we can relate types by precision (v) and terms (values, stacks,
computations), there are several different notions of equivalence of
types. The most useful of these are equiprecision of types (wv) and



128 gradual type theory

isomorphism of types. In CBPV, the appropriate definition of isomor-
phism is pure value isomorphism between value types and linear stack
isomorphism between computation types.

Definition 87 (Isomorphism).

1. We write A ∼=v A′ for a value isomorphism between A and A′,
which consists of two complex values x : A ` V ′ : A′ and
x′ : A′ ` V : A such that x : A ` V[V ′/x′] wv x : A and
x′ : A′ ` V ′[V/x] wv x′ : A′.

2. We write B ∼=c B′ for a computation isomorphism between B and
B′, which consists of two complex stacks • : B ` S′ : B′ and
•′ : B′ ` S : B such that • : B ` S[S′/x′] wv • : B and
•′ : B′ ` S′[S/•] wv •′ : B′.

Note that value and computation isomorphisms are a stronger
condition than isomorphism in call-by-value and call-by-name. An
isomorphism in call-by-value between types A and A′ corresponds to
a computation isomorphism FA ∼=c FA′, and dually a call-by-name
isomorphism between B and B′ corresponds to a value isomorphism
UB ∼=v UB′ [46].

As discussed in our previous work on call-by-name GTT New and
Licata [58, 59], equiprecision is stronger than isomorphism: isomor-
phism says that the “elements” of the types are in one-to-one corre-
spondence, but equiprecision says additionally that those “elements”
are represented in the same way at the dynamic type. To see this
formally, first observe:

Theorem 88 (Equiprecision implies Isomorphism). 1. If A wv A′,
then 〈A′ � A〉 and 〈A� A′〉 form a value isomorphism A ∼=v A′.

2. If B wv B′, then 〈B � B′〉 and 〈B′ � B〉 form a computation
isomorphism B ∼=c B′.

Proof. 1. We have upcasts x : A ` 〈A′ � A〉x : A′ and x′ : A′ `
〈A � A′〉x′ : A. For the composites, to show x : A ` 〈A �
A′〉〈A′ � A〉x v x we apply upcast left twice, and conclude x v
x by assumption. To show, x : A ` x v 〈A � A′〉〈A′ � A〉x,
we have x : A ` x v 〈A′ � A〉x : A v A′ by upcast right, and
therefore x : A ` x v 〈A � A′〉〈A′ � A〉x : A v A again by
upcast right. The other composite is the same proof with A and
A′ swapped.

2. We have downcasts • : B ` 〈B � B′〉• : B′ and • : B′ ` 〈B′ �
B〉• : B.

For the composites, to show • : B′ ` • v 〈B′ � B〉〈B � B′〉•,
we apply downcast right twice, and conclude • v •. For 〈B′ �
B〉〈B � B′〉• v •, we first have 〈B � B′〉• v • : B v B′ by
downcast left, and then the result by another application of



5.3 theorems in gradual type theory 129

downcast left. The other composite is the same proof with B and
B′ swapped.

On the other hand, we should not expect that isomorphism implies
equiprecision, since there are many non-trivial isomorphisms that will
have different encodings in the dynamic type. For instance UB× 1 ∼=v

A but the former will typically be represented as a cons of a thunk
and a dummy value. For another example, U(B1 & B2)

∼=v UB1 & UB2
but the former would typically be represented as a single closure that
can be called with either of two methods, whereas the latter will be a
cons of two closures.

5.3.7 Most Precise Types

Though it is common in gradually typed surface languages to have
a most dynamic type in the form of the dynamic type ?, it is less
common to have a least dynamic type ⊥. Having a least dynamic type
causes issues with certain definitions. For instance sometimes the type
consistency relation A ∼ A′ is defined as existence of a type more
precise than each: ∃Al .Al v A ∧ Al v A′, but this definition would be
trivial given the presence of a most precise type.

We consider here the semantic consequences of having a least dy-
namic value type ⊥v or computation type ⊥c, which are quite mild.
In the case of the most precise value type ⊥v, we have a pure value
x : ⊥v ` 〈A � ⊥v〉x : A for every value type A. This suggests that
the empty type 0 is a candidate to be ⊥v, and in fact we can show the
two are isomorphic.

To prove this we first recall some general facts about the empty type,
in category theoretic terms that it is a strictly initial object.

Lemma 89 ((Strictly) Initial Object). All of the following are true.

1. For all (value or computation) types T, there exists a unique expression
x : 0 ` E : T. In category-theoretic terms, 0 is initial in the category of
value types and values.

2. For all B, there exists a unique stack • : F0 ` S : B. In category-
theoretic terms, F0 is initial in the category of computation types and
stacks.

3. Suppose there is a type A with a complex value x : A ` V : 0. Then V
is an isomorphism A ∼=v 0. In category-theoretic terms, 0 is strictly
initial.

Proof. 1. Take E to be x : 0 ` abort x : T. Given any E′, we have
E wv E′ by the η principle for 0.



130 gradual type theory

2. Take S to be • : F0 ` x ← •; abort x : B. Given another S′, by the
η principle for F types, S′ wv x ← •; S′[ret x]. By congruence,
to show S wv S′, it suffices to show x : 0 ` abort x wv
S[ret x] : B, which is an instance of the previous part.

3. We have y : 0 ` abort y : A. The composite y : 0 ` V[abort y/x] :
0 is equiprecise with y by the η principle for 0, which says that
any two complex values with domain 0 are equal.

The composite x : A ` abort V : A is equiprecise with x, because

x : A, y : A, z : 0 ` x wv abort z wv y : A

where the first is by η with x : A, y : A, z : 0 ` E[z] := x : A
and the second with x : 0, y : 0 ` E[z] := y : A (this depends
on the fact that 0 is “distributive”, i.e. Γ, x : 0 has the universal
property of 0). Substituting abort V for y and V for z, we have
abort V wv x.

Note however that we cannot prove that F0 is strictly initial in the
category of stacks.

With this lemma in hand, we can show that ⊥v must be value-
isomorphic to 0:

Theorem 90 (Most Precise Value Type). If ⊥v is a type such that ⊥v v A
for all A, then in GTT with 0, ⊥v

∼=v 0.

Proof. We have the upcast x : ⊥v ` 〈0� ⊥v〉x : 0, so Lemma 89 gives
the result.

However, note that unless we already know there is an empty type
0, we see no way to prove that ⊥v is initial in that all terms x : ⊥v ` M
are equivalent.

Thinking dually, a most precise computation type would have a
linear stack • : B ` 〈⊥c � B〉• : ⊥c for every computation type B, so
an obvious candidate would be the lazy unit >, the dual of the empty
type. However, the duality here is not perfect and we will only be able
to prove the weaker fact that U> and U⊥c are isomorphic.

To prove this, we first recall the defining property of >, that it is in
category-theoretic terms a terminal object, but not provably a strictly
terminal object, breaking the precise duality with 0.

Lemma 91 (Terminal Objects).

1. For any computation type B and context Γ, there exists a unique stack
Γ | • : B ` S : >, i.e., > is a terminal object in the category of
computation types and stacks.

2. In any context Γ, there exists a unique complex value V : U>, i.e.,
U> is a terminal object in the category of value types and values.



5.3 theorems in gradual type theory 131

3. (In any context Γ,) there exists a unique complex value V : 1, i.e., 1 is
also a terminal object.

4. U> ∼=v 1

Proof. 1. Take S = {}. The η rule for >, • : > ` • wv {} : >, under
the substitution of • : B ` S : >, gives S wv {}[S/•] = {}.

2. Take V = thunk {}. We have x : U> ` x wv thunk force x wv
thunk {} : U> by the η rules for U and >.

3. Take V = (). By η for 1 with x : 1 ` E[x] := () : 1, we have
x : 1 ` () wv unroll x to roll (). : 1. By η fro 1 with x :
1 ` E[x] := x : 1, we have x : 1 ` x wv unroll x to roll ()..
Therefore x : 1 ` x wv () : 1.

4. We have maps x : U> ` () : 1 and x : 1 ` thunk {} : U>.
The composite on 1 is the identity by the previous part. The
composite on > is the identity by part (2).

Note that we cannot show that > is strictly terminal. Next, we can
show that U⊥c is isomorphic to U>.

Theorem 92 (Most Precise Computation Type). If ⊥c is a type such
that ⊥c v B for all B, and we have a terminal computation type >, then
U⊥c

∼=v U>.

Proof. First, though we can define stacks • : >〈⊥c � >〉• : ⊥c and
• : ⊥c ` {} : >, we can only prove one direction of the isomorphism:

{}[〈⊥c � >〉•] wv {} wv •

Since > is not a strict terminal object, the dual of the above argument
does not give the other property of a stack isomorphism ⊥c

∼=c >.
On the other hand, we can define values

x : U⊥c ` 〈U>� U⊥c〉x : U>

y : U> ` 〈〈U⊥c � U>〉〉y : U⊥c

And these do exhibit the isomorphism U⊥c
∼=v U>. First, by the

retract axiom

x : U⊥c ` 〈〈U⊥c � U>〉〉〈U>� U⊥c〉x wv x : U⊥c

and the opposite composite

y : U> ` 〈U>� U⊥c〉〈〈U⊥c � U>〉〉 : U>

is the identity by uniqueness for U> (Lemma 91).



132 gradual type theory

Given these two Theorems 90, 92, it is then sensible to ask what are
the consequences of defining 0 and > to be most precise types. If this
is the case then, like in Section , we can derive what the behavior of
their casts would be.

Theorem 93. If 0 v A, then

〈A� 0〉z wv absurd z 〈F0 � FA〉• wv _← •;f

If > v B, then

〈> � B〉• wv {} 〈UB� U>〉u wv thunk f

Proof. 1. x : 0 ` 〈A � 0〉x wv abort x : A is immediate by η for
0.

2. First, to show • : FA ` _ ← •;f v 〈F0 � FA〉•, we can η-
expand the right-hand side into x : A← •; 〈F0 � FA〉ret x, at
which point the result follows by congruence and the fact that
type error is minimal, so f v 〈F0 � FA〉ret x.

Second, to show • : FA ` 〈F0 � FA〉• v _ ← •;f, we can
η-expand the left-hand side to • : FA ` y← 〈F0 � FA〉•; ret y,
so we need to show

• : FA ` y : 0← 〈F0 � FA〉•; ret y v y′ : A← •;f : F0

We apply congruence, with • : FA ` 〈F0 � FA〉• v • : 0 v A
by the universal property of downcasts in the first premise, so it
suffices to show

y v y′ : 0 v A ` ret y v fF0 : F0

By transitivity with y v y′ : 0 v A ` fF0 v fF0 : F0 v F0, it
suffices to show

y v y : 0 v 0 ` ret y v fF0 : F0

But now both sides are maps out of 0, and therefore equal by
Lemma 89.

3. The downcast is immediate by η for >, Lemma 91.

4. First,

u : U> ` thunk f v thunk (force (〈UB� U>〉u)) wv 〈UB� U>〉u : UB

by congruence, η for U, and the fact that error is minimal. Con-
versely, to show

u : U> ` 〈UB� U>〉u v thunk f : UB



5.4 discussion and related work 133

it suffices to show

u : U> ` u v thunk fB : U> v UB

by the universal property of an upcast. By Lemma 91, any two
elements of U> are equiprecise, so in particular u wv thunk f>,
at which point congruence for thunk and f> v fB : > v B gives
the result.

5.4 discussion and related work

In this chapter, we have given a logic for reasoning about gradual
programs in a mixed call-by-value/call-by-name language, shown that
the axioms uniquely determine almost all of the contract translation
implementing runtime casts. In Chapter 7, we will also that the ax-
iomatics is sound for contextual equivalence/approximation in an
operational model.

In immediate future work, we believe it is straightforward to add
inductive/coinductive types and obtain similar unique cast implemen-
tation theorems such as

〈list(A′)� list(A)〉 wv map〈A′ � A〉.

The upcast/downcast lemmas () should apply immediately. Addition-
ally, since more efficient cast implementations such as optimized cast
calculi (the lazy variant in Herman, Tomb, and Flanagan [39]) and
threesome casts [71], are equivalent to the lazy contract semantics,
they should also be models of GTT, and if so we could use GTT to
reason about program transformations and optimizations in them.

applicability of cast uniqueness principles The cast
uniqueness principles given in Theorem 75 are theorems in the formal
logic of Gradual Type Theory, and so there is a question of to what
languages the theorem applies. The theorem applies to any model of
gradual type theory, such as the models we have constructed using
call-by-push-value given in Chapter 7. We conjecture that simple call-
by-value and call-by-name gradual languages are also models of GTT,
by extending the translation of call-by-push-value into call-by-value
and call-by-name in the appendix of Levy’s monograph [45]. In order
for the theorem to apply, the language must validate an appropriate
version of the η principles for the types. So for example, a call-by-value
language that has reference equality of functions does not validate
even the value-restricted η law for functions, and so the case for func-
tions does not apply. It is a well-known issue that in the presence
of pointer equality of functions, the lazy semantics of function casts
is not compatible with the graduality property, and our uniqueness
theorem provides a different perspective on this phenomenon [26, 75,



134 gradual type theory

76]. However, we note that the cases of the uniqueness theorem for
each type connective are completely modular: they rely only on the
specification of casts and the β, η principles for the particular connec-
tive, and not on the presence of any other types, even the dynamic
types. So even if a call-by-value language may have reference equality
functions, if it has the η principle for strict pairs, then the pair cast
must be that of Theorem 75.

Next, we consider the applicability to non-eager languages. Analo-
gous to call-by-value, our uniqueness principle should apply to simple
call-by-name gradual languages, where full η equality for functions is
satisfied, but η equality for booleans and strict pairs requires a “stack
restriction” dual to the value restriction for call-by-value function η.
We are not aware of any call-by-name gradual languages, but there
is considerable work on contracts for non-eager languages, especially
Haskell [40, 91]. However, we note that Haskell is not a call-by-name
language in our sense for two reasons. First, Haskell uses call-by-need
evaluation where results of computations are memoized. However,
when only considering Haskell’s effects (error and divergence), this
difference is not observable so this is not the main obstacle. The bigger
difference between Haskell and call-by-name is that Haskell supports
a seq operation that enables the programmer to force evaluation of
a term to a value. This means Haskell violates the function η prin-
ciple because Ω will cause divergence under seq , whereas λx.Ω
will not. This is a crucial feature of Haskell and is a major source of
differences between implementations of lazy contracts, as noted in
Degen, Thiemann, and Wehr [17]. We can understand this difference
by using a different translation into call-by-push-value: what Levy
calls the “lazy paradigm”, as opposed to call-by-name [45]. Simply put,
connectives are interpreted as in call-by-value, but with the addition
of extra thunks UF, so for instance the lazy function type A → B
is interpreted as UFU(UFA → FB) and the extra UFU here is what
causes the failure of the call-by-name η principle. With this embedding
and the uniqueness theorem, GTT produces a definition for lazy casts,
and the definition matches the work of Xu, Peyton Jones, and Claessen
[91] when restricting to non-dependent contracts.

comparing soundness principles for cast semantics Green-
man and Felleisen [33] gives a spectrum of differing syntactic type
soundness theorems for different semantics of gradual typing. Our
work here is complementary, showing that certain program equiva-
lences can only be achieved by certain cast semantics.

Degen, Thiemann, and Wehr [17] give an analysis of different cast se-
mantics for contracts in lazy languages, specifically based on Haskell,
i.e., call-by-need with seq . They propose two properties “meaning
preservation” and “completeness” that they show are incompatible
and identify which contract semantics for a lazy language satisfy



5.4 discussion and related work 135

which of the properties. The meaning preservation property is closely
related to graduality: it says that evaluating a term with a contract
either produces blame or has the same observable effect as running the
term without the contract. Meaning preservation rules out overly strict
contract systems that force (possibly diverging) thunks that wouldn’t
be forced in a non-contracted term. Completeness, on the other hand,
requires that when a contract is attached to a value that it is deeply
checked. The two properties are incompatible because, for instance, a
pair of a diverging term and a value can’t be deeply checked without
causing the entire program to diverge. Using Levy’s embedding of the
lazy paradigm into call-by-push-value their incompatibility theorem
should be a consequence of our main theorem in the following sense.
We showed that any contract semantics departing from the implemen-
tation in Theorem 75 must violate η or graduality. Their completeness
property is inherently eager, and so must be different from the seman-
tics GTT would provide, so either the restricted η or graduality fails.
However, since they are defining contracts within the language, they
satisfy the restricted η principle provided by the language, and so it
must be graduality, and therefore meaning preservation that fails.

axiomatic casts Henglein’s work on dynamic typing also uses
an axiomatic semantics of casts, but axiomatizes behavior of casts at
each type directly whereas we give a uniform definition of all casts
and derive implementations for each type [38]. Because of this, the
theorems proven in that paper are more closely related to our model
construction in Chapter 7. More specifically, many of the properties
of casts needed to prove Theorem 128 have direct analogues in Hen-
glein’s work, such as the coherence theorems. Finally, we note that our
assumption of compositionality, i.e., that all casts can be decomposed
into an upcast followed by a downcast, is based on Henglein’s analysis,
where it was proven to hold in his coercion calculus.

gradual typing frameworks In this work we have applied a
method of “gradualizing” axiomatic type theories by adding in preci-
sion orderings and adding dynamic types, casts and errors by axioms
related to the precision orderings. This is similar in spirit to two recent
frameworks for designing gradual languages: Abstracting Gradual
Typing (AGT) [29] and the Gradualizer [13, 14]. All of these approaches
start with a typed language and construct a related gradual language.
A major difference between our approach and those is that our work
is based on axiomatic semantics and so we take into account the equal-
ity principles of the typed language, whereas Gradualizer is based
on the typing and operational semantics and AGT is based on the
type safety proof of the typed language. Furthermore, our approach
produces not just a single language, but also an axiomatization of the
structure of gradual typing and so we can prove results about many



136 gradual type theory

languages by proving theorems in GTT. The downside to this is that
our approach doesn’t directly provide an operational semantics for the
gradual language, whereas for AGT this is a semi-mechanical process
and for Gradualizer, completely automated. Finally, we note that AGT
produces the “eager” semantics for function types, and it is not clear
how to modify the AGT methodology to reproduce the lazy semantics
that GTT provides.

blame We do not give a treatment of runtime blame reporting,
but we argue that the observation that upcasts are thunkable and
downcasts are linear is directly related to blame soundness [81, 88] in
that if an upcast were not thunkable, it should raise positive blame
and if a downcast were not linear, it should raise negative blame. First,
consider a potentially effectful stack upcast of the form 〈FA′ � FA〉.
If it is not thunkable, then in our logical relation this would mean there
is a value V : A such that 〈FA′ � FA〉(ret V) performs some effect.
Since the only observable effects for casts are dynamic type errors,
〈FA′ � FA〉(ret V) 7→ f, and we must decide whether the positive
party or negative party is at fault. However, since this is call-by-value
evaluation, this error happens unconditionally on the continuation,
so the continuation never had a chance to behave in such a way as to
prevent blame, and so we must blame the positive party.

Dually, consider a value downcast of the form 〈UB � UB′〉. If it is
not linear, that would mean it forces its UB′ input either never or more
than once. Since downcasts should refine their inputs, it is not possible
for the downcast to use the argument twice, since e.g., printing twice
does not refine printing once. So if the cast is not linear, that means
it fails without ever forcing its input, in which case it knows nothing
about the positive party and so must blame the negative party. In
future work, we plan to investigate extensions of GTT with more
than one f with different blame labels, and an axiomatic account of a
blame-aware observational equivalence.

denotational and category-theoretic models We have
presented certain concrete models of GTT using ordered CBPV with
errors, in order to efficiently arrive at a concrete operational interpreta-
tion. It may be of interest to develop a more general notion of model of
GTT for which we can prove soundness and completeness theorems,
as in New and Licata [58]. A model would be a strong adjunction
between double categories where one of the double categories has
all “companions” and the other has all “conjoints”, corresponding to
our upcasts and downcasts. Then the contract translation should be a
construction that takes a strong adjunction between 2-categories and
makes a strong adjunction between double categories where the ep
pairs are “Kleisli” ep pairs: the upcast is has a right adjoint, but only



5.4 discussion and related work 137

in the Kleisli category and vice-versa the downcast has a left adjoint
in the co-Kleisli category.

Furthermore, the ordered CBPV with errors should also have a
sound and complete notion of model, and so our contract translation
should have a semantic analogue as well.

gradual session types Gradual session types [41] share some
similarities to GTT, in that there are two sorts of types (values and
sessions) with a dynamic value type and a dynamic session type.
However, their language is not polarized in the same way as CBPV, so
there is not likely an analogue between our upcasts always being be-
tween value types and downcasts always being between computation
types. Instead, we might reconstruct this in a polarized session type
language [62]. The two dynamic types would then be the “universal
sender” and “universal receiver” session types.

dynamically typed call-by-push-value Our interpretation
of the dynamic types in call-by-push-value suggests a design for
a Scheme-like language with a value and computation distinction.
This may be of interest for designing an extension of Typed Racket
that efficiently supports CBN or a Scheme-like language with codata
types. While the definition of the dynamic computation type by a lazy
product may look strange, we argue that it is no stranger than the use
of its dual, the sum type, in the definition of the dynamic value type.
That is, in a truly dynamically typed language, we would not think of
the dynamic type as being built out of some sum type construction,
but rather that it is the union of all of the ground value types, and the
union happens to be a disjoint union and so we can model it as a sum
type. In the dual, we don’t think of the computation dynamic type as
a product, but instead as the intersection of the ground computation
types. Thinking of the type as unfolding:

¿ = F¿∧ (?→ F?) ∧ (?→ ?→ F?) ∧ · · ·

This says that a dynamically typed computation is one that can be
invoked with any finite number of arguments on the stack, a fairly
accurate model of implementations of Scheme that pass multiple
arguments on the stack.

dependent contract checking We also plan to explore using
GTT’s specification of casts in a dependently typed setting, building on
work using Galois connections for casts between dependent types [16,
20], and work on effectful dependent types based a CBPV-like judge-
ment structure [1, 61].





6
F R O M G T T T O E VA L UAT I O N O R D E R S

To show how the call-by-push-value based GTT helps us to understand
more common evaluation orders, we show how the single unified
theory of GTT produces cast semantics for 3 different evaluation
orders: call-by-value, call-by-name and “lazy” semantics. For syntax,
we will use the same cast calculus as presented in Chapter 2, §2.1.

For each evaluation order, we will give an operational semantics of
the cast calculus and an elaboration to GTT based on Levy’s original
CBPV translations [45], extended to gradual typing using the principle
that any cast is equivalent to casting up to dynamic and then down.
Then we will show that in each evaluation order, if M reduces to M′

(M 7→ M′), then JMK wv JM′K in GTT1, showing that the reduction is
justified from the principles GTT codifies.

The call-by-value evaluation order is the same one we showed in
Chapter 2, where each type comes with a notion of value and terms
(possibly) reduce to values. Call-by-name evaluation order is based
on traditional λ calculus, which validates the strong η principle for
functions λx.Mx ∼= M even in the presence of effects. In particular,
there is no way to tell if a term of function type “terminates” in
that a diverging term of function type is equivalent to λx.Ω x, so
there is no non-trivial, observable notion of value for most types.
The third evaluation order, what Levy calls “lazy”, is something of
a compromise between the two evaluation orders. Like call-by-name,
function arguments are passed as unevaluated thunks, but like call-by-
value, terms reduce to values and the difference between a diverging
term Ω of function type and a function that always diverges λx.Ω
is observable using some kind of “strict sequencing” operation. In
the language Haskell, this strict sequencing is given by the construct
“seq” and by “!” patterns. We use a strict let-binding form to give the
same effect. Note that our language is not call-by-need like Haskell, in
that we do not have a stateful, sharing-based operational semantics.
However, since the only unencapsulated effects in our language and
Haskell are an uncatchable error and divergence, this difference is not
observable since any effect would end evaluation.

We review the common syntax in Figure 6.1

1 The only exception, as mentioned in Chapter 5, are the rules regarding disjointness
of type constructors.

139



140 from gtt to evaluation orders

Types A : := ? | A→ A | A× A | Bool
Ground types G : := ?→ ? | ?× ? | Bool
Terms M, N : := f | x | let x = M; N | 〈A⇐ A〉M

| (M, N) |πi M

| if M then N1 else N2 | λx : A.M |M N

Figure 6.1: Cast Calculus Syntax

6.1 call-by-value

First, we review call-by-value evaluation order in Figure 6.2. We first
define the syntax of values and evaluation contexts. Values include the
ordinary STLC values, and additionally tagged values of the dynamic
type 〈? ⇐ G〉V. We fix the evaluation order by defining evaluation
contexts which we write as E since they correspond to CBPV stacks.

Next, we present the operational semantics of our calculus. The
first six rules correspond to ordinary CBV reductions so we don’t
bother to name them. The remaining rules are specific to casts. First,
?Id says that casting from ? to ? is the identity. The next two rules
DecompUp,DecompDn break down complex casts to and from the
dynamic type to go through the associated ground type (note that
for any type A, if A 6= ? then there is precisely one ground type G
such that A v G). The next two rules TagMatch,TagMismatch say
that casting a tagged value 〈?⇐ G〉V to a ground type G′ succeeds if
the tag is the same (G = G′) and fails if the tag is different (G 6= G′).
Finally, the Silly rule is a catch all that says when casting between two
completely unrelated types, the cast fails. The remaining rules give the
behavior of casts between two types with the same head connective,
implementing the wrapping strategy.

6.1.1 From CBV to GTT

Our goal is to show that the operational reductions of our CBV cast
calculus are in a sense derivable from the axioms of GTT. To make
this concrete, we will define a type-preserving translation of our CBV
calculus terms M into GTT computations Mc and prove that for almost
every reduction M 7→ N in the CBV calculus, Mc wv Nc is provable
in GTT. The only rules that do not follow from the axioms of GTT
are those that result in errors: TagMismatch and Silly. The reason
for this is that nothing in GTT encodes the “disjointness” of different
type connectives, and we consider this part of the language to be a
true design decision. We explore in Chapter 7 some alternative design
choices for gradual languages.



6.1 call-by-value 141

Values V : := 〈?⇐ G〉V | λx : A.M | (V, V) | true | false
Evaluation Contexts E : := • | 〈B⇐ A〉E | let x = E; N | (E, N) | (V, E)

| πiE

| if E then N1 else N2 | E N |V E

Environments Γ : := · | Γ, x : A

Substitutions γ : := · | γ, V/x

E[let x = V; N] 7→v E[N[V/x]]

E[(λx : A.M)V] 7→v E[M[V/x]]

E[πi(V1, V2)] 7→v E[Vi]

E[if true then N1 else N2] 7→v E[N1]

E[if false then N1 else N2] 7→v E[N2]

?Id
E[〈?⇐ ?〉V] 7→v E[V]

DecompUp

A v G A 6= G

E[〈?⇐ A〉V] 7→v E[〈?⇐ G〉〈G ⇐ A〉V]

DecompDn

A v G A 6= G

E[〈A⇐ ?〉V] 7→v E[〈A⇐ G〉〈G ⇐ ?〉V]

TagMatch

E[〈G ⇐ ?〉〈?⇐ G〉V] 7→v E[V]

TagMismatch

G 6= G′

E[〈G′ ⇐ ?〉〈?⇐ G〉V] 7→v f

Eilly

A v GA B v GB GA 6= GB

E[〈B⇐ A〉V] 7→v f

→Cast

E[〈A′1 → A′2 ⇐ A1 → A2〉V] 7→v E[λx : A′1.〈A′2 ⇐ A2〉(V (〈A1 ⇐ A′1〉x))]

E[〈A′1 × A′2 ⇐ A1 × A2〉(V1, V2)] 7→v E[(〈A′1 ⇐ A1〉V1, 〈A′2 ⇐ A2〉V2)]

Figure 6.2: CBV Cast Calculus Operational Semantics



142 from gtt to evaluation orders

If Γ ` M : A then Γty ` Mc : FAty

?ty = ?

(A→ A′)ty = U(Aty → FA′ty)

(A1 × A2)
ty = Aty

1 × Aty
2

Boolty = 1 + 1

xc = ret x

(let x = M; N)c = x ← Mc; Nc

(〈A1⇐ A2〉M)c = 〈FAty
2 � F?〉〈〈F?� FAty

1 〉〉[M
c]

(λx : A.M)c = ret (thunk (λx : Aty.Mc))

(M N)c = f ← Mc; x ← Nc; force f x

(M1, M2)
c = x1 ← Mc

1; x2 ← Mc
2; ret (x1, x2)

(πi M)c = z← Mc; let (x1, x2) = z; ret xi

truec = ret inl ()

falsec = ret inr ()

(if M then N1 else N2)
c = z← Mc; case z{Nc

1 | Nc
2}

(6.1)

Figure 6.3: CBV to GTT translation

We define the type and term translation in Figure 6.3. First, we trans-
late CBV types A to CBPV value types FA, with the only non-trivial
case being the translation of function types. Next the computation type
translation is mostly straightforward, making the evaluation order
explicit using x ← M; N. The only non-standard case is the rule for
casts, where as discussed in Chapter 3, we define the semantics of
all casts to factorize as an upcast to the dynamic type followed by
a downcast out of the dynamic type. Note finally that since we are
working in CBV, we don’t ever need to use the computation dynamic
type ¿.

The rest of this section proves the following theorem:

Theorem 94. If M 7→v N by any rule except TagMismatch or Silly, then
Mc wv Nc.

To reason about substitution and plugging in evaluation contexts in
the correctness proofs, we additionally define a value translation that
directly translates CBV values to GTT values and a stack translation
that directly translates CBV evaluation contexts to GTT stacks in
Figure 6.4

We then prove a few correctness principles for these with respect to
the term translation.

Lemma 95. Vc wv ret Vv



6.1 call-by-value 143

(〈G⇐ ?〉V)v = 〈?� Gty〉V
(λx : A.M)v = thunk (λx : Aty.Mc)

(V1, V2)
v = (Vv

1 , Vv
2 )

truev = inl ()

falsev = inr ()

•s = •
(let x = E; N)s = x ← Es; Nc

(〈A1⇐ A2〉E)s = x ← Es; 〈FAty
2 � F?〉(ret 〈?� Aty

1 〉x)
(E N)s = f ← Es; x ← Nc; force f x

(V E)s = x ← Es; force Vv x

(E1, M2)
s = x1 ← Ec

1; x2 ← Mc
2; ret (x1, x2)

(V1, E2)
s = x2 ← Ec

2; ret (Vv
1 , x2)

(πiE)s = z← Es; let (x1, x2) = z; ret xi

(if E then N1 else N2)
s = z← Es; case z{x1.Nc

1 | x2.Nc
2}

(6.2)

Figure 6.4: CBV Value and Stack translations

Proof. By induction on V.

• 〈?⇐ G〉V:

(〈?⇐ G〉V)c = 〈F? � F?〉〈〈F?� FGty〉〉Vc (defn.)

wv 〈〈F?� FGty〉〉Vc (Theorem 72)

= x ← Vc; ret 〈?� Gty〉x (defn.)

wv x ← ret Vv; ret 〈?� Gty〉x (defn.)

wv ret 〈?� Gty〉Vv (Fβ)

= ret (〈?⇐ G〉V)v (defn.)

• λx : A.M: immediate by reflexivity.

• (): immediate by reflexivity.

• (V1, V2):

(V1, V2)
c = x1 ← Vc

1 ; x2 ← Vc
2 ; ret (x1, x2) (definition)

wv x1 ← ret Vv
1 ; x2 ← ret Vv

2 ; ret (x1, x2)

(I.H., twice)

wv ret (V1, V2) (Fβ twice)



144 from gtt to evaluation orders

• inl V:

(inl V)c = x ← Vc; ret inl x (definition)

wv x ← ret Vv; ret inl x (I.H.)

wv ret inl Vv (Fβ)

• inr V: similar to inl case.

Lemma 96. (M[V/x])c wv Mc[Vv/x]

Proof. By induction on M. All cases but variable are by congruence
and inductive hypothesis.

• M = x:

(x[V/x])c = Vc (def. substitution)

wv ret Vv (Lemma 95)

= (ret x)[Vv/x] (def. substitution)

= (xc)[Vv/x] (def. substitution)

• M = y 6= x:

(y[V/x])c = yc (def. subst.)

wv ret y (def.)

wv (ret y)[V/x] (def. subst.)

Lemma 97. (E[M])c wv Es[Mc]

Proof. By induction on E. Most cases are straightforward by congru-
ence and induction hypothesis. We show the other cases.

• E = V E:

((V E)[M])c = (V (E[M]))c (defn. plugging)

= f ← Vc; x ← (E[M])c; force f x (defn.)

wv f ← ret Vv; x ← (E[M])c; force f x
(Lemma 95)

wv x ← (E[M])c; force Vv x (Fβ)

wv x ← Es[Mc]; force Vv x (I.H.)

wv (x ← Es; force Vv x)[Mc]

(defn. of plug)

= (V E)s[Mc]



6.1 call-by-value 145

• E = (V1, E2)

((V1, E2)[M])c = (V1, E2[M])c (defn. plugging)

= x1 ← Vc
1 ; x2 ← E2[M]c; ret (x1, x2)

(defn.)

wv x1 ← ret Vv
1 ; x2 ← E2[M]c; ret (x1, x2)

(Lemma 95)

wv x2 ← E2[M]c; ret (Vv
1 , x2) (Fβ)

wv x2 ← Es
2[M

c]; ret (Vv
1 , x2) (I.H.)

= (x2 ← Es
2; ret (Vv

1 , x2))[Mc]

(defn. plugging)

= (V1, Es
2)[M

c] (defn.)

We will also need the following simple GTT lemma to help reason
about casts. We prove a version for value types and computation types
that will be used in the CBN section.

Lemma 98 (Any Middle Type will Do). For any value types A1, A2 v A′,
〈FA2 � F?〉〈〈F?� FA1〉〉M wv 〈FA2 � FA′〉〈〈FA′ � FA1〉〉M

Similarly, for any computation types B1, B2 v B′, 〈〈UB2 � U¿〉〉〈U¿�

UB1〉V wv 〈〈UB2 � UB′〉〉〈UB′ � UB1〉VM

Proof.

〈FA2 � F?〉〈〈F?� FA1〉〉M
wv 〈FA2 � FA′〉〈FA′ � F?〉〈〈F?� FA′〉〉〈〈FA′ � FA1〉〉M

(Theorem 72)

wv 〈FA2 � FA′〉〈〈FA′ � FA1〉〉M (retraction)

And now we can prove the CBV correctness theorem.

proof of theorem 94

Proof. In all cases, by Lemma 97, congruence and E[f] wv f, it is
sufficient to consider the case that E = •.

First, we have the cases not involving casts, which are standard for
the embedding of call-by-value into call-by-push-value.

• let x = V; N 7→v N[V/x]

(let x = V; N)c = x ← Vc; Nc

wv x ← ret Vv; Nc

wv Nc[Vv/x]

wv (N[V/x]c)

(6.3)



146 from gtt to evaluation orders

• (λx : A.M)V 7→v M[V/x]

((λx : A.M)V)c = f ← (ret (thunk (λx : Aty.Mc))); x ← Vc; force f x

wv x ← Vc; force (thunk (λx : Aty.Mc)) x

wv x ← ret Vv; force (thunk (λx : Aty.Mc)) x

wv force (thunk (λx : Aty.Mc))Vv

wv (λx : Aty.Mc)Vv

wv Mc[Vv/x]

wv (M[V/x])c

(6.4)

• πi(V1, V2) 7→v Vi

πi(V1, V2)
c = z← (V1, V2)

c; let (x1, x2) = z; ret xi

wv z← ret (Vv
1 , Vv

2 ); let (x1, x2) = z; Nc

wv let (x1, x2) = (Vv
1 , Vv

2 ); ret xi

wv ret xi[Vv
1 /x1][Vv

2 /x2]

wv ret Vi

(6.5)

• if true then N1 else N2 7→v N1

(if true then N1 else N2)
c = z← ret inl (); case z{x1.Nc

1 | x2.Nc
2}

wv case inl (){x1.Nc
1 | x2.Nc

2}
wv Nc

1

(6.6)

• if false then N1 else N2 7→v N2, similar to previous.

Next, we have the interesting cases, those specific to gradual type
casts/GTT.

• 〈?⇐ ?〉V 7→v V:

(〈?⇐ ?〉V)c = 〈F? � F?〉〈〈F?� F?〉〉[Vc]

wv Vc (Theorem 72)

• 〈?⇐ A〉V 7→v 〈?⇐ G〉〈G ⇐ A〉V where A v G

〈?⇐ A〉Vc

= 〈F? � F?〉〈〈F?� FAty〉〉[Vc]

wv 〈F? � F?〉〈〈F?� FGty〉〉〈〈FGty � FAty〉〉[Vc]

wv 〈F? � F?〉〈〈F?� FGty〉〉〈FGty
� F?〉〈〈F?� FGty〉〉〈〈FGty � FAty〉〉[Vc]

wv 〈F? � F?〉〈〈F?� FGty〉〉〈FGty
� F?〉〈〈F?� FAty〉〉[Vc]

= (〈A⇐ G〉〈G ⇐ ?〉V)c

(6.7)



6.1 call-by-value 147

• 〈A⇐ ?〉V 7→v 〈A⇐ G〉〈G ⇐ ?〉V: similar to previous case.

• 〈G ⇐ ?〉〈?⇐ G〉V 7→v V

(〈G ⇐ ?〉〈?⇐ G〉V)c = 〈FGty
� F?〉〈〈F?� F?〉〉〈F? � F?〉〈〈F?� FGty〉〉[Vc]

wv 〈FGty
� F?〉〈〈F?� FGty〉〉[Vc]

(Theorem 72)

wv Vc (retraction)

• 〈A′1 → A′2 ⇐ A1 → A2〉V 7→v λx : A′1.〈A′2 ⇐ A2〉(V (〈A1 ⇐
A′1〉x))

(〈A′1 → A′2 ⇐ A1 → A2〉V)c

wv 〈FU(A′ty1 → FA′ty2 ) � F?〉〈〈F?� FU(Aty
1 → FAty

2 )〉〉Vc

wv 〈FU(A′ty1 → FA′ty2 ) � FU(?→ F?)〉〈〈FU(?→ F?)� FU(Aty
1 → FAty

2 )〉〉Vc

wv 〈FU(A′ty1 → FA′ty2 ) � FU(?→ F?)〉〈〈FU(?→ F?)� FU(Aty
1 → FAty

2 )〉〉[ret Vv]

wv 〈FU(A′ty1 → FA′ty2 ) � FU(?→ F?)〉ret 〈U(?→ F?)� U(Aty
1 → FAty

2 )〉Vv

wv 〈FU(A′ty1 → FA′ty2 ) � FU(?→ F?)〉

ret thunk

(
λx′.x ← 〈FAty

1 � F?〉(ret x′);

force (〈UF?� UFAty
2 〉(thunk (force Vv x)))

)
wv 〈FU(A′ty1 → FA′ty2 ) � FU(?→ F?)〉

ret thunk (λx′.x ← 〈FAty
1 � F?〉(ret x′); 〈〈F?� FAty

2 〉〉(force Vv x))

wv ret thunk (〈A′ty1 → FA′ty2 � ?→ F?〉(λx′.x ← 〈FAty
1 � F?〉(ret x′); 〈〈F?� FAty

2 〉〉(force Vv x)))

wv ret thunk (λy′.〈FA′ty2 � F?〉((λx′.x ← 〈FAty
1 � F?〉(ret x′); 〈〈F?� FAty

2 〉〉(force Vv x)))

(〈?� A′ty1 〉y
′))

wv ret thunk (λy′.〈FA′ty2 � F?〉((x ← 〈FAty
1 � F?〉(ret (〈?� A′ty1 〉y

′); 〈〈F?� FAty
2 〉〉(force Vv x))))

wv ret thunk (λy′.〈FA′ty2 � F?〉((x ← 〈FAty
1 � F?〉〈〈F?� FA′ty1 〉〉ret y′; 〈〈F?� FAty

2 〉〉(force Vv x))))

wv ret thunk (λy′.〈FA′ty2 � F?〉((x ← (〈A1 ⇐ A′1〉y′)ty; 〈〈F?� FAty
2 〉〉(force Vv x))))

wv ret thunk (λy′.〈FA′ty2 � F?〉〈〈F?� FAty
2 〉〉(x ← (〈A1 ⇐ A′1〉y′)ty; (force Vv x)))

wv ret thunk (λy′.〈FA′ty2 � F?〉〈〈F?� FAty
1 〉〉( f ← Vc; x ← (〈A1 ⇐ A′1〉y′)c; (force f x)))

wv ret thunk (λy′.〈FA′ty2 � F?〉〈〈F?� FAty
1 〉〉(V (〈A1 ⇐ A′1〉y′))c)

wv ret thunk (λy′.(〈A′2 ⇐ A2〉(V (〈A1 ⇐ A′1〉y′)))c)

wv (λy′.〈A′2 ⇐ A2〉(V (〈A1 ⇐ A′1〉y′)))c

(6.8)



148 from gtt to evaluation orders

• 〈A′1 × A′2 ⇐ A1 × A2〉(V1, V2) 7→v (〈A′1 ⇐ A1〉V1, 〈A′2 ⇐ A2〉V2)

(〈A′1 × A′2 ⇐ A1 × A2〉(V1, V2))
c

wv 〈F(A′ty1 × A′ty2 ) � F?〉〈〈F?� F(Aty
1 × Aty

2 )〉〉(V1, V2)
c

wv 〈F(A′ty1 × A′ty2 ) � F(?× ?)〉〈〈F(?× ?)� F(Aty
1 × Aty

2 )〉〉(V1, V2)
c

wv 〈F(A′ty1 × A′ty2 ) � F(?× ?)〉〈〈F(?× ?)� F(Aty
1 × Aty

2 )〉〉ret (Vv
1 , Vv

2 )

wv 〈F(A′ty1 × A′ty2 ) � F(?× ?)〉(ret 〈(?× ?)� (Aty
1 × Aty

2 )〉(Vv
1 , Vv

2 ))

wv 〈F(A′ty1 × A′ty2 ) � F(?× ?)〉
(ret (let (x1, x2) = (Vv

1 , Vv
2 ); (〈?� Aty

1 〉x1, 〈?� Aty
2 〉x2)))

wv 〈F(A′ty1 × A′ty2 ) � F(?× ?)〉(ret (〈?� Aty
1 〉V

v
1 , 〈?� Aty

2 〉x2))

wv let (y1, y2) = (〈?� Aty
1 〉V

v
1 , 〈?� Aty

2 〉V
v
2 );

x′1 ← 〈FA′ty1 � F?〉ret y1;

x′2 ← 〈FA′ty2 � F?〉ret y2; ret (x′1, x′2)

wv x′1 ← 〈FA′ty1 � F?〉ret 〈?� Aty
1 〉V

v
1 ;

x′2 ← 〈FA′ty2 � F?〉ret 〈?� Aty
2 〉V

v
2 ; ret (x′1, x′2)

wv x′1 ← 〈FA′ty1 � F?〉〈〈?� Aty
1 〉〉ret Vv

1 ;

x′2 ← 〈FA′ty2 � F?〉〈〈?� Aty
2 〉〉ret Vv

2 ; ret (x′1, x′2)

wv x′1 ← 〈FA′ty1 � F?〉〈〈?� Aty
1 〉〉V

c
1 ;

x′2 ← 〈FA′ty2 � F?〉〈〈?� Aty
2 〉〉V

c
2 ; ret (x′1, x′2)

wv x′1 ← 〈A′1 ⇐ A1〉Vc
1 ; x′2 ← 〈A′2 ⇐ A2〉Vc

2 ; ret (x′1, x′2)

= (〈A′1 ⇐ A1〉V1, 〈A′2 ⇐ A2〉V2)
c

(6.9)

6.2 call-by-name

Next, we cover call-by-name evaluation order in Figure 6.5. First, we
define evaluation contexts, which correspond to CBPV stacks, and find
the redex within the larger term. Unlike CBV, there’s no non-trivial
notion of value. Then we have the operational rules. Again we start
with the β reduction rules. Let-binding and function application are
both lazy, substituting an unreduced term for a variable. Similarly,
projection doesn’t reduce the side of the pair that is not being projected.
Finally, if-statements are essentially the same as in CBV since booleans
are first-order data. Then the cast rules are all analogous to CBV but
are non-strict in that they do not reduce the scrutinee to a value first.
In particular the function and product rules immediately step to the
wrapping definition.



6.2 call-by-name 149

E ::= [·] | E M |πiE | if E then Mt else M f | 〈G ⇐ ?〉E

E[let x = M; N] 7→n E[N[M/x]]

E[(λx.M)N] 7→n E[M[N/x]]

E[πi (M1, M2)] 7→n E[Mi]

E[if true then Mt else M f ] 7→n E[Mt]

E[if false then Mt else M f ] 7→n E[M f ]

?Id
E[〈?⇐ ?〉M] 7→n E[M]

DecompUp

A v G

E[〈?⇐ A〉M] 7→n E[〈?⇐ G〉〈G ⇐ A〉M]

DecompDn

A v G

E[〈A⇐ ?〉M] 7→n E[〈A⇐ G〉〈G ⇐ ?〉M]

TagMatch

E[〈G ⇐ ?〉〈?⇐ G〉M] 7→n E[M]

TagMismatch

G 6= G′

E[〈G′ ⇐ ?〉〈?⇐ G〉M] 7→n f

Silly

A v GA B v GB GA 6= GB

E[〈B⇐ A〉M] 7→n f

E[(〈A→ B⇐ A′ → B′〉M)] 7→n E[λx.〈B⇐ B′〉(M (〈A′ ⇐ A〉x))]
E[(〈A1 × A2 ⇐ A′1 × A′2〉M)] 7→n E[(〈A1 ⇐ A′1〉(π1M), 〈A2 ⇐ A′2〉(π2M))]

Figure 6.5: Call-by-name Reduction



150 from gtt to evaluation orders

If Γ ` M : A, then UΓty ` Mc : Aty

?ty = ¿

(A→ A′)ty = UAty → A′ty

(A1 × A2)
ty = Aty

1 & Aty
2

Boolty = F(1 + 1)

xc = force x

(let x = M; N)c = let x = thunk Mc; Nc

(〈A2 ⇐ A1〉M)c = force 〈〈UAty
2 � U¿〉〉〈U¿� UAty

1 〉(thunk Mc)

(λx : A.M)c = (λx : UAty.Mc)

M Nc = Mc (thunk Nc)

(M1, M2)
c = {π 7→ Mc

1 | π′ 7→ Mc
2}

πi Mc = πi Mc

truec = ret inl ()

falsec = ret inr ()

(if M then N1 else N2)
c = z← Mc; case z{x1. Nc

1 | x2. Nc
2}

(6.10)

Figure 6.6: CBN to GTT translation

Next, we define the elaboration of CBN into GTT in Figure 6.6.
This follows Levy’s original CBN translation. First, CBN types are
interpreted as GTT computation types, which matches the fact that
CBN evaluation order does not have a notion of value. In particular,
the dynamic type is interpreted as the computation dynamic type ¿.
Next, variables all denote thunks and a usage of a variable forces it.
In other ways the translation is somewhat simpler than CBV as most
forms translate directly to the corresponding form of CBPV but with
the insertion of some thunks.

Next we prove some analogous lemmas before proving translation
correctness.

To reason about plugging in evaluation contexts in the correctness
proofs, we additionally define a stack translation that directly translates
CBN evaluation contexts to GTT stacks in Figure 6.4

We then prove a few correctness principles for these with respect to
the term translation.

Lemma 99. (M[N/x])c wv Mc[thunk (Nc)/x]

Proof. By induction on M. All cases but variable are by congruence
and inductive hypothesis.



6.2 call-by-name 151

•s = •
(〈G ⇐ ?〉E)s = 〈Gty

� ¿〉Es

(E N)s = Es (thunk Nc)

(πiE)s = πiEs

(if E then N1 else N2)
s = z← Es; case z{x1.Nc

1 | x2.Nc
2}

(6.11)

Figure 6.7: CBN Value and Stack translations

• M = x:

(x[N/x])c = Nc (def. substitution)

wv force (thunk Nv) (Uβ)

= (force x)[thunk Nc/x] (def. substitution)

= (xc)[thunk Nc/x] (def. trans)

• M = y 6= x:

(y[N/x])c = force yc (def. trans.)

wv (force y)[thunk Nc/x] (def. subst.)

Lemma 100. (E[M])c wv Es[Mc]

Proof. By induction on E. Most cases are straightforward by congru-
ence and induction hypothesis. The only other case is the cast case:

• E = 〈G ⇐ ?〉E:

(〈G ⇐ ?〉E)[M]c

= (〈G ⇐ ?〉E[M])c (defn. plugging)

= force 〈〈UGty
� U¿〉〉〈U¿� U¿〉thunk E[M]c (defn.)

wv force 〈〈UGty
� U¿〉〉thunk E[M]c (decomposition)

= force (thunk (〈Gty
� ¿〉(force thunk E[M]c)))

(defn.)

wv 〈Gty
� ¿〉E[M]c (Uβ, twice)

wv 〈Gty
� ¿〉Es[Mc] (IH)

wv (〈Gty
� ¿〉Es)[Mc] (def)

wv (〈G ⇐ ?〉Es)[Mc] (def)



152 from gtt to evaluation orders

And we can now establish our central theorem.

Theorem 101. If M 7→n N by any rule except TagMismatch or Silly,
then Mc wv Nc.

Proof. In all cases, by Lemma 100, congruence and E[f] wv f, it is
sufficient to consider the case that E = •.

First, we have the cases not involving casts, which are standard for
the embedding of call-by-value into call-by-push-value.

• let x = M; N 7→n N[M/x]

(let x = M; N)c = let x = thunk Mc; Nc

wv Nc[thunk Mc]

wv (N[M/x]c)

(6.12)

• (λx : A.M) N 7→n M[N/x]

((λx : A.M) N)c = (λx : UAty.Mc) thunk Nc

wv (Mc)[thunk Nc/x]

wv (M[N/x])c

(6.13)

• πi(M1, M2) 7→n Mi

πi(M1, M2)
c = πi{π 7→ Mc

1 | π′ 7→ Mc
2}

wv Mc
i

(6.14)

• if true then N1 else N2 7→n N1

(if true then N1 else N2)
c = z← ret inl (); case z{x1.Nc

1 | x2.Nc
2}

wv case inl (){x1.Nc
1 | x2.Nc

2}
wv Nc

1

(6.15)

• if false then N1 else N2 7→n N2, similar to previous.

Next, we have the interesting cases, those specific to gradual type
casts/GTT.

• 〈?⇐ ?〉M 7→n M:

(〈?⇐ ?〉M)c = force 〈〈U¿ � U¿〉〉〈U¿� U¿〉(thunk Mc)

wv force thunk Mc (Theorem 72, twice)

wv Mc (Uβ)



6.2 call-by-name 153

• 〈?⇐ A〉M 7→n 〈?⇐ G〉〈G ⇐ A〉M where A v G

〈?⇐ A〉Mc

= force 〈〈UAty
� U¿〉〉〈U¿� U¿〉(thunk Mc)

wv force 〈〈UAty
� UGty〉〉〈〈UGty

� U¿〉〉〈U¿� U¿〉(thunk Mc)

wv force 〈〈UAty
� UGty〉〉〈〈UGty

� U¿〉〉〈U¿� UGty〉〈〈UGty
� U¿〉〉〈U¿� U¿〉(thunk Mc)

wv force 〈〈UAty
� U¿〉〉〈U¿� UGty〉〈〈UGty

� U¿〉〉〈U¿� U¿〉(thunk Mc)

wv force 〈〈UAty
� U¿〉〉〈U¿� UGty〉(thunk (force 〈〈UGty

� U¿〉〉〈U¿� U¿〉(thunk Mc)))

wv (〈A⇐ G〉〈G ⇐ ?〉M)c

(6.16)

• 〈A⇐ ?〉V 7→n 〈A⇐ G〉〈G ⇐ ?〉V: similar to previous case.

• 〈G ⇐ ?〉〈G ⇐ ?〉M 7→n M

(〈G ⇐ ?〉〈?⇐ G〉M)c

= force 〈〈UGty
� U¿〉〉〈U¿� U¿〉(thunk (force 〈〈U¿ � U¿〉〉〈U¿� U¿〉(thunk Mc)))

wv force 〈〈UGty
� U¿〉〉(thunk (force 〈U¿� U¿〉(thunk Mc)))

wv force 〈〈UGty
� U¿〉〉〈U¿� UGty〉(thunk Mc)

wv force (thunk Mc)

wv Mc

(6.17)



154 from gtt to evaluation orders

• 〈A′1 → A′2 ⇐ A1 → A2〉M 7→n λx : A′1.〈A′2 ⇐ A2〉(M (〈A1 ⇐
A′1〉x))

(〈A′1 → A′2 ⇐ A1 → A2〉M)c

wv force 〈〈U(UA′ty1 → A′ty2 ) � U¿〉〉〈U(UAty
1 → Aty

2 )� U¿〉thunk (Mc)

wv force 〈〈U(UA′ty1 → A′ty2 ) � U(U¿→ ¿)〉〉〈U(U¿→ ¿)� U(UAty
1 → Aty

2 )〉
(thunk Mc)

wv 〈UA′ty1 → A′ty2 � U¿→ ¿〉force 〈U(U¿→ ¿)� U(UAty
1 → Aty

2 )〉(thunk Mc)

wv λx.〈A′ty2 � ¿〉
(
(force 〈U(U¿→ ¿)� U(UAty

1 → Aty
2 )〉(thunk Mc))

(〈U¿� UA′ty1 〉x)

)
wv λx.〈A′ty2 � ¿〉(force thunk (λy′.

(
y← 〈FUAty

1 � FU¿〉(ret y′);

force (〈U¿� UAty
2 〉thunk ((force thunk Mc) y))

)
))

(〈U¿� UA′ty1 〉x)


wv λx.〈A′ty2 � ¿〉(λy′.

(
y← 〈FUAty

1 � FU¿〉(ret y′);

force (〈U¿� UAty
2 〉(thunk (Mc y)))

)
)

(〈U¿� UA′ty1 〉x)


wv λx.〈A′ty2 � ¿〉(λy′.

(
y← ret thunk (〈Aty

1 � ¿〉(force y′));

force (〈U¿� UAty
2 〉(thunk (Mc y)))

)
)

(〈U¿� UA′ty1 〉x)


wv λx.〈A′ty2 � ¿〉(λy′.

(
force (〈U¿� UAty

2 〉(thunk (Mc (thunk (〈Aty
1 � ¿〉(force y′))))))

)
)

(〈U¿� UA′ty1 〉x)


wv λx.〈A′ty2 � ¿〉force 〈U¿� UAty

2 〉(
(thunk (Mc (thunk (〈Aty

1 � ¿〉(force (〈U¿� UA′ty1 〉x))))))
)

wv λx.force 〈〈A′ty2 � ¿〉〉〈U¿� UAty
2 〉(

(thunk (Mc (thunk (force 〈〈UAty
1 � U¿〉〉〈U¿� UA′ty1 〉x))))

)
= (λx.〈A′2 ⇐ A2〉(M (〈A1 ⇐ A′1〉x)))c

(6.18)



6.3 lazy 155

• 〈A′1 × A′2 ⇐ A1 × A2〉M 7→n (〈A′1 ⇐ A1〉π1M, 〈A′2 ⇐ A2〉π2M)

(〈A′1 × A′2 ⇐ A1 × A2〉M)c

wv force 〈〈U(A′ty1 & A′ty2 ) � U¿〉〉〈U(Aty
1 & Aty

2 )� U¿〉thunk Mc

wv force 〈〈U(A′ty1 & A′ty2 ) � U(¿ & ¿)〉〉〈U(Aty
1 & Aty

2 )� U(¿ & ¿)〉thunk Mc

wv force 〈〈U(A′ty1 & A′ty2 ) � U(¿ & ¿)〉〉thunk

{π 7→ force 〈U¿� UAty
1 〉thunk (π1force thunk Mc)

| π′ 7→ force 〈U¿� UAty
2 〉thunk (π2force thunk Mc)}

wv force 〈〈U(A′ty1 & A′ty2 ) � U(¿ & ¿)〉〉thunk

{π 7→ force 〈U¿� UAty
1 〉thunk (π1Mc)

| π′ 7→ force 〈U¿� UAty
2 〉thunk (π2Mc)}

wv 〈U(A′ty1 & A′ty2 ) � U(¿ & ¿)〉force thunk

{π 7→ force 〈U¿� UAty
1 〉thunk (π1Mc)

| π′ 7→ force 〈U¿� UAty
2 〉thunk (π2Mc)}

wv 〈U(A′ty1 & A′ty2 ) � U(¿ & ¿)〉

{π 7→ force 〈U¿� UAty
1 〉thunk (π1Mc)

| π′ 7→ force 〈U¿� UAty
2 〉thunk (π2Mc)}

wv 〈U(A′ty1 & A′ty2 ) � U(¿ & ¿)〉

{π 7→ force 〈U¿� UAty
1 〉thunk (π1Mc)

| π′ 7→ force 〈U¿� UAty
2 〉thunk (π2Mc)}

wv {π 7→ 〈A
′ty
1 � ¿〉force 〈U¿� UAty

1 〉thunk (π1Mc)

| π′ 7→ 〈A′ty2 � ¿〉force 〈U¿� UAty
2 〉thunk (π2Mc)}

wv {π 7→ force 〈〈UA′ty1 � U¿〉〉〈U¿� UAty
1 〉thunk (π1Mc)

| π′ 7→ force 〈〈UA′ty2 � U¿〉〉〈U¿� UAty
2 〉thunk (π2Mc)}

= (〈A′1 ⇐ A1〉π1M, 〈A′2 ⇐ A2〉π2M)c

(6.19)

6.3 lazy

Next, we consider lazy evaluation order, which exhibits much of the
behavior of a Haskell-like system, which is like call-by-name in that
variables denote delayed computations, but is also like call-by-value in
that types have a non-trivial notion of value, so unlike in call-by-name
the difference between f and λx.f is observable. In Haskell this is
observable using the seq operator seq M N which when forced reduces



156 from gtt to evaluation orders

M to a value and then forces N. In our calculus we capture this by
making the let-binding construct strict let x = M; N will evaluate M
to a value and then bind a trivial thunk that returns that value to x
before evaluating N. In Haskell, this strict let is not necessary because
of Haskell’s stateful call-by-need semantics, but note here that since the
only effects in our language are divergence and an uncatchable error
(like Haskell), the difference between call-by-need and lazy evaluation
is not extensional and is instead relevant only for evaluation of space-
usage. While this is of course an important consideration, it is not
necessary to capture this to study the extensional behavior of casts,
and we show that by elaboration to GTT, previous designs for contracts
in Haskell can be reproduced.

In particular, in Haskell/lazy evaluation, the call-by-name reduction
for the function type is incorrect:

E[(〈A→ B⇐ A′ → B′〉M)] 7→ E[λx.〈B⇐ B′〉(M (〈A′ ⇐ A〉x))]
(wrong)

The reason is that the scrutinee on the right hand side is a λ, whereas
the left hand side might not be. This results in a violation of what
Dagand and Thiemann call “meaning preservation”: adding a contract
changes the termination behavior of a term. In the terminology of
gradual typing, we would say that this is a violation of graduality,
adding a cast resulted in divergence being replaced by termination, but
graduality only allows the behavior to stay the same or introduce an
error. The correct definition is that the cast should be strict, essentially
the same as the CBV definition:

E[(〈A→ B⇐ A′ → B′〉V)] 7→ E[λx.〈B⇐ B′〉(V (〈A′ ⇐ A〉x))]

And we will show that this behavior arises naturally from Levy’s lazy
translation into CBPV.

Values, evaluation contexts and operational semantics for lazy eval-
uation are defined in Figure 6.8. Values are λs for functions, pairs
of arbitrary terms for the lazy product, true and false for booleans,
and tagged but unevaluated terms for the dynamic type. Evaluation
contexts are the same as CBN except adding casts.

Next, we define the operational semantics. First, let-binding, as
mentioned above is strict, while function application is non-strict
in its argument. This difference is what distinguishes it from CBN
and invalidates the strong η principle for functions and products.
Projection is lazy like call-by-name. Then we have the cast reductions,
which are the same as CBV, making it even more clear that this
evaluation order is something of a mix of CBN and CBV.

Next, we have the translation into GTT, which follows Levy’s def-
inition. This is the most complicated of the three elaborations. First,
types denote value types since they have a notion of value. However,
variables x : A are not elaborated directly to variables of the elab-
orated type, but instead thunks of computations that return values



6.3 lazy 157

V ::= λx.M | (M1, M2) | true | false〈?⇐ G〉M
E ::= [·] | let x = E; N | E M |πiE | if E then Mt else M f | 〈A⇐ B〉E

E[let x = V; N] 7→l E[N[V/x]]

E[(λx.M)N] 7→l E[M[N/x]]

E[πi (M1, M2)] 7→l E[Mi]

E[if true then Mt else M f ] 7→l E[Mt]

E[if false then Mt else M f ] 7→l E[M f ]

?Id
E[〈?⇐ ?〉V] 7→l E[V]

DecompUp

A v G

E[〈?⇐ A〉M] 7→l E[〈?⇐ G〉〈G ⇐ A〉M]

DecompDn

A v G

E[〈A⇐ ?〉M] 7→l E[〈A⇐ G〉〈G ⇐ ?〉M]

TagMatch

E[〈G ⇐ ?〉〈?⇐ G〉M] 7→l E[M]

TagMismatch

G 6= G′

E[〈G′ ⇐ ?〉〈?⇐ G〉M] 7→l f

Eilly

A v GA B v GB GA 6= GB

E[〈B⇐ A〉M] 7→l f

E[(〈A→ B⇐ A′ → B′〉V)] 7→l E[λx.〈B⇐ B′〉(V (〈A′ ⇐ A〉x))]
E[(〈A1 × A2 ⇐ A′1 × A′2〉V)] 7→l E[(〈A1 ⇐ A′1〉(π1V), 〈A2 ⇐ A′2〉(π2V))]

Figure 6.8: Lazy Reduction



158 from gtt to evaluation orders

If Γ ` M : A, then UFΓty ` Mc : FAty

?ty = ?

(A→ A′)ty = U(UFAty → FA′ty

(A1 × A2)
ty = U(FAty

1 & FAty
2 )

Boolty = 1 + 1

xc = force x

(let x = M; N)c = y← Mc; let x = thunk ret y; Nc

(〈A2 ⇐ A1〉M)c = 〈FAty
2 � F?〉〈〈F?� FAty

1 〉〉[M
c]

(λx : A.M)c = ret thunk (λx : UFAty.Mc)

M Nc = f ← Mc; force f (thunk Nc)

(M1, M2)
c = ret thunk ({π 7→ Mc

1 | π′ 7→ Mc
2})

πi Mc = p← Mc; πiforce p

truec = ret inl ()

falsec = ret inr ()

(if M then N1 else N2)
c = z← Mc; case z{x1. Nc

1 | x2. Nc
2}
(6.20)

Figure 6.9: Lazy to GTT translation

of that type UFAty. The function type translation illustrates this. A
value of product type is a thunk that when forced can be projected as
either Ai-returning computation. Note that an equivalent definition
would be to say that a product value is a pair of thunks that return
Ais: (A1× A2)ty ∼= UFAty

1 ×UFAty
i , the two definitions are isomorphic

in CBPV. Then the term translation is something like a combination
of CBV and CBN translations: following the structure of the CBV
translation, but inserting thunks in the appropriate place like CBN.

To reason about plugging in evaluation contexts in the correctness
proofs, we additionally define a stack translation that directly translates
lazy evaluation contexts to GTT stacks in Figure 6.4

We then prove a few correctness principles for these with respect to
the term translation.

Lemma 102. (M[N/x])c wv Mc[thunk (Nc)/x]

Proof. The proof is the same as the CBN proof.

Lemma 103. Vc wv ret Vv

Proof. By case analysis on V, trivial in all cases except the cast case,
which follows the same argument as the CBV case.

Lemma 104. (E[M])c wv Es[Mc]



6.3 lazy 159

If · ` V : A then · ` Vv : Aty

If • : A ` E : A′ then • : FAty ` Es : FA′ty

〈?⇐ G〉Vv = 〈?� G〉Vv

(λx.M)v = thunk (λx.Mc)

(M1, M2)
v = thunk ({π 7→ Mc

1 | π′ 7→ Mc
2})

truev = inl ()

falsev = inr ()

•s = •
(let x = E; N)s = y← Es; let x = ret thunk y; Nc

(〈A⇐ B〉E)s = x ← Es; 〈FAty
2 � F?〉(ret 〈?� Aty

1 〉x)
(E N)s = f ← Es; (force f ) (thunk Nc)

(πiE)s = p← Es; πiforce p

(if E then N1 else N2)
s = z← Es; case z{x1.Nc

1 | x2.Nc
2}

(6.21)

Figure 6.10: Lazy Value and Stack translation

Proof. By induction on E. All cases are straightforward by congruence
and induction hypothesis.

And the central theorem is easily established.

Theorem 105. If M 7→l N by any rule except TagMismatch or Silly,
then Mc wv Nc.

Proof. In all cases, by Lemma 97, congruence and E[f] wv f, it is
sufficient to consider the case that E = •.

First, we have the cases not involving casts.

• let x = V; N 7→l N[V/x]

(let x = V; N)c = y← Vc; let x = thunk ret y; Nc

wv y← ret ; let x = thunk ret y; Nc

wv let x = thunk ret Vv; Nc

wv Nc[thunk ret Vv/x]

wv Nc[thunk Vc/x]

wv (N[V/x]c)

(6.22)



160 from gtt to evaluation orders

• (λx : A.M) N 7→l M[N/x]

((λx : A.M) N)c = f ← ret thunk (λx : UFAty.Mc); (force f ) thunk Nc

wv (force (thunk (λx : UFAty.Mc))) thunk Nc

wv (λx : UFAty.Mc) thunk Nc

wv Mc[thunk Nc/x]

wv (M[N/x])c

(6.23)

• πi(M1, M2) 7→l Mi

πi(M1, M2)
c = p← ret thunk {π 7→ Mc

1 | π′ 7→ Mc
2}; πiforce p

wv πiforce (thunk {π 7→ Mc
1 | π′ 7→ Mc

2})
wv πi{π 7→ Mc

1 | π′ 7→ Mc
2}

wv πi{π 7→ Mc
1 | π′ 7→ Mc

2}
wv Mc

i

(6.24)

• if true then N1 else N2 7→l N1, the same argument as CBV and
CBN.

• if false then N1 else N2 7→l N2, similar to previous.

Next, the cast cases follow by the same argument as the CBV case.



7
M O D E L S

To show the soundness of GTT as a theory, and demonstrate its
relationship to operational definitions of observational equivalence
and the gradual guarantee we used in Chapters 2, 3, we develop models
of GTT using observational error approximation of a non-gradual CBPV
calculus. Analogous to our construction in Chapter 3, we will elaborate
GTT into a typed language, in our case CBPV with recursive types
and errors. Then we will show that giving a semantics of the term
ordering v as error approximation results in a model of the theory of
GTT in that every syntactic proof in GTT of ordering and equivalence
holds true of the elaboration into CBPV.

We call this the contract translation because it translates the built-in
casts of the gradual language into ordinary terms implemented in a
non-gradual language. While contracts are typically implemented in a
dynamically typed language, our target is typed, retaining type infor-
mation similarly to manifest contracts [32]. We give implementations
of the dynamic value type in the usual way as a recursive sum of basic
value types, i.e., using type tags, and we give implementations of the
dynamic computation type as the dual: a recursive product of basic
computation types.

Writing JMK for any of the contract translations, the remaining
sections of the paper establish:

Theorem 106 (Equi-precision implies Observational Equivalence). If
Γ ` M1 wv M2 : B, then for any closing GTT context C : (Γ ` B)⇒ (· `
F(1 + 1)), JC[M1]K and JC[M2]K have the same behavior: both diverge, both
run to an error, or both run to true or both run to false.

Theorem 107 (Graduality). If Γ1 v Γ2 ` M1 v M2 : B1 v B2, then
for any GTT context C : (Γ1 ` B1) ⇒ (· ` F(1 + 1)), and any valid
interpretation of the dynamic types, either

1. JC[M1]K ⇓ f, or

2. JC[M1]K ⇑ and JC[〈B1 � B2〉M2[〈Γ2
� Γ1〉Γ1]]K ⇑, or

3. JC[M1]K ⇓ ret V, JC[〈B1 � B2〉M2[〈Γ2
� Γ1〉Γ1]]K ⇓ ret V,

and V = true or V = false.

As a consequence we will also get consistency of our logic of preci-
sion:

Corollary 108 (Consistency of GTT). · ` ret true v ret false :
F(1 + 1) is not provable in GTT.

161



162 models

Proof. They are distinguished by the identity context.

We break down this proof into 3 major steps.

1. (This section) We translate GTT into a statically typed CBPV*
language where the casts of GTT are translated to “contracts” in
GTT: i.e., CBPV terms that implement the runtime type check-
ing. We translate the term precision of GTT to an inequational
theory for CBPV. Our translation is parameterized by the imple-
mentation of the dynamic types, and we demonstrate two valid
implementations, one more direct and one more Scheme-like.

2. (§7.3) Next, we eliminate all uses of complex values and stacks
from the CBPV language. We translate the complex values and
stacks to terms with a proof that they are “pure” (thunkable
or linear [53]). This part has little to do with GTT specifically,
except that it shows the behavioral property that corresponds
to upcasts being complex values and downcasts being complex
stacks.

3. (§7.4.3) Finally, with complex values and stacks eliminated, we
give a standard operational semantics for CBPV and define
a logical relation that is sound and complete with respect to
observational error approximation. Using the logical relation,
we show that the inequational theory of CBPV is sound for
observational error approximation.

By composing these, we get a model of GTT where equiprecision
is sound for observational equivalence and an operational semantics
that satisfies the graduality theorem.

7.1 call-by-push-value

Next, we define the call-by-push-value language CBPV* that will be the
target for our contract translations of GTT. CBPV* is the axiomatic ver-
sion of call-by-push-value with complex values and stacks, while CBPV
(§7.3) will designate the operational version of call-by-push-value with
only operational values and stacks. CBPV* is almost a subset of GTT
obtained as follows: We remove the casts and the dynamic types ?
and ¿ (the shaded pieces) from the syntax and typing rules in Figures
5.1 and 5.2. There is no type precision, and the inequational theory of
CBPV* is the homogeneous fragment of term precision in Figure 5.4
and Figure 5.5 (judgements Γ ` E v E′ : T where Γ ` E, E′ : T, with
all the same rules in that figure thus restricted). The inequational ax-
ioms are the Type Universal Properties (βη rules) and Error Properties
(with ErrBot made homogeneous) from Figure 5.6. To implement the
casts and dynamic types, we add general recursive value types (µX.A,
the fixed point of X val type ` A val type) and corecursive computa-
tion types (νY.B, the fixed point of Y comp type ` B comp type). The



7.1 call-by-push-value 163

recursive type µX.A is a value type with constructor roll, whose
eliminator is pattern matching, whereas the corecursive type νY.B is
a computation type defined by its eliminator (unroll), with an intro-
duction form that we also write as roll. We extend the inequational
theory with monotonicity of each term constructor of the recursive
types, and with their βη rules. In Figure 7.1, we write + ::= and - ::=
to indicate the diff from the grammar in Figure 5.1.

Value Types A + ::= µX.A |X
- ::= ?

Computation Types B + ::= νY.B |Y
- ::= ¿

Values V + ::= rollµX.A V

- ::= 〈A� A〉V
Terms M + ::= rollνY.B M | unroll M

M - ::= 〈B � B〉M
Both E + ::= unroll V to roll x.E

Γ ` V : A[µX.A/X]

Γ ` rollµX.A V : µX.A
µI

Γ ` V : µX.A
Γ, x : A[µX.A/X] | ∆ ` E : T

Γ | ∆ ` unroll V to roll x.E : T
µE

Γ | ∆ ` M : B[νY.B]
Γ | ∆ ` rollνY.B M : νY.B

νI

Γ | ∆ ` M : νY.B
Γ | ∆ ` unroll M : B[νY.B]

νE
Γ ` V v V′ : A[µX.A/X]

Γ ` roll V v roll V′ : µX.A
µICong

Γ ` V v V′ : µX.A Γ, x : A[µX.A/X] | ∆ ` E v E′ : T
Γ | ∆ ` unroll V to roll x.E v unroll V′ to roll x.E′ : T

µECong

Γ | ∆ ` M v M′ : B[νY.B/Y]
Γ | ∆ ` roll M v roll M′ : νY.B

νICong

Γ | ∆ ` M v M′ : νY.B
Γ | ∆ ` unroll M v unroll M′ : B[νY.B/Y]

νECong

Recursive Type Axioms

Figure 7.1: CBPV* types, terms, recursive types (diff from GTT)



164 models

Type β η

µ unroll roll V to roll x.E wv E[V/x]
E wv unroll x to roll y.E[roll y/x]

where x : µX.A ` E : T

ν unroll roll M wv M • : νY.B ` • wv roll unroll • : νY.B

Figure 7.2: CBPV* βη rules (recursive types)

7.2 elaborating gtt

As shown in Theorems 72, 75, 76, almost all of the contract trans-
lation is uniquely determined already. However, the interpretation
of the dynamic types and the casts between the dynamic types and
ground types G and G are not determined (they were still postulated
in Lemma 81). For this reason, our translation is parameterized by an
interpretation of the dynamic types and the ground casts. By Theo-
rems 73, 74, we know that these must be embedding-projection pairs
(ep pairs), which we now define in CBPV*. There are two kinds of ep
pairs we consider: those between value types (where the embedding
models an upcast) and those between computation types (where the
projection models a downcast).

Definition 109 (Value and Computation Embedding-Projection Pairs).

1. A value ep pair from A to A′ consists of an embedding value
x : A ` Ve : A′ and projection stack • : FA′ ` Sp : FA, satisfying
the retraction and projection properties:

x : A ` ret x wv Sp[ret Ve] : FA • : FA′ ` x ← Sp; ret Ve v • : FA′

2. A computation ep pair from B to B′ consists of an embedding value
z : UB ` Ve : UB′ and a projection stack • : B′ ` Sp : B satisfying
retraction and projection properties:

z : UB ` force z wv Sp[force Ve] : B w : UB′ ` Ve[thunk Sp[force w]] v w : UB′

While this formulation is very convenient in that both kinds of ep
pairs are pairs of a value and a stack, the projection properties are
often occur more naturally in the following forms:

Lemma 110 (Alternative Projection). If (Ve, Sp) is a value ep pair from A
to A′ and Γ, y : A′ | ∆ ` M : B, then

Γ, x′ : A′ ` x ← Sp[ret x′]; M[Ve/y] v M[x′/y]

Similarly, if (Ve, Sp) is a computation ep pair from B to B′, and Γ ` M :
B′then

Γ ` Ve[thunk Sp[M]] v thunk M : UB′



7.2 elaborating gtt 165

Proof. For the first,

x ← Sp[ret x′]; M[Ve/y] wv y← (x ← Sp[ret x′]; ret Ve); M
(comm conv, Fβ)

y← ret x′; M (projection)

M[x′/y] (Fβ)

For the second,

Ve[thunk Sp[M]] wv Ve[thunk Sp[force thunk M]] (Uβ)

v thunk M (projection)

Using our definition of ep pairs, and using the notion of ground
type from §5.3.5 with 0 and > removed, we define

Definition 111 (Dynamic Type Interpretation). A ?, ¿ interpretation ρ

consists of (1) a CBPV value type ρ(?), (2) a CBPV computation type
ρ(¿), (3) for each value ground type G, a value ep pair (x.ρe(G), ρp(G))

from JGKρ to ρ(?), and (4) for each computation ground type G, a
computation ep pair (z.ρe(G), ρp(G)) from JGKρ to ρ(¿). We write
JGKρ and JGKρ for the interpretation of a ground type, replacing ? with
ρ(?), ¿ with ρ(¿), and compositionally otherwise.

Next, we show several possible interpretations of the dynamic type
that will all give, by construction, implementations that satisfy the
gradual guarantee. Our interpretations of the value dynamic type are
not surprising. They are the usual construction of the dynamic type
using type tags: i.e., a recursive sum of basic value types. On the other
hand, our interpretations of the computation dynamic type are less
familiar. In duality with the interpretation of ?, we interpret ¿ as a
recursive product of basic computation types. This interpretation has
some analogues in previous work on the duality of computation [30,
92], but the most direct interpretation (definition 115) does not corre-
spond to any known work on dynamic/gradual typing. Then we show
that a particular choice of which computation types is basic and which
are derived produces an interpretation of the dynamic computation
type as a type of variable-arity functions whose arguments are passed
on the stack, producing a model similar to Scheme without accounting
for control effects (definition 120).

7.2.1 Natural Dynamic Type Interpretation

Our first dynamic type interpretation is to make the value and com-
putation dynamic types sums and products of the ground value and
computation types, respectively. This forms a model of GTT for the
following reasons. For the value dynamic type ?, we need a value



166 models

embedding (the upcast) from each ground value type G with a corre-
sponding projection. The easiest way to do this would be if for each
G, we could rewrite ? as a sum of the values that fit G and some
“complement” of G, ?¬G of those that don’t–? ∼= G + ?¬G. Then we
could use the the following fact.

Lemma 112 (Sum Injections are Value Embeddings). For any A, A′,
there are value ep pairs from A and A′ to A + A′ where the embeddings are
inl and inr .

Proof. Define the embedding of A to just be x.inl x and the projection
to be

y← •; case y{inl x.ret x | inr .f}.

We show this satisfies retraction and projection in the supplementary
material.

Proof. This satisfies retraction (using F(+) induction (Lemma 113)
defined immediately after this proof, inr case is the same):

y← inl x; case y{inl x.ret x | inr .f} wv case inl x{inl x.ret x | inr .f}
(Fβ)

wv ret x (+β)

and projection (similarly using F(+) induction):

x′ : A + A′ ` (y← ret x′; case y{inl x.ret x | inr .f})← x; ret inl x

wv (case x′{inl x.ret x | inr .f})← x; ret inl x
(Fβ)

wv (case x′{inl x.x ← ret x; ret inl x | inr .x ← f; ret inl x})
(commuting conversion)

wv (case x′{inl x.ret inl x | inr .f})
(Fβ,f strictness)

v (case x′{inl x.ret inl x | inr y.ret inl y})
(f bottom)

wv ret x′ (+η)

Lemma 113 (F(+) Induction Principle). Γ | · : F(A1 + A2) ` M1 v
M2 : B holds if and only if Γ, V1 : A1 ` M1[ret inl V1] v M2[ret inl V2] :
B and Γ, V2 : A2 ` M2[ret inr V2] v M2[ret inr V2] : B

This shows why the type tag interpretation works: it makes the
dynamic type in some sense the minimal type with injections from
each G: the sum of all value ground types ? ∼= ΣGG.

The dynamic computation type ¿ can be naturally defined by a
dual construction, by the following dual argument. First, we want
a computation ep pair from G to ¿ for each ground computation



7.2 elaborating gtt 167

type G. Specifically, this means we want a stack from ¿ to G (the
downcast) with an embedding. The easiest way to get this is if, for
each ground computation type G, ¿ is equivalent to a lazy product of
G and “the other behaviors”, i.e., ¿ ∼= G & ¿−G

. Then the embedding
on π performs the embedded computation, but on π′ raises a type
error. The following lemma, dual to Lemma 112 shows this forms a
computation ep pair:

Lemma 114 (Lazy Product Projections are Computation Projections).
For any B, B′, there are computation ep pairs from B and B′ to B & B′ where
the projections are π and π′.

Proof. This satisfies retraction:

π(force (thunk (force z,f))) wv π(force z,f) (Uβ)

wv force z (&β)

and projection:

thunk (force thunk πforce w,f)
wv thunk (πforce w,f) (Uβ)

v thunk (πforce w, π′force w) (f bottom)

wv thunk force w (&η)

wv w (Uη)

From this, we see that the easiest way to construct an interpretation
of the dynamic computation type is to make it a lazy product of all
the ground types G: ¿ ∼= &G G. Using recursive types, we can easily
make this a definition of the interpretations:

Definition 115 (Natural Dynamic Type Interpretation). The following
defines a dynamic type interpretation. We define the types to satisfy
the isomorphisms

? ∼= 1 + (?× ?) + (? + ?) + U¿ ¿ ∼= (¿ & ¿) & (?→ ¿) & F?

with the ep pairs defined as in Lemma 112 and Lemma 114.

Proof. We can construct ?, ¿ explicitly using recursive and corecursive
types. Specifically, we make the recursion explicit by defining open
versions of the types:

X, Y ` ?o = 1 + (X× X) + (X + X) + UY val type

X, Y ` ¿
o
= (Y & Y) & (X → Y) & FX comp type

Then we define the types ?, ¿ using a standard encoding:

? = µX.?o[νY.¿
o
/Y]

¿ = νY.¿
o
[µX.?o/X]



168 models

Γ | ∆ ` V : ? Γ, x1 : 1 | ∆ ` E1 : T Γ, x× : ?× ? | ∆ ` E× : T
Γ, x+ : ? + ? | ∆ ` E+ : T Γ, xU : U¿ | ∆ ` EU : T

Γ | ∆ ` tycase V {x1.E1 | x×.E× | x+.E+ | xU .EU} : T
?E

tycase (〈?� G〉V) {x1.E1 | x×.E× | x+.E+ | xU .EU} wv

EG[V/xG] (?β)

Γ, x : ? | ∆ ` E : B
E wv

tycase x {x1.E[〈?� 1〉/x1] | x×.E[〈?� ×〉/x×] | x+.E[〈?� +〉/x+] | xU .E[〈?� U〉/xU ]}

?η

Γ | ∆ ` M→ : ?→ ¿ Γ | ∆ ` M& : ¿ & ¿ Γ | ∆ ` MF : F

Γ | ∆ ` {& 7→ M& | (→) 7→ M→ | F 7→ MF} : ¿
¿

〈G � ¿〉{& 7→ M& | (→) 7→ M→ | F 7→ MF} wv MG (¿β)

• : ¿ ` • wv {& 7→ 〈¿ & ¿ � ¿〉 • | (→) 7→ 〈?→ ¿ � ¿〉 • | F 7→ 〈F? � ¿〉•} (¿η)

Figure 7.3: Natural Dynamic Type Extension of GTT

Then clearly by the roll/unroll isomorphism we get the desired iso-
morphisms:

? ∼= ?o[¿/Y, ?/X] = 1 + (?× ?) + (? + ?) + U¿

¿ ∼= ?c[?/X, ¿/Y] = (¿ & ¿) & (?→ ¿) & F?

This dynamic type interpretation is a natural fit for CBPV because
the introduction forms for ? are exactly the introduction forms for all
of the value types (unit, pairing, inl, inr, force), while elimination
forms are all of the elimination forms for computation types (π, π′,
application and binding); such “bityped” languages are related to
Girard [30] and Zeilberger [92].

Based on this dynamic type interpretation, we can extend GTT
to support a truly dynamically typed style of programming, where
one can perform case-analysis on the dynamic types at runtime, in
addition to the type assertions provided by upcasts and downcasts.

The axioms we choose might seem to under-specify the dynamic
type, but because of the uniqueness of adjoints, the following are
derivable.



7.2 elaborating gtt 169

Lemma 116 (Natural Dynamic Type Extension Theorems). The follow-
ing are derivable in GTT with the natural dynamic type extension

〈F1 � F?〉ret V wv tycase V {x1.ret x1 | else f}

〈F(?× ?) � F?〉ret V wv tycase V {x×.ret x× | else f}

〈F(? + ?) � F?〉ret V wv tycase V {x+.ret x+ | else f}

〈FU¿ � F?〉ret V wv tycase V {xU .ret xU | else f}

force 〈U¿� U(¿ & ¿)〉V wv {& 7→ force V | (→) 7→ f | F 7→ f}

force 〈U¿� U(?→ ¿)〉V wv {& 7→ f | (→) 7→ force V | F 7→ f}

force 〈U¿� UF?〉V wv {& 7→ f | (→) 7→ f | F 7→ force V}

We explore this in more detail with the Scheme-like dynamic type
interpretation below.

Next, we easily see that if we want to limit GTT to just the CBV
types (i.e. the only computation types are A → FA′), then we can
restrict the dynamic types as follows:

Definition 117 (CBV Dynamic Type Interpretation). The following is
a dynamic type interpretation for the ground types of GTT with only
function computation types:

? ∼= 1 + (? + ?) + (?× ?) + U¿ ¿ = ?→ F?

And finally if we restrict GTT to only CBN types (i.e., the only value
type is booleans 1 + 1), we can restrict the dynamic types as follows:

Definition 118 (CBN Dynamic Type Interpretation). The following is
a dynamic type interpretation for the ground types of GTT with only
boolean value types:

? = 1 + 1 ¿ ∼= (¿ & ¿) & (U¿→ ¿) & F?

7.2.2 Scheme-Like Dynamic Type Interpretation

The above dynamic type interpretations do not correspond to any
dynamically typed language used in practice, in part because it in-
cludes explicit cases for the “additives”, the sum type + and lazy
product type &. Normally, these are not included in this way, but
rather sums are encoded by making each case use a fresh constructor
(using nominal techniques like opaque structs in Racket) and then
making the sum the union of the constructors, as argued in Siek and
Tobin-Hochstadt [74]. We leave modeling this nominal structure to
future work, possibly using the fresh type generation model of New,



170 models

Jamner, and Ahmed [57], but in minimalist languages, such as simple
dialects of Scheme and Lisp, sum types are often encoded structurally
rather than nominally by using some fixed sum type of symbols, also
called atoms. Then a value of a sum type is modeled by a pair of a
symbol (to indicate the case) and a payload with the actual value. We
can model this by using the canonical isomorphisms

? + ? ∼= ((1 + 1)× ?) ¿ & ¿ ∼= (1 + 1)→ ¿

and representing sums as pairs, and lazy products as functions.
The fact that isomorphisms are ep pairs is useful for constructing

the ep pairs needed in this Scheme-like dynamic type interpretation.

Lemma 119 (Isomorphisms are EP Pairs). If x : A ` V ′ : A′ and x′ :
A′ ` V : A are an isomorphism in that V[V ′/x′] wv x and V[V/x] wv
x′, then (x.V ′, x′ ← •; ret V ′) are a value ep pair from A to A′. Similarly
if • : B ` S′ : B′ and • : B′ ` S : B are an isomorphism in that S[S′] ≡ •
and S′[S] ≡ • then (z.S′[force z], S) is an ep pair from B to B′.

So we remove the cases for sums and lazy pairs from the natural
dynamic types, and include some atomic type as a case of ?—for
simplicity we will just use booleans. We also do not need a case for
1, because we can identify it with one of the booleans, say true. This
leads to the following definition:

Definition 120 (Scheme-Like Dynamic Type Interpretation). We can
define a dynamic type interpretation with the following type isomor-
phisms:

? ∼= (1 + 1) + U¿ + (?× ?) ¿ ∼= (?→ ¿) & F?

Proof. We construct ?, ¿ explicitly as follows.
First define X : val type ` Tree[X] val type to be the type of binary

trees:

Tree = µX′.X + (X′ × X′)

Next, define X : val type, Y : comp type ` VarArg[X, Y] comp type
to be the type of variable-arity functions from X to Y:

VarArg = νY′.Y & (X → Y′)

Then we define an open version of ?, ¿ with respect to a variable
representing the occurrences of ? in ¿:

X val type ` ?o = Tree[(1 + 1) + U¿
o
] val type

X val type ` ¿
o
= VarArg[FX/Y] comp type



7.2 elaborating gtt 171

Then we can define the closed versions using a recursive type:

? = µX.?o ¿ = ¿
o
[?]

The ep pairs for ×, U, F,→ are clear. To define the rest, first note that
there is an ep pair from 1 + 1 to ? by Lemma 112. Next, we can define
1 to be the ep pair to 1 + 1 defined by the left case and Lemma 112,
composed with this. The ep pair for ? + ? is defined by composing
the isomorphism (which is always an ep pair) (? + ?) ∼= ((1 + 1)× ?)
with the ep pair for 1+ 1 using the action of product types on ep pairs
(proven as part of Theorem 128): (? + ?) ∼= ((1 + 1)× ?) / (?× ?) / ?
(where we write A / A′ to mean there is an ep pair from A to A′).
Similarly, for ¿ & ¿, we use action of the function type on ep pairs
(also proven as part of Theorem 128): ¿ & ¿ ∼= ((1 + 1) → ¿) / (? →
¿) / ¿

If we factor out some of the recursion to use inductive and coinduc-
tive types, we get the following isomorphisms:

? ∼= Tree[(1 + 1) + U¿/X] ¿ ∼= VarArg[?/X][F?/Y]

That is a dynamically typed value is a binary tree whose leaves
are either booleans or closures. We think of this as a simple type of
S-expressions. A dynamically typed computation is a variable-arity
function that is called with some number of dynamically typed value
arguments ? and returns a dynamically typed result F?. This captures
precisely the function type of Scheme, which allows for variable arity
functions!

What’s least clear is why the type

VarArg[X][Y] = νY′.(X → Y′) & Y

should be thought of as a type of variable arity functions. First consider
the infinite unrolling of this type:

VarArg[X][Y] ' Y & (X → Y) & (X → X → Y) & · · ·

this says that a term of type VarArg[X][Y] offers an infinite number
of possible behaviors: it can act as a function from Xn → Y for any
n. Similarly in Scheme, a function can be called with any number of
arguments. Finally note that this type is isomorphic to a function that
takes a cons-list of arguments:

Y & (X → Y) & (X → X → Y) & · · ·
∼= (1→ Y) & ((X× 1)→ Y) & ((X× X× 1)→ Y) & · · ·
∼= (1 + (X× 1) + (X× X× 1) + · · · )→ Y
∼= (µX′.1 + (X× X′))→ Y

But operationally the type VarArg[?][F?] is more faithful model of
Scheme implementations that use the C-calling convention because all



172 models

of the arguments are passed individually on the stack, whereas the
type (µX.1+ (?×X))→ FX is a function that takes a single argument
that is a list. These two are distinguished in Scheme and the “dot args”
notation witnesses the isomorphism.

Based on this dynamic type interpretation we can make a “Scheme-
like” extension to GTT in Figure 7.4. First, we add a boolean type Bool

with true, false and if-then-else. Next, we add in the elimination
form for ? and the introduction form for ¿. The elimination form for ?
is a typed version of Scheme’s match macro. The introduction form for
¿ is a typed, CBPV version of Scheme’s case-lambda construct. Finally,
we add type precision rules expressing the representations of 1, A + A,
and A× A in terms of booleans that were explicit in the ep pairs used
in Definition 120.

The reader may be surprised by how few axioms we need to add to
GTT for this extension: for instance we only define the upcast from
1 to Bool and not vice-versa, and similarly the sum/lazy pair type
isomorphisms only have one cast defined when a priori there are 4
to be defined. Finally for the dynamic types we define β and η laws
that use the ground casts as injections and projections respectively, but
we don’t define the corresponding dual casts (the ones that possibly
error).

In fact all of these expected axioms can be proven from those we
have shown. Again we see the surprising rigidity of GTT: because an
F downcast is determined by its dual value upcast (and vice-versa for
U upcasts), we only need to define the upcast as long as the downcast
could be implemented already. Because we give the dynamic types the
universal property of a sum/lazy product type respectively, we can
derive the implementations of the “checking” casts. All of the proofs
are direct from the uniqueness of adjoints lemma.

Theorem 121 (Boolean to Unit Downcast). In Scheme-like GTT, we can
prove

〈F1 � FBool〉• wv x ← •; if x then ret () else f

Theorem 122 (Tagged Value to Sum). In Scheme-like GTT, we can prove

〈A + A� Bool× A〉V wv let (x, y) = V; if x then inl y else inr y

and the downcasts are given by Lemma 119.

Theorem 123 (Lazy Product to Tag Checking Function). In Scheme-like
GTT, we can prove

〈Bool→ B � B & B〉• wv λx : Bool.if x then π • else π′•

and the upcasts are given by Lemma 119.



7.2 elaborating gtt 173

1 v Bool A + A wv Bool× A B & B wv Bool→ B

Γ ` true, false : Bool
BoolI

Γ ` V : Bool Γ ` Et : T Γ ` E f : T

Γ | ∆ ` if V then Et else E f : T
BoolE

if true then Et else E f wv Et if false then Et else E f wv E f

x : Bool ` E wv if x then E[true/x] else E[false/x]

〈Bool� 1〉V wv true 〈Bool× A� A + A〉inl V wv (true, V)

〈Bool× A� A + A〉inr V wv (false, V)

π〈B & B � Bool→ B〉M wv M true

π′〈B & B � Bool→ B〉M wv M false

Γ | ∆ ` M→ : ?→ ¿ Γ | ∆ ` MF : F?

Γ | ∆ ` {(→) 7→ M→ | F 7→ MF} : ¿
¿I

〈G � ¿〉{(→) 7→ M→ | F 7→ MF} wv MG (¿β)

• : ¿ ` • wv {(→) 7→ 〈?→ ¿ � ¿〉 • | F 7→ 〈F? � ¿〉•} (¿η)

Γ | ∆ ` V : ?
Γ, xBool : Bool | ∆ ` EBool : T

Γ, xU : U¿ | ∆ ` EU : T
Γ, x× : ?× ? | ∆ ` E× : T

Γ | ∆ ` tycase V {xBool.EBool | xU .EU | x×.E×} : T
?E

G ∈ {Bool,×, U}
tycase (〈?� G〉V) {xBool.EBool | xU .EU | x×.E×} wv EG[V/xG]

(?β)

Γ, x : ? | ∆ ` E : B
E wv tycase x {xBool.E[〈?� Bool〉/xBool] | x×.E[〈?� ×〉/x×] | xU .E[〈?� U〉/xU ]}

?η

Figure 7.4: Scheme-like Extension to GTT



174 models

Theorem 124 (Ground Mismatches are Errors). In Scheme-like GTT we
can prove

〈FBool � F?〉ret V wv tycase V {xBool.ret xBool | else f}

〈F(?× ?) � F?〉ret V wv tycase V {x×.ret x× | else f}

〈FU¿ � F?〉ret V wv tycase V {xU .ret xU | else f}

force 〈U¿� U(?→ ¿)〉V wv {(→) 7→ force V | F 7→ f}

force 〈U¿� UF?〉V wv {(→) 7→ f | F 7→ force V}

Next, note that this model gives an example of why the disjointness
of type constructors we encode into different calculi in Chapter 6 can
be derived from GTT. In the call-by-value calculus, any cast from a
sum type to a product type would fail, but here we have a model
where all sum types can be safely cast to Bool× ?.

Finally, we note now that all of these axioms are satisfied when
using the Scheme-like dynamic type interpretation and extending the
translation of GTT into CBPV* with the following, tediously explicit
definition:

JBoolK = 1 + 1

JtrueK = inl ()

JfalseK = inr ()

Jif V then Et else E f K = case JVK{x.Et | x.E f }
Jtycase x {xBool.EBool | xU .EU | x×.E×}K =
unroll (x : ?) to roll x′.unroll x′ : Tree[(1 + 1) + U¿] to roll t.case t

{l.case l{xBool.JEBoolK | xU .JEUK}
| x×.JE×K}

J{(→) 7→ M→ | F 7→ MF}K = rollνY.(?→Y)&F? (JM→K, JMFK)

7.2.3 Contract Translation

Having defined the data parameterizing the translation, we now con-
sider the translation of GTT into CBPV* itself. For the remainder of the
paper, we assume that we have a fixed dynamic type interpretation ρ,
and all proofs and definitions work for any interpretation.

7.2.3.1 Interpreting Casts as Contracts

The main idea of the translation is an extension of the dynamic
type interpretation to an interpretation of all casts in GTT (Figure 7.5)
as contracts in CBPV*, following the definitions in Lemma 81. Some



7.2 elaborating gtt 175

x : JAK ` J〈A′ � A〉K : JA′K • : JB′K ` J〈B � B′〉K : JBK

x : 0 ` J〈A� 0〉K = absurd x

• : A ` J〈F0 � FA〉K = x ← •;f
x : J?K ` J〈?� ?〉K = x

• : F? ` J〈F? � F?〉K = •
x : JGK ` J〈?� G〉K = ρup(G)

• : F? ` J〈FG � F?〉K = ρdn(G)

x : JAK ` J〈?� A〉K = J〈?� bAc〉K[J〈bAc� A〉K/x]

• : F? ` J〈A � ?〉K = J〈A � bAc〉K[J〈bAc � ?〉K]
x ` J〈A′1 + A′2

� A1 + A2〉K = case x

{x1.J〈A′1 � A1〉K[x1/x]

| x2.J〈A′2 � A2〉K[x2/x]}
• ` J〈F(A1 + A2) � F(A′1 + A′2)〉K = x′ ← •; case x′

{x′1.x1 ← (J〈FA1 � FA′1〉Kret x′1); ret x1

| x′2.x2 ← (J〈FA2 � FA′2〉Kret x′2); ret x2}
x : 1 ` J〈1� 1〉K = x

• : F1 ` J〈F1 � F1〉K = x

x ` J〈A′1 × A′2
� A1 × A2〉K = let (x1, x2) = x;

(J〈A′1 � A1〉K[x1], J〈A′2 � A2〉K[x2])

• ` J〈F(A1 × A2) � F(A′1 × A′2)〉K = x′ ← •; let (x′1, x′2) = x′;

x1 ← J〈FA1 � FA′1〉Kret x′1;

x2 ← J〈FA2 � FA′2〉Kret x′2; ret (x1, x2)

x : UFJAK ` J〈UFA′ � UFA〉K = thunk (y← force x; ret J〈A′ � A〉K[y/x])

• : B ` J〈> � B〉K = {}
x : U> ` J〈UB� U>〉K = thunk f

• : ¿ ` J〈¿ � ¿〉K = •
x : U¿ ` J〈U¿� U¿〉K = x

• : ¿ ` J〈G � ¿〉K = ρdn(G)

x : UG ` J〈U¿� UG〉K = ρup(G)

• : ¿ ` J〈B � ¿〉K = J〈B � bBc〉K[J〈bBc � ¿〉K]
x : U¿ ` J〈U¿� UB〉K = J〈U¿� UbBc〉K[J〈UbBc� UB〉K]

• ` J〈B1 & B2 � B′1 & B′2〉K = {π 7→ J〈B1 � B′1〉Kπ•
| π′ 7→ J〈B2 � B′2〉Kπ′•}

x ` J〈U(B′1 & B′2)� U(B1 & B2)〉K = thunk

{π 7→ force J〈B′1 � B1〉K(thunk πforce x)

| π′ 7→ force J〈B′2 � B2〉K(thunk π′force x)}
• ` J〈A→ B � A′ → B′〉K = λx : A.J〈B � B′〉K(• (J〈A′ � A〉Kx))

f ` J〈U(A′ → B′)� U(A→ B)〉K = thunk λx′ : A′.

x ← J〈FA � FA′〉Kret x′;

force J〈UB′ � UB〉Kthunk (force f ) x′

• : FUB′ ` J〈FUB � FUB′〉K = x′ ← •; J〈B � B′〉Kforce x′

Figure 7.5: Cast to Contract Translation



176 models

A ∈ {?, 1}
A v A

A ∈ {?, 0}
0 v A

A v bAc A 6∈ {0, ?}
A v ?

B v B′

UB v UB′
A1 v A′1 A2 v A′2
A1 + A2 v A′1 + A′2

A1 v A′1 A2 v A′2
A1 × A2 v A′1 × A′2

¿ v ¿
B ∈ {¿,>}
> v B

B v bBc B 6∈ {>, ¿}
B v ¿

A v A′

FA v FA′
B1 v B′1 B2 v B′2

B1 & B2 v B′1 & B′2

A v A′ B v B′

A→ B v A′ → B′

Figure 7.6: Normalized Type Precision Relation

clauses of the translation are overlapping, which we resolve by con-
sidering them as ordered (though we will ultimately show they are
equivalent). The definition is also not obviously total: we need to
verify that it covers every possible case where A v A′ and B v B′.
To prove totality and coherence, we could try induction on the type
precision relation of Figure 5.3, but it is convenient to first give an
alternative, normalized set of rules for type precision that proves the
same relations, which we do in Figure 7.6.

Lemma 125 (Normalized Type Precision is Equivalent to Original).
T v T′ is provable in the normalized typed precision definition iff it is
provable in the original typed precision definition.

Proof. It is clear that the normalized system is a subset of the original:
every normalized rule corresponds directly to a rule of the original
system, except the normalized A v ? and B v ¿ rules have a sub-
derivation that was not present originally.

For the converse, first we show by induction that reflexivity is
admissible:

1. If A ∈ {?, 1, 0}, we use a normalized rule.

2. If A 6∈ {?, 1, 0}, we use the inductive hypothesis and the mono-
tonicity rule.

3. If B ∈ {¿,>} use the normalized rule.

4. If B 6∈ {¿,>} use the inductive hypothesis and monotonicity
rule.

Next, we show that transitivity is admissible:

1. Assume we have A v A′ v A′′



7.2 elaborating gtt 177

a) If the left rule is 0 v A′, then either A′ = ? or A′ = 0. If
A′ = 0 the right rule is 0 v A′′ and we can use that proof.
Otherwise, A′ = ? then the right rule is ? v ? and we can
use 0 v ?.

b) If the left rule is A v A where A ∈ {?, 1} then either A = ?,
in which case A′′ = ? and we’re done. Otherwise the right
rule is either 1 v 1 (done) or 1 v ? (also done).

c) If the left rule is A v ? with A 6∈ {0, ?} then the right rule
must be ? v ? and we’re done.

d) Otherwise the left rule is a monotonicity rule for one of
U,+,× and the right rule is either monotonicity (use the
inductive hypothesis) or the right rule is A′ v ? with a
sub-proof of A′ v bA′c. Since the left rule is monotonicity,
bAc = bA′c, so we inductively use transitivity of the proof
of A v A′ with the proof of A′ v bA′c to get a proof
A v bAc and thus A v ?.

2. Assume we have B v B′ v B′′.

a) If the left rule is > v B′ then B′′ ∈ {¿,>} so we apply that
rule.

b) If the left rule is ¿ v ¿, the right rule must be as well.

c) If the left rule is B v ¿ the right rule must be reflexivity.

d) If the left rule is a monotonicity rule for &,→, F then the
right rule is either also monotonicity (use the inductive
hypothesis) or it’s a B v ¿ rule and we proceed with ?
above

Finally we show A v ?, B v ¿ are admissible by induction on A, B.

1. If A ∈ {?, 0} we use the primitive rule.

2. If A 6∈ {?, 0} we use the A v ? rule and we need to show
A v bAc. If A = 1, we use the 1 v 1 rule, otherwise we use the
inductive hypothesis and monotonicity.

3. If B ∈ {¿,>} we use the primitive rule.

4. If B 6∈ {¿,>} we use the B v ¿ rule and we need to show B v
bBc, which follows by inductive hypothesis and monotonicity.

Every other rule in Figure 5.3 is a rule of the normalized system in
Figure 7.6.

Based on normalized type precision, we show

Theorem 126. If A v A′ according to Figure 7.6, then there is a unique
complex value x : A ` J〈A′ � A〉Kx : A′ and if B v B′ according to
Figure 7.6, then there is a unique complex stack x : B ` J〈B′ � B〉Kx : B′



178 models

7.2.3.2 Interpretation of Terms

Next, we extend the translation of casts to a translation of all terms by
congruence, since all terms in GTT besides casts are in CBPV*. This
satisfies:

Lemma 127 (Contract Translation Type Preservation). If Γ | ∆ ` E : T
in GTT, then JΓK | J∆K ` JEK : JTK in CBPV*.

7.2.3.3 Interpretation of Term Precision

We have now given an interpretation of the types, terms, and type
precision proofs of GTT in CBPV*. To complete this to form a model
of GTT, we need to give an interpretation of the term precision proofs,
which is established by the following “axiomatic graduality” theorem.
GTT has heterogeneous term precision rules indexed by type precision,
but CBPV* has only homogeneous inequalities between terms, i.e., if
E v E′, then E, E′ have the same context and types. Since every type
precision judgement has an associated contract, we can translate a
heterogeneous term precision to a homogeneous inequality up to
contract. Our next overall goal is to prove our axiomatic graduality
theorem:

Theorem 128 (Axiomatic Graduality). For any dynamic type interpreta-
tion,

Φ : Γ v Γ′ Ψ : ∆ v ∆′ Φ | Ψ ` M v M′ : B v B′

JΓK | J∆′K ` JMK[JΨK] v J〈B � B′〉K[JM′K[JΦK]] : JBK

Φ : Γ v Γ′ Φ ` V v V ′ : A v A′

JΓK ` J〈A′ � A〉K[JVK] v JV ′K[JΦK] : JA′K

where we define JΦK to upcast each variable, and J∆K to downcast • if it is
nonempty, and if ∆ = ·, then M[J∆K] = M. More explicitly,

1. If Φ : Γ v Γ′, then there exists n such that Γ = x1 : A1, . . . , xn : An

and Γ′ = x′1 : A′1, . . . , x′n : A′n where Ai v A′i for each i ≤ n. Then
JΦK is a substitution from JΓK to JΓ′K defined as

JΦK = J〈A′1 � A1〉Kx1/x′1, . . . J〈A′n � An〉Kxn/x′n

2. If Ψ : ∆ v ∆′, then we similarly define JΨK as a “linear substitu-
tion”. That is, if ∆ = ∆′ = ·, then JΨK is an empty substitution and
M[JΨK] = M, otherwise JΨK is a linear substitution from ∆′ = • : B′

to ∆ = • : B where B v B′ defined as

JΨK = J〈B � B′〉K • /•

Relative to previous work on graduality [56], the distinction between
complex value upcasts and complex stack downcasts here guides the



7.2 elaborating gtt 179

formulation of the theorem; e.g. using upcasts in the left-hand theorem
would require more thunks/forces.

We now develop some lemmas on the way towards proving this
result. First, we prove that from the basic casts being ep pairs, we can
prove that all casts as defined in Figure 7.5 are ep pairs. Before doing
so, we prove the following lemma, which is used for transitivity (e.g.
in the A v ? rule, which uses a composition A v bAc v ?):

Lemma 129 (EP Pairs Compose).

1. If (V1, S1) is a value ep pair from A1 to A2 and (V2, S2) is a value ep
pair from A2 to A3, then (V2[V1], S1[S2]) is a value ep pair from A1

to A3.

2. If (V1, S1) is a computation ep pair from B1 to B2 and (V2, S2) is a com-
putation ep pair from B2 to B3, then (V2[V1], S1[S2]) is a computation
ep pair from B1 to B3.

Proof. 1. First, retraction follows from retraction twice:

S1[S2[ret V2[V1[x]]]] wv S1[ret [V1[x]]] wv x

and projection follows from projection twice:

x ← S1[S2[•]]; ret V2[V1[x]] wv x ← S1[S2[•]]; y← ret [V1[x]]; ret V2[y]
(Fβ)

wv y← (x ← S1[S2[•]]; ret [V1[x]]); ret V2[y]
(Commuting conversion)

v y← S2[•]; ret V2[y]
(Projection)

v • (Projection)

2. Again retraction follows from retraction twice:

S1[S2[force V2[V1[z]]]] wv S1[force V1[z]] wv force z

and projection from projection twice:

V2[V1[thunk S1[S2[force w]]]] wv V2[V1[thunk S1[force thunk S2[force w]]]]

(Uβ)

v V2[thunk S2[force w]]

(Projection)

v w (Projection)

Lemma 130 (Identity EP Pair). (x.x, •) is an ep pair (value or computa-
tion).



180 models

Now, we show that all casts are ep pairs. The proof is a somewhat
tedious, but straightforward calculation. To keep proofs high-level, we
first establish the following cast reductions that follow easily from β, η

principles.

Lemma 131 (Cast Reductions). The following are all provable

J〈A′1 + A′2 � A1 + A2〉K[inl V] wv inl J〈A′1 � A1〉K[V]

J〈A′1 + A′2 � A1 + A2〉K[inr V] wv inr J〈A′2 � A2〉K[V]

J〈F(A1 + A2) � F(A′1 + A′2)〉K[ret inl V] wv x1 ← J〈A1 � A′1〉K[ret V]; ret inl x1

J〈F(A1 + A2) � F(A′1 + A′2)〉K[ret inr V] wv x2 ← J〈A2 � A′2〉K[ret V]; ret inr x2

J〈F1 � F1〉K wv •
J〈1� 1〉K[x] wv x

J〈F(A1 × A2) � F(A′1 × A′2)〉K[ret (V1, V2)]

wv x1 ← J〈FA1 � FA′1〉K[ret V1]; x2 ← J〈FA2 � FA′2〉K[ret V2]; ret (x1, x2)

J〈A′1 × A′2 � A1 × A2〉K[(V1, V2)] wv (J〈A′1 � A1〉K[V1], J〈A′2 � A2〉K[V2])

(J〈A→ B � A′ → B′〉KM)V wv (J〈B � B′〉KM) (J〈A′ � A〉KV)

(force (J〈U(A′ → B′)� U(A→ B)〉KV))V′

wv x ← 〈FA � FA′〉[ret V′]; force (J〈UB′ � UB〉K(thunk (force V x)))

πJ〈B1 & B2 � B′1 & B′2〉KM wv J〈B1 � B′1〉KπM

π′J〈B1 & B2 � B′1 & B′2〉KM wv J〈B2 � B′2〉Kπ′M

πforce (J〈U(B′1 & B′2)� U(B1 & B2)〉KV) wv force J〈UB′1 � UB1〉Kthunk (πforce V)

π′force (J〈U(B′1 & B′2)� U(B1 & B2)〉KV) wv force J〈UB′2 � UB2〉Kthunk (π′force V)

J〈FUB � FUB′〉K[ret V] wv ret thunk J〈B � B′〉Kforce V

force J〈UFA′ � UFA〉K[V] wv x ← force V; thunk ret 〈A′ � A〉x

Lemma 132 (Casts are EP Pairs).

1. For any A v A′, the casts (x.J〈A′ � A〉xK, J〈FA � FA′〉K) are a
value ep pair from JAK to JA′K

2. For any B v B′, the casts (z.J〈UB′ � UB〉zK, J〈B � B′〉K) are a
computation ep pair from JBK to JB′K.

Proof. By induction on normalized type precision derivations.

1. A v A (A ∈ {?, 1}), because identity is an ep pair.

2. 0 v A (that A ∈ {?, 0} is not important):

a) Retraction is

x : 0 ` ret x wv y← ret absurd x;f : FA

which holds by 0η



7.2 elaborating gtt 181

b) Projection is

• : FA ` x ← (y← •;f); ret absurd x v • : FA

Which we calculate:

x ← (y← •;f); ret absurd x

wv y← •; x ← f; ret absurd x (comm conv)

wv y← •;f (Strictness of Stacks)

v y← •; ret y (f is ⊥)

wv • (Fη)

3. +:
a) Retraction is

x : A1 + A2 `
J〈F(A1 + A2) � F(A′1 + A′2)〉K[ret J〈A′1 + A′2 � A1 + A2〉K[x]]
= J〈F(A1 + A2) � F(A′1 + A′2)〉K

[ret case x{x1.inl J〈A′1 � A1〉K[x1] | x1.inr J〈A′2 � A2〉K[x2]}]
wv case x (commuting conversion)

{x1.J〈F(A1 + A2) � F(A′1 + A′2)〉K[ret inl J〈A′1 � A1〉K[x1]]

| x2.J〈F(A1 + A2) � F(A′1 + A′2)〉K[ret inr J〈A′2 � A2〉K[x2]]}
wv case x (cast computation)

{x1.x1 ← J〈FA1 � FA′1〉K[ret J〈A′1 � A1〉Kx1]; ret inl x1

| x2.x2 ← J〈FA2 � FA′2〉K[ret J〈A′2 � A2〉Kx2]; ret inr x2}
wv case x{x1.ret inl x1 | x2.ret inr x2}

(IH retraction)

wv ret x (+η)

b) For Projection:

• : A′1 + A′2 `
x ← J〈F(A1 + A2) � F(A′1 + A′2)〉K; J〈A′1 + A′2 � A1 + A2〉K[x]
= x ← (x′ ← •; case x′{x′1.x1 ← J〈FA1 � FA′1〉K[ret x′1]; ret inl x1 | x′2. · · ·});

J〈A′1 + A′2 � A1 + A2〉K
wv x ← •;′ case x′ (Commuting Conversion)

{x′1.x1 ← J〈FA1 � FA′1〉K[ret x′1]; J〈A′1 + A′2 � A1 + A2〉Kret inl x1

| x′2.x2 ← J〈FA2 � FA′2〉K[ret x′2]; J〈A′1 + A′2 � A1 + A2〉Kret inr x2}
wv x ← •;′ case x′ (Cast Computation)

{x′1.x1 ← J〈FA1 � FA′1〉K[ret x′1]; ret inl J〈A′1 � A1〉Kx1

| x′2.x2 ← J〈FA2 � FA′2〉K[ret x′2]; ret inr J〈A′2 � A2〉Kx2}
v x ← •;′ case x′{x′1.ret inl x′1 | x′2.ret inr x′2}

(IH projection)

wv x ← •;′ ret x′ (+η)

wv • (Fη)



182 models

4. ×:
a) First, Retraction:

x : A1 × A2 `
J〈F(A1 × A2) � F(A′1 × A′2)〉K[ret J〈A′1 × A′2 � A1 × A2〉K[x]]
= J〈F(A1 × A2) � F(A′1 × A′2)〉K

[ret let (x1, x2) = x; (J〈A′1 � A1〉K[x1], J〈A′2 � A2〉K[x2])]

wv let (x1, x2) = x; J〈F(A1 × A2) � F(A′1 × A′2)〉K
[ret (J〈A′1 � A1〉K[x1], J〈A′2 � A2〉K[x2])]

(commuting conversion)

wv let (x1, x2) = x; (cast reduction)

y1 ← J〈FA1 � FA′1〉K[ret J〈A′1 � A1〉K[x1]];

y2 ← J〈FA2 � FA′2〉K[ret J〈A′2 � A2〉K[x2]];

ret (y1, y2)

wv let (x1, x2) = x; y1 ← ret x1; y2 ← ret x2; ret (y1, y2)
(IH retraction)

wv let (x1, x2) = x; ret (x1, x2) (Fβ)

wv ret x (×η)



7.2 elaborating gtt 183

b) Next, Projection:

• : FA′ `
x ← J〈F(A1 × A2) � F(A′1 × A′2)〉K[•]; ret J〈A′1 × A′2 � A1 × A2〉K[x]
wv x′ ← •; let (x′1, x′2) = x′; (Fη,×η)

x ← J〈F(A1 × A2) � F(A′1 × A′2)〉K[ret (x′1, x′2)];

ret J〈A′1 × A′2 � A1 × A2〉K[x]
wv x′ ← •; let (x′1, x′2) = x′; (cast reduction)

x1 ← J〈FA1 � FA′1〉K[ret x′1];

x2 ← J〈FA2 � FA′2〉K[ret x′2];

ret J〈A′1 × A′2 � A1 × A2〉K[(x1, x2)]

wv x′ ← •; let (x′1, x′2) = x′; (cast reduction)

x1 ← J〈FA1 � FA′1〉K[ret x′1];

x2 ← J〈FA2 � FA′2〉K[ret x′2];

ret (J〈A′1 � A1〉K[x1], J〈A′2 � A2〉K[x2])

wv x′ ← •; let (x′1, x′2) = x′; (Fβ, twice)

x1 ← J〈FA1 � FA′1〉K[ret x′1];

x2 ← J〈FA2 � FA′2〉K[ret x′2];

y′2 ← ret J〈A′2 � A2〉K[x2];

y′1 ← ret J〈A′1 � A1〉K[x1];

ret (y′1, y′2)

v x′ ← •; let (x′1, x′2) = x′; (IH Projection)

x1 ← J〈FA1 � FA′1〉K[ret x′1];

y′2 ← ret x′2;

y′1 ← ret J〈A′1 � A1〉K[x1];

ret (y′1, y′2)

wv x′ ← •; let (x′1, x′2) = x′; (Fβ)

x1 ← J〈FA1 � FA′1〉K[ret x′1];

y′1 ← ret J〈A′1 � A1〉K[x1];

ret (x′1, y′2)

v x′ ← •; let (x′1, x′2) = x′; (IH Projection)

y′1 ← ret x′1;

ret (x′1, y′2)

wv x′ ← •; let (x′1, x′2) = x′; ret (x′1, x′2) (Fβ)

wv x′ ← •; ret x′ (×η)

wv • (Fη)

5. U: By inductive hypothesis, (x.J〈UB′ � UB〉K, 〈B � B′〉) is a
computation ep pair

a) To show retraction we need to prove:



184 models

x : UB ` ret x wv y← (ret thunk J〈UB′ � UB〉K); ret thunk J〈B � B′〉K[force y]

Which we calculate as follows:

x : UB `
J〈FUB � FUB′〉K[(ret J〈UB′ � UB〉K[x])]
wv ret thunk (J〈B � B′〉K[force J〈UB′ � UB〉K[x]])

(Cast Reduction)

wv ret thunk force x (IH Retraction)

wv ret x (Uη)

b) To show projection we calculate:

x ← J〈FUB � FUB′〉K[•]; J〈UB′ � UB〉K[x]
wv x′ ← •; x ← J〈FUB � FUB′〉K[ret x′]; J〈UB′ � UB〉K[x]

(Fη)

wv x′ ← •; x ← ret thunk (J〈B � B′〉K[force x′]); J〈UB′ � UB〉K[x]
(Cast Reduction)

wv x′ ← •; J〈UB′ � UB〉K[thunk (J〈B � B′〉K[force x′])]
(Fβ)

v x′ ← •; x′ (IH Projection)

wv • (Fη)

1. There’s a few base cases about the dynamic computation type,
then

2. >:

a) Retraction is by >η:

z : U> ` force z wv {} : >

b) Projection is

thunk f v thunk force w (f is ⊥)

wv w (Uη)



7.2 elaborating gtt 185

3. &: Retraction

z : U(B1 & B2) `
J〈B1 & B2 � B′1 & B′2〉K[force J〈U(B′1 & B′2)� U(B1 & B2)〉K[z]]
wv {π 7→ πJ〈B1 & B2 � B′1 & B′2〉K[force J〈U(B′1 & B′2)� U(B1 & B2)〉K[z]]

(&η)

| π′ 7→ π′J〈B1 & B2 � B′1 & B′2〉K[force J〈U(B′1 & B′2)� U(B1 & B2)〉K[z]]}
wv {π 7→ J〈B1 � B′1〉K[πforce J〈U(B′1 & B′2)� U(B1 & B2)〉K[z]]

(Cast reduction)

| π′ 7→ J〈B2 � B′2〉K[π′force J〈U(B′1 & B′2)� U(B1 & B2)〉K[z]]}
wv {π 7→ J〈B1 � B′1〉K[force J〈UB′1 � UB1〉K[thunk πforce z]]

(Cast reduction)

| π′ 7→ J〈B2 � B′2〉K[force J〈UB′2 � UB2〉K[thunk π′force z]]}
wv (force thunk πforce z, force thunk π′force z)

(IH retraction)

wv (πforce z, π′force z) (Uβ)

wv force z (&η)

Projection

w : UB′1 & B′2 `
J〈U(B′1 & B′2)� U(B1 & B2)〉K[thunk J〈B1 & B2 � B′1 & B′2〉K[force w]]

wv thunk force J〈U(B′1 & B′2)� U(B1 & B2)〉K[thunk J〈B1 & B2 � B′1 & B′2〉K[force w]]
(Uη)

wv thunk {π 7→ πforce J〈U(B′1 & B′2)� U(B1 & B2)〉K[thunk J〈B1 & B2 � B′1 & B′2〉K[force w]]

| π′ 7→ π′force J〈U(B′1 & B′2)� U(B1 & B2)〉K[thunk J〈B1 & B2 � B′1 & B′2〉K[force w]]}
(&η)

wv thunk {π 7→ force J〈UB′1 � UB1〉K[thunk πforce thunk J〈B1 & B2 � B′1 & B′2〉K[force w]]

| π′ 7→ force J〈UB′2 � UB2〉K[thunk π′force thunk J〈B1 & B2 � B′1 & B′2〉K[force w]]}
(cast reduction)

wv thunk {π 7→ force J〈UB′1 � UB1〉K[thunk πJ〈B1 & B2 � B′1 & B′2〉K[force w]]
(Uβ)

| π′ 7→ force J〈UB′2 � UB2〉K[thunk π′J〈B1 & B2 � B′1 & B′2〉K[force w]]}
wv thunk {π 7→ force J〈UB′1 � UB1〉K[thunk J〈B1 � B′1〉K[πforce w]]

(cast reduction)

| π′ 7→ force J〈UB′2 � UB2〉K[thunk J〈B2 � B′2〉K[π′force w]]}
wv thunk {π 7→ force J〈UB′1 � UB1〉K[thunk J〈B1 � B′1〉K[force thunk πforce w]]

(Uβ)

| π′ 7→ force J〈UB′2 � UB2〉K[thunk J〈B2 � B′2〉K[force thunk π′force w]]}
v thunk (force thunk πforce w, force thunk π′force w)

(IH projection)

wv thunk (πforce w, π′force w) (Uβ)

wv thunk force w (&η)

wv w (Uη)



186 models

4. →: Retraction

z : U(A→ B) `
J〈A→ B � A′ → B′〉K[force J〈U(A′ → B′)� U(A→ B)〉K[z]]
wv λx : A.(J〈A→ B � A′ → B′〉K[force J〈U(A′ → B′)� U(A→ B)〉K[z]]) x

(→ η)

wv λx : A.J〈B � B′〉K[(force J〈U(A′ → B′)� U(A→ B)〉K[z])(J〈A′ � A〉K[x])]
(cast reduction)

wv λx : A. (cast reduction)

J〈B � B′〉K[y← J〈FA � FA′〉K[ret 〈A′ � A〉[x]]; force 〈UB′ � UB〉[thunk ((force z) y)]]

wv λx : A.J〈B � B′〉K[y← ret x; force 〈UB′ � UB〉[thunk ((force z) y)]]
(IH Retraction)

wv λx : A.J〈B � B′〉K[force 〈UB′ � UB〉[thunk ((force z) x)]]
(Fβ)

wv λx : A.force thunk ((force z) x) (IH retraction)

wv λx : A.(force z) x (Uβ)

wv force z (→ η)



7.2 elaborating gtt 187

Projection

w : U(A′ → B′) `
J〈U(A′ → B′)� U(A→ B)〉K[thunk J〈A→ B � A′ → B′〉K[force w]]

wv thunk force J〈U(A′ → B′)� U(A→ B)〉K[thunk J〈A→ B � A′ → B′〉K[force w]]

(Uη)

wv thunk λx′ : A′.

(force J〈U(A′ → B′)� U(A→ B)〉K[thunk J〈A→ B � A′ → B′〉K[force w]]) x′

(→ η)

wv thunk λx′ : A′.

x ← J〈FA � FA′〉K[ret x′]; (cast reduction)

force J〈UB′ � UB〉K[thunk ((force thunk J〈A→ B � A′ → B′〉K[force w]) x)]

wv thunk λx′ : A′.

x ← J〈FA � FA′〉K[ret x′]; (Uβ)

force J〈UB′ � UB〉K[thunk ((J〈A→ B � A′ → B′〉K[force w]) x)]

wv thunk λx′ : A′.

x ← J〈FA � FA′〉K[ret x′]; (cast reduction)

force J〈UB′ � UB〉K[thunk J〈B � B′〉K[(force w) (〈A′ � A〉[x])]]
wv thunk λx′ : A′.

x ← J〈FA � FA′〉K[ret x′]; (Fβ)

x′ ← ret 〈A′ � A〉[x];
force J〈UB′ � UB〉K[thunk J〈B � B′〉K[(force w) x′]]

v thunk λx′ : A′. (IH projection)

x′ ← ret x′;

force J〈UB′ � UB〉K[thunk J〈B � B′〉K[(force w) x′]]

wv thunk λx′ : A′.force J〈UB′ � UB〉K[thunk J〈B � B′〉K[(force w) x′]]
(Fβ)

wv thunk λx′ : A′.force J〈UB′ � UB〉K[thunk J〈B � B′〉K[force thunk ((force w) x′)]]
(Fβ)

v thunk λx′ : A′.force thunk ((force w) x′)
(IH projection)

wv thunk λx′ : A′.((force w) x′) (Uβ)

wv thunk force w (→ η)

wv w (Uη)

5. F:

a) To show retraction we need to show

z : UFA ` force z wv J〈FA � FA′〉K[force thunk (x ← force z; ret J〈A′ � A〉K)]



188 models

We calculate:

J〈FA � FA′〉K[force thunk (x ← force z; ret J〈A′ � A〉K)]
wv J〈FA � FA′〉K[(x ← force z; ret J〈A′ � A〉K)]

(Uβ)

wv x ← force z; J〈FA � FA′〉K[ret J〈A′ � A〉K]
(comm conv)

wv x ← force z; ret x (IH value retraction)

wv force z (Fη)

b) To show projection we need to show

w : UFA′ ` thunk (x ← force thunk J〈FA � FA′〉K[force w]; ret J〈A′ � A〉K) v w

We calculate as follows

thunk (x ← force thunk J〈FA � FA′〉K[force w]; ret J〈A′ � A〉K)
wv thunk (x ← J〈FA � FA′〉K[force w]; ret J〈A′ � A〉K)

(Uβ)

v thunk force w (IH value projection)

wv w (Uη)

While tedious, this work pays off greatly in later proofs: this is
the only proof in the entire development that needs to inspect the
definition of a “shifted” cast (a downcast between F types or an upcast
between U types). All later lemmas have cases for these shifted casts,
but only use the property that they are part of an ep pair. This is
one of the biggest advantages of using an explicit syntax for complex
values and complex stacks: the shifted casts are the only ones that
non-trivially use effectful terms, so after this lemma is established
we only have to manipulate values and stacks, which compose much
more nicely than effectful terms. Conceptually, the main reason we
can avoid reasoning about the definitions of the shifted casts directly
is that any two shifted casts that form an ep pair with the same value
embedding/stack projection are equal:

Lemma 133 (Embedding determines Projection, and vice-versa). For
any value x : A ` Ve : A′ and stacks • : FA′ ` S1 : FA and • : FA′ ` S2 :
FA, if (Ve, S1) and (Ve, S2) are both value ep pairs, then

S1 wv S2

Similarly for any values x : UB ` V1 : UB′ and x : UB ` V2 : UB′ and
stack • : B′ ` Sp : B, if (V1, Sp) and (V2, Sp) are both computation ep pairs
then

V1 wv V2



7.2 elaborating gtt 189

Proof. By symmetry it is sufficient to show S1 v S2.

S1 v S1

x ← S1; ret x v x ← •; S1[ret x]

x ← S1; ret Ve v x ← •; ret x

x ← S1; ret x v x ← •; S2[ret x]

• : FA′ ` S1 v S2 : FA

similarly to show V1 v V2:

x : UB ` thunk force V2 v thunk force V2 : UB′

x : UB ` thunk force x v thunk Sp[force V2]

x : UB ` thunk force V1 v thunk force V2 : UB′

x : UB ` V1 v V2 : UB′

The next two lemmas on the way to axiomatic graduality show
that Figure 7.5 translates 〈A � A〉 to the identity and 〈A′′ �
A′〉〈A′ � A〉 to the same contract as 〈A′′ � A〉, and similarly for
downcasts. Intuitively, for all connectives except F, U, this is because
of functoriality of the type constructors on values and stacks. For the
F, U cases, we will use the corresponding fact about the dual cast, i.e.,
to prove the FA to FA downcast is the identity stack, we know by
inductive hypothesis that the A to A upcast is the identity, and that
the identity stack is a projection for the identity. Therefore Lemma 133

implies that the FA downcast must be equivalent to the identity. We
now discuss these two lemmas and their proofs in detail.

First, we show that the casts from a type to itself are equivalent to
the identity. Below, we will use this lemma to prove the reflexivity case
of the axiomatic graduality theorem, and to prove a conservativity
result, which says that a GTT homogeneous term precision is the same
as a CBPV* inequality between their translations.

Lemma 134 (Identity Expansion). For any A and B,

x : A ` J〈A� A〉K wv x : A • : B ` J〈B � B〉K wv • : B

Proof. We proceed by induction on A, B, following the proof that
reflexivity is admissible given in Lemma 125.

1. If A ∈ {1, ?}, then J〈A� A〉K[x] = x.

2. If A = 0, then absurd x wv x by 0η.

3. If A = UB, then by inductive hypothesis J〈B � B〉K wv •. By
Lemma 130, (x.x, •) is a computation ep pair from B to itself.
But by Lemma 132, (J〈UB� UB〉K[x], •) is also a computation
ep pair so the result follows by uniqueness of embeddings from
computation projections Lemma 133.



190 models

4. If A = A1 × A2 or A = A1 + A2, the result follows by the η

principle and inductive hypothesis.

5. If B = ¿, J〈¿ � ¿〉K = •.

6. For B = >, the result follows by >η.

7. For B = B1 & B2 or B = A→ B′, the result follows by inductive
hypothesis and η.

8. For B = FA, by inductive hypothesis, the downcast is a projec-
tion for the value embedding x.x, so the result follows by identity
ep pair and uniqueness of projections from value embeddings.

Second, we show that a composition of upcasts is translated to the
same thing as a direct upcast, and similarly for downcasts. Below, we
will use this lemma to translate transitivity of term precision in GTT.

Lemma 135 (Cast Decomposition). For any dynamic type interpretation
ρ,

A v A′ v A′′

x : A ` J〈A′′ � A〉Kρ wv J〈A′′ � A′〉Kρ[J〈A′ � A〉Kρ] : A′′

B v B′ v B′′

• : B′′ ` J〈B � B′′〉Kρ wv J〈B � B′〉Kρ[J〈B′ � B′′〉Kρ]

Proof. By mutual induction on A, B.

1. A v A′ v A′′

a) If A = 0, we need to show x : 0 ` J〈A′′ � 0〉K[x] wv
J〈A′′ � A′〉K[J〈A′ � 0〉K[x]] : A′′ which follows by 0η.

b) If A = ?, then A′ = A′′ = ?, and both casts are the identity.

c) If A 6∈ {?, 0} and A′ = ?, then A′′ = ? and J〈?� ?〉K[J〈?� A〉K] =
J〈?� A〉K by definition.

d) If A, A′ 6∈ {?, 0} and A′′ = ?, then bAc = bA′c, which we
call G and

J〈?� A〉K = J〈?� G〉K[J〈G � A〉K]

and

J〈?� A′〉K[J〈A′ � A〉K] = J〈?� G〉K[J〈G � A′〉K[J〈A′ � A〉K]]

so this reduces to the case for A v A′ v G, below.

e) If A, A′, A′′ 6∈ {?, 0}, then they all have the same top-level
constructor:



7.2 elaborating gtt 191

i. +: We need to show for A1 v A′1 v A′′1 and A2 v A′2 v
A′′2 :

x : JA1K+ JA2K ` J〈A′′1 + A′′2 � A′1 + A′2〉K[J〈A′1 + A′2 � A1 + A2〉K[x]]
wv J〈A′′1 + A′′2 � A1 + A2〉K[x] : JA′′1 K+ JA′′2 K

We proceed as follows:

J〈A′′1 + A′′2 � A′1 + A′2〉K[J〈A′1 + A′2 � A1 + A2〉K[x]]
wv case x (+η)

{x1.J〈A′′1 + A′′2 � A′1 + A′2〉K[J〈A′1 + A′2 � A1 + A2〉K[inl x1]]

| x2.J〈A′′1 + A′′2 � A′1 + A′2〉K[J〈A′1 + A′2 � A1 + A2〉K[inr x2]]}
wv case x (cast reduction)

{x1.J〈A′′1 + A′′2 � A′1 + A′2〉K[inl J〈A′1 � A1〉K[x1]]

| x2.J〈A′′1 + A′′2 � A′1 + A′2〉K[inr J〈A′2 � A2〉K[x2]]}
wv case x (cast reduction)

{x1.inl J〈A′′1 � A′1〉K[J〈A′1 � A1〉K[x1]]

| x2.inr J〈A′′2 � A′2〉K[J〈A′2 � A2〉K[x2]]}
wv case x (IH)

{x1.inl J〈A′′1 � A1〉K[x1]

| x2.inr J〈A′′2 � A2〉K[x2]}
= J〈A′′1 + A′′2 � A1 + A2〉K[x] (definition)

ii. 1: By definition both sides are the identity.

iii. ×: We need to show for A1 v A′1 v A′′1 and A2 v A′2 v
A′′2 :

x : JA1K× JA2K ` J〈A′′1 × A′′2 � A′1 × A′2〉K[J〈A′1 × A′2 � A1 × A2〉K[x]]
wv J〈A′′1 × A′′2 � A1 × A2〉K[x] : JA′′1 K× JA′′2 K.

We proceed as follows:

J〈A′′1 × A′′2 � A′1 × A′2〉K[J〈A′1 × A′2 � A1 × A2〉K[x]]
wv let (y, z) = x; J〈A′′1 × A′′2 � A′1 × A′2〉K[J〈A′1 × A′2 � A1 × A2〉K[(y, z)]]

(×η)

wv let (y, z) = x; J〈A′′1 × A′′2 � A′1 × A′2〉K[(J〈A′1 � A1〉K[y], J〈A′2 � A2〉K[z])]
(cast reduction)

wv let (y, z) = x; (J〈A′′1 � A′1〉K[J〈A′1 � A1〉K[y]], J〈A′′2 � A′2〉K[J〈A′2 � A2〉K[z]])
(cast reduction)

wv let (y, z) = x; (J〈A′′1 � A1〉K[y], J〈A′′2 � A2〉K[z])
(IH)

= J〈A′′1 × A′′2 � A1 × A2〉K[x] (definition)

iv. UB v UB′ v UB′′. We need to show

x : UB ` J〈UB′′ � UB′〉K[J〈UB′ � UB〉K[x]] wv J〈UB′′ � UB〉K[x] : UB′′



192 models

By composition of ep pairs, we know

(x.J〈UB′′ � UB′〉K[J〈UB′ � UB〉K[x]], J〈B � B′〉K[J〈B′ � B′′〉K])

is a computation ep pair. Furthermore, by inductive
hypothesis, we know

J〈B � B′〉K[J〈B′ � B′′〉K] wv J〈B � B′′〉K

so then both sides form ep pairs paired with J〈B � B′′〉K,
so it follows because computation projections deter-
mine embeddings Lemma 133.

2. B v B′ v B′′

a) If B = >, then the result is immediate by η>.

b) If B = ¿, then B′ = B′′ = ¿ then both sides are just •.
c) If B 6∈ {¿,>}, and B′ = ¿, then B′′ = ¿

J〈B � ¿〉K[J〈¿ � ¿〉K] = J〈B � ¿〉K

d) If B, B′ 6∈ {¿,>}, and B′′ = ¿ , and bBc = bB′c, which we
call G. Then we need to show

J〈B � B′〉K[J〈B′ � G〉K[J〈G � ¿〉K]] wv J〈B � G〉K[J〈G � [〉K¿]]

so the result follows from the case B v B′ v G, which is
handled below.

e) If B, B′, B′′ 6∈ {¿,>}, then they all have the same top-level
constructor:

i. & We are given B1 v B′1 v B′′1 and B2 v B′2 v B′′2 and
we need to show

• : B′′1 & B′′2 ` J〈B1 & B2 � B′1 & B′2〉K[J〈B′1 & B′2 � B′′1 & B′′2 〉K] : B1 & B2

We proceed as follows:

J〈B1 & B2 � B′1 & B′2〉K[J〈B′1 & B′2 � B′′1 & B′′2 〉K]
wv {π 7→ πJ〈B1 & B2 � B′1 & B′2〉K[J〈B′1 & B′2 � B′′1 & B′′2 〉K]

(&η)

| π′ 7→ π′J〈B1 & B2 � B′1 & B′2〉K[J〈B′1 & B′2 � B′′1 & B′′2 〉K]}
wv {π 7→ J〈B1 � B′1〉K[πJ〈B′1 & B′2 � B′′1 & B′′2 〉K]

(cast reduction)

| π′ 7→ J〈B2 � B′2〉K[π′J〈B′1 & B′2 � B′′1 & B′′2 〉K]}
wv {π 7→ J〈B1 � B′1〉K[J〈B′1 � B′′1 〉K[π•]]

(cast reduction)

| π′ 7→ J〈B2 � B′2〉KJ〈B′2 � B′′2 〉K[π′•]}
wv (J〈B1 � B′′1 〉K[π•], J〈B2 � B′′2 〉K[π′•]) (IH)

= J〈B1 & B2 � B′′1 & B′′2 〉K (definition)



7.2 elaborating gtt 193

ii. →, assume we are given A v A′ v A′′ and B v B′ v
B′′, then we proceed:

J〈A→ B � A′ → B′〉K[J〈A′ → B′ � A′′ → B′′〉K]
wv λx : A.(J〈A→ B � A′ → B′〉K[J〈A′ → B′ � A′′ → B′′〉K][•]) x

(→ η)

wv λx : A.J〈B � B′〉K[(J〈A′ → B′ � A′′ → B′′〉K[•]) J〈A′ � A〉K[x]]
(cast reduction)

wv λx : A.J〈B � B′〉K[J〈B′ � B′′〉K[• J〈A′′ � A′〉K[J〈A′ � A〉K[x]]]]
(cast reduction)

wv λx : A.J〈B � B′′〉K[• J〈A′′ � A〉K[x]]
= J〈A→ B � A→ B′′〉K[•] (definition)

iii. FA v FA′ v FA′′. First, by composition of ep pairs, we
know

(x.J〈A′′ � A′〉K[J〈A′ � A〉K[x]], J〈FA � FA′〉K)[J〈FA′ � FA′′〉K]

form a value ep pair. Furthermore, by inductive hy-
pothesis, we know

x : A ` J〈A′′ � A′〉K[J〈A′ � A〉K[x]] wv J〈A′′ � A〉K[x]

so the two sides of our equation are both projections
with the same value embedding, so the equation fol-
lows from uniqueness of projections from value embed-
dings.

The final lemma before the graduality theorem lets us “move a cast”
from left to right or vice-versa, via the adjunction property for ep pairs.
These arise in the proof cases for return and thunk , because in those
cases the inductive hypothesis is in terms of an upcast (downcast) and
the conclusion is in terms of a a downcast (upcast).

Lemma 136 (Hom-set formulation of Adjunction). For any value embedding-
projection pair Ve, Sp from A to A′, the following are equivalent:

Γ ` ret Ve[V] v M : FA′

Γ ` ret V v Sp[M] : FA
=====================

For any computation ep pair (Ve, Sp) from B to B′, the following are
equivalent:

Γ, z′ : UB′ ` M v S[Sp[force z′]] : C

Γ, z : UB ` M[Ve/z′] v S[force z] : C
================================



194 models

Proof. 1. Assume ret Ve[V] v M : FA′. Then by retraction, ret V v
Sp[ret Ve[V]] so by transitivity, the result follows by substitution:

Sp v Sp ret Ve[V] v M

Sp[ret Ve[V]] v M

2. Assume ret V v Sp[M] : FA. Then by projection, x ← Sp[M]; ret Ve[x] v
M, so it is sufficient to show

ret Ve[V] v x ← Sp[M]; ret Ve[x]

but again by substitution we have

x ← ret V; ret Ve[x] v x ← Sp[M]; ret Ve[x]

and by Fβ, the LHS is equivalent to ret Ve[V].

3. Assume z′ : UB′ ` M v S[Sp[force z′]], then by projection,
S[Sp[force Ve]] v S[force z] and by substitution:

M v S[Sp[force z′]] Ve v Ve S[Sp[force Ve]] = (S[Sp[force z′]])[Ve/z′]

M[Ve/z′] v S[Sp[force Ve]]

4. Assume z : UB ` M[Ve/z′] v S[force z]. Then by retraction,
M v M[Ve[thunk Sp[force z]]] and by substitution:

M[Ve[thunk Sp[force z]]] v S[force thunk Sp[force z]]

and the right is equivalent to S[Sp[force z]] by Uβ.

Finally, we prove the axiomatic graduality theorem. In addition
to the lemmas above, the main task is to prove the “compatibility”
cases which are the congruence cases for introduction and elimination
rules. These come down to proving that the casts “commute” with
introduction/elimination forms, and are all simple calculations.

Theorem (Axiomatic Graduality). For any dynamic type interpreta-
tion, the following are true:

Φ : Γ v Γ′ Ψ : ∆ v ∆′ Φ | Ψ ` M v M′ : B v B′

JΓK | J∆′K ` JMK[JΨK] v J〈B � B′〉K[JM′K[JΦK]] : JBK

Φ : Γ v Γ′ Φ ` V v V ′ : A v A′

JΓK ` J〈A′ � A〉K[JVK] v JV ′K[JΦK] : JA′K

Proof. By mutual induction over term precision derivations. For the
β, η and reflexivity rules, we use the identity expansion lemma and
the corresponding β, η rule of CBPV*Lemma 134.



7.2 elaborating gtt 195

For compatibility rules a pattern emerges. Universal rules (positive
intro, negative elim) are easy, we don’t need to reason about casts at
all. For “(co)-pattern matching rules” (positive elim, negative intro),
we need to invoke the η principle (or commuting conversion, which
is derived from the η principle). In all compatibility cases, the cast
reduction lemma keeps the proof straightforward.

Fortunately, all reasoning about “shifted” casts is handled in lemmas,
and here we only deal with the “nice” value upcasts/stack downcasts.

1. Transitivity for values: The GTT rule is

Φ : Γ v Γ′ Φ′ : Γ′ v Γ′′ Φ′′ : Γ v Γ′′

Φ ` V v V ′ : A v A′ Φ′ ` V ′ v V ′′ : A′ v A′′

Φ′′ ` V v V ′′ : A v A′′

Which under translation (and the same assumptions about the
contexts) is

JΓK ` J〈A′ � A〉K[JVK] v JV ′K[JΦK] : JA′K
JΓ′K ` J〈A′ � A′〉K[JV ′K] v JV ′′K[JΦ′K] : JA′′K

JΓK ` J〈A′′ � A〉K[JVK] v JV ′′K[JΦ′′K] : JA′′K

We proceed as follows, the key lemma here is the cast decompo-
sition lemma:

J〈A′′ � A〉K[JVK] wv J〈A′′ � A′〉K[J〈A′ � A〉K[JVK]]
(cast decomposition)

v J〈A′′ � A′〉K[JV ′K[JΦK]] (IH)

v JV ′′K[JΦ′K][JΦK] (IH)

wv JV ′′K[JΦ′′K] (cast decomposition)

2. Transitivity for terms: The GTT rule is

Φ : Γ v Γ′ Φ′ : Γ′ v Γ′′ Φ′′ : Γ v Γ′′

Ψ : ∆ v ∆′ Ψ : ∆′ v ∆′′ Ψ′′ : ∆ v ∆′′

Φ | Ψ ` M v M′ : B v B′Φ′ | Ψ′ ` M′ v M′′ : B′ v B′′

Φ′′ | Ψ′′ ` M v M′′ : B v B′′

Which under translation (and the same assumptions about the
contexts) is

JΓK | J∆′K ` JMK[JΨK] v J〈B � B′〉K[JM′K[JΦK]] : JBK
JΓ′K | J∆′′K ` JM′K[JΨ′K] v J〈B′ � B′′〉K[JM′′K[JΦ′K]] : JB′K

JΓK | J∆′′K ` JMK[JΨ′′K] v J〈B � B′′〉K[JM′′K[JΦ′′K]] : JBK



196 models

We proceed as follows, the key lemma here is the cast decompo-
sition lemma:

JMK[JΨ′′K] wv JMK[JΨK][JΨ′K] (Cast decomposition)

v J〈B � B′〉K[JM′K[JΨ′K][JΦK]] (IH)

v J〈B � B′〉K[J〈B′ � B′′〉K[JM′′K[JΦ′K][JΦK]]]
(IH)

wv J〈B � B′′〉K[JM′′K[JΦ′′K]]
(Cast decomposition)

3. Substitution of a value in a value: The GTT rule is

Φ, x v x′ : A1 v A′1 ` V2 v V ′2 : A2 v A′2
Φ ` V1 v V ′1 : A1 v A′1

Φ ` V2[V1/x] v V ′2[V
′
1/x′] : A2 v A′2

Where Φ : Γ v Γ′. Under translation, we need to show

JΓK, x : JA1K ` J〈A′2 � A2〉K[JV2K] v JV ′2K[JΦK][J〈A′1 � A1〉K[x]/x′] : JA′2K
JΓK ` J〈A′1 � A1〉K[JV1K] v JV ′1K[JΦK] : JA′1K

JΓK ` J〈A′2 � A2〉K[JV2[V1/x]K] v JV ′2[V
′
1/x′]K[JΦK] : JA′2K

Which follows by compositionality:

J〈A′2 � A2〉K[JV2[V1/x]K] = (J〈A′2 � A2〉K[JV2K])[JV1K/x]
(Compositionality)

v JV ′2K[JΦK][J〈A′1 � A1〉K[x]/x′][JV1K/x]
(IH)

= JV ′2K[JΦK][J〈A′1 � A1〉K[JV1K]/x′]

v JV ′2K[JΦK][JV ′1K[JΦK]/x′] (IH)

= JV ′2[V
′
1/x′]K[JΦK]

4. Substitution of a value in a term: The GTT rule is

Φ, x v x′ : A v A′ | Ψ ` M v M′ : B v B′

Φ ` V v V ′ : A v A′

Φ ` M[V/x] v M′[V ′/x′] : B v B′

Where Φ : Γ v Γ′ and Ψ : ∆ v ∆′. Under translation this is:

JΓK, x : JAK | J∆K ` JMK v J〈B � B′〉K[JM′K[JΦK][J〈A′ � A〉K[x]/x′]] : JBK
JΓK ` J〈A′ � A〉K[JVK] v JV ′K[JΦK] : JA′K

JΓK | J∆K ` JM[V/x]K v J〈B � B′〉K[JM′[V ′/x′]K[JΦK]] : JBK



7.2 elaborating gtt 197

Which follows from compositionality of the translation:

JM[V/x]K = JMK[JVK/x] (Compositionality)

v J〈B � B′〉K[JM′K[JΦK][J〈A′ � A〉K[x]/x′]][JVK/x]
(IH)

= J〈B � B′〉K[JM′K[JΦK][J〈A′ � A〉K[JVK]/x′]]

v J〈B � B′〉K[JM′K[JΦK][JV ′K[JΦK]/x′]] (IH)

= J〈B � B′〉K[JM′[V ′/x′]K[JΦK]]
(Compositionality)

5. Substitution of a term in a stack: The GTT rule is

Φ | • v • : B v B′ ` S v S′ : C v C′

Φ | · ` M v M′ : B v B′

Φ | · ` S[M] v S′[M′] : C v C′

Where Φ : Γ v Γ′. Under translation this is

JΓK | • : JB′K ` JSK[J〈B � B′〉K[•]] v J〈C � C′〉K[JS′K[JΦK]] : JCK
JΓK | · ` JMK v J〈B � B′〉K[JM′K[JΦK]] : JBK

JΓK | · ` JS[M]K v J〈C � C′〉K[JS′[M′]K[JΦK]] : JCK

We follows easily using compositionality of the translation:

JS[M]K = JSK[JMK] (Compositionality)

v JSK[J〈B � B′〉K[JM′K[JΦK]]] (IH)

v J〈C � C′〉K[JS′K[JΦK][JM′K[JΦK]]] (IH)

= J〈C � C′〉K[JS′[M′]K[JΦK]] (Compositionality)

6. Variables: The GTT rule is

Γ1 v Γ′1, x v x′ : A v A′, Γ2 v Γ′2 ` x v x′ : A v A′

which under translation is

JΓ1K, x : JAK, JΓ2K ` J〈A′ � A〉K[x] v J〈A′ � A〉K[x] : JA′K

which is an instance of reflexivity.

7. Hole: The GTT rule is

Φ | • v • : B v B′ ` • v • : B v B′

which under translation is

JΓK | • : B′ ` J〈B � B′〉K[•] v J〈B � B′〉K[•] : B

which is an instance of reflexivity.



198 models

8. Error is bottom: The GTT axiom is

Φ ` f v M : B

where Φ : Γ v Γ′, so we need to show

JΓK ` f v J〈B � B〉K[JMK[JΦK]] : JBK

which is an instance of the error is bottom axiom of CBPV.

9. Error strictness: The GTT axiom is

Φ ` S[f] v f : B

where Φ : Γ v Γ′, which under translation is

JΓK ` JSK[f] v J〈B � B〉K[f] : JBK

By strictness of stacks in CBPV, both sides are equivalent to f,
so it follows by reflexivity.

10. UpCast-L: The GTT axiom is

x v x′ : A v A′ ` 〈A′ � A〉x v x′ : A′

which under translation is

x : JAK ` J〈A′ � A′〉K[J〈A′ � A〉K[x]] v J〈A′ � A〉K[x] : A′

Which follows by identity expansion and reflexivity.

11. UpCast-R: The GTT axiom is

x : A ` x v 〈A′ � A〉x : A v A′

which under translation is

x : JAK ` J〈A′ � A〉K[x] v J〈A′ � A〉K[J〈A� A〉K[x]] : JA′K

which follows by identity expansion and reflexivity.

12. DnCast-R: The GTT axiom is

• v • : B v B′ ` • v 〈B � B′〉 : B

Which under translation is

• : JB′K ` J〈B � B′〉K[•] v J〈B � B〉K[J〈B � B′〉K[•]] : JBK

Which follows by identity expansion and reflexivity.



7.2 elaborating gtt 199

13. DnCast-L: The GTT axiom is

• : B′ ` 〈B � B′〉• v • : B v B′

So under translation we need to show

• : JB′K ` J〈B � B′〉K[J〈B′ � B′〉K[•]] v J〈B � B′〉K• : JBK

Which follows immediately by reflexivity and the lemma that
identity casts are identities.

14. 0 elim, we do the term case, the value case is similar

〈0� 0〉[JVK] v JV ′K[JΦK]

absurd JVK v 〈B � B′〉absurd JV ′K[JΦK]

Immediate by 0η.

15. + intro, we do the inl case, the inr case is the same:

J〈A′1 � A1〉K[JVK] v JV ′K[JΦK]

J〈A′1 + A′2 � A1 + A2〉K[inl JVK] v inl JV ′K[JΦK]

Which follows easily:

J〈A′1 + A′2 � A1 + A2〉K[inl JVK] wv inl J〈A′1 � A1〉KJVK
(cast reduction)

v inl JV ′K[JΦK] (IH)

16. + elim, we do just the cases where the continuations are terms:

J〈A′1 + A′2 � A1 + A2〉K[JVK] v JV ′K[JΦK]
JM1K[JΨK] v JM′1K[JΦK][J〈A′1 � A1〉K[x1]/x′1]
JM2K[JΨK] v JM′2K[JΦK][J〈A′2 � A2〉K[x2]/x′2]

case JVK{x1.JM1K[JΨK] | x2.JM2K[JΨK]} v J〈B � B′〉K[case JVK′[JΦK]{x′1.JM′1K[JΦK] | x′2.JM′2K[JΦK]}]

case JVK{x1.JM1K[JΨK] | x2.JM2K[JΨK]}
v J〈B � B′〉K[case JVK{x1.JM′1K[JΦK][J〈A′1 � A1〉K[x1]/x′1] | x2.JM′2K[JΦK][J〈A′2 � A2〉K[x2]/x′2]}]

(IH)

wv case JVK (comm conv)

{x1.J〈B � B′〉K[JM′1K[JΦK][J〈A′1 � A1〉K[x1]/x′1]]

| x2.J〈B � B′〉K[JM′2K[JΦK][J〈A′2 � A2〉K[x2]/x′2]]}
wv case JVK (+β)

{x1.J〈B � B′〉K[case inl J〈A′1 � A1〉Kx1{x′1.JM′1K[JΦK] | x′2.JM′2K[JΦK]}]
| x2.J〈B � B′〉K[case inr J〈A′2 � A2〉Kx2{x′1.JM′1K[JΦK] | x′2.JM′2K[JΦK]}]}

wv case JVK (cast reduction)

{x1.J〈B � B′〉K[case J〈A′1 + A′2 � A1 + A2〉Kinl x1{x′1.JM′1K[JΦK] | x′2.JM′2K[JΦK]}]
| x2.J〈B � B′〉K[case J〈A′1 + A′2 � A1 + A2〉Kinr x2{x′1.JM′1K[JΦK] | x′2.JM′2K[JΦK]}]}

wv J〈B � B′〉K[case J〈A′1 + A′2 � A1 + A2〉K[JVK]{x′1.JM′1K[JΦK] | x′2.JM′2K[JΦK]}]
v J〈B � B′〉K[case JV′K[JΦK]{x′1.JM′1K[JΦK] | x′2.JM′2K[JΦK]}] (IH)



200 models

17. 1 intro:

J〈1� 1〉K[()] v ()

Immediate by cast reduction.

18. 1 elim (continuations are terms case):

J〈1� 1〉K[JVK] v JV ′K[JΦK]
JMK[JΨK] v J〈B � B′〉K[JM′K[JΦK]]

split JVK to ().JMK[JΨK] v 〈B � B′〉[split JVK′[JΦK] to ().JM′K[JΦK]]

which follows by identity expansion Lemma 134.

19. × intro:

J〈A′1 � A1〉KJV1K v JV ′1[JΦK]K
J〈A′2 � A2〉KJV2K v JV ′2[JΦK]K

J〈A′1 × A′2 � A1 × A2〉K[(JV1K, JV2K)] v (JV ′1[JΦK]K, JV ′2[JΦK]K)

We proceed:

J〈A′1 × A′2 � A1 × A2〉K[(JV1K, JV2K)]

wv (J〈A′1 � A1〉KJV1K, J〈A′2 � A2〉KJV2K)
(cast reduction)

v (JV ′1[JΦK]K, JV ′2[JΦK]K) (IH)

20. × elim: We show the case where the continuations are terms, the
value continuations are no different:

J〈A′1 × A′2 � A1 × A2〉K[JVK] v JV ′K[JΦK]
JMK[JΨK] v J〈B � B′〉K[JM′K[JΦK][J〈A′1 � A1〉K[x]/x′][J〈A′2 � A2〉K[y]/y′]]

let (x, y) = JVK; JMK[JΨK] v 〈B � B′〉[let (x′, y′) = JVK′[JΦK]; JM′K[JΦK]]

We proceed as follows:

let (x, y) = JVK; JMK[JΨK]

v let (x, y) = JVK; J〈B � B′〉K[JM′K[JΦK][J〈A′1 � A1〉K[x]/x′][J〈A′2 � A2〉K[y]/y′]]
(IH)

wv let (x, y) = JVK; (×β)

let (x′, y′) = (J〈A′1 � A1〉K[x], J〈A′2 � A2〉K[y]); J〈B � B′〉K[JM′K[JΦK]]

wv let (x, y) = JVK; (cast reduction)

let (x′, y′) = J〈A′1 × A′2 � A1 × A′2〉K[(x, y)]; J〈B � B′〉K[JM′K[JΦK]]

wv let (x′, y′) = J〈A′1 × A′2 � A1 × A2〉K[JVK]; J〈B � B′〉K[JM′K[JΦK]]
(×η)

v let (x′, y′) = JV′K[JΦK]; J〈B � B′〉K[JM′K[JΦK]] (IH)

wv J〈B � B′〉K[let (x′, y′) = JV′K[JΦK]; JM′K[JΦK]]
(commuting conversion)



7.2 elaborating gtt 201

21. U intro:

JMK v J〈B � B′〉K[JM′K[JΦK]]

J〈UB′ � UB〉K[thunk JMK] v thunk JM′K[JΦK]

We proceed as follows:

J〈UB′ � UB〉K[thunk JMK] v J〈UB′ � UB〉K[thunk J〈B � B′〉K[JM′K[JΦK]]]
(IH)

v thunk JM′K[JΦK]
(alt projection)

22. U elim:

J〈UB′ � UB〉K[JVK] v JV ′K[JΦK]

force JVK v J〈B � B′〉Kforce JV ′K[JΦK]

By hom-set formulation of adjunction Lemma 136.

23. > intro:

{} v J〈> � >〉K[{}]

Immediate by >η

24. & intro:

JM1K[JΨK] v J〈B1 � B′1〉K[JM′1K[JΦK]]
JM2K[JΨK] v J〈B2 � B′2〉K[JM′2K[JΦK]]

(JM1K[JΨK], JM2K[JΨK]) v J〈B1 & B2 � B′1 & B′2〉K[(JM′1K[JΦK], JM′2K[JΦK])]

We proceed as follows:

(JM1K[JΨK], JM2K[JΨK])

v (J〈B1 � B′1〉K[JM′1K[JΦK]], J〈B2 � B′2〉K[JM′2K[JΦK]])
(IH)

wv {π 7→ πJ〈B1 & B2 � B′1 & B′2〉K[(JM′1K[JΦK], JM′2K[JΦK])]
(cast reduction)

| π′ 7→ π′J〈B1 & B2 � B′1 & B′2〉K[(JM′1K[JΦK], JM′2K[JΦK])]}
wv J〈B1 & B2 � B′1 & B′2〉K[(JM′1K[JΦK], JM′2K[JΦK])] (&η)

25. & elim, we show the π case, π′ is symmetric:

JMK[JΨK] v J〈B1 & B2 � B′1 & B′2〉K[JM′K[JΦK]]

πJMK[JΨK] v J〈B1 � B′1〉K[πJM′K[JΦK]]

We proceed as follows:

πJMK[JΨK] v πJ〈B1 & B2 � B′1 & B′2〉K[JM′K[JΦK]] (IH)

wv J〈B1 � B′1〉K[πJM′K[JΦK]] (cast reduction)



202 models

26.

JMK[JΨK] v J〈B � B′〉K[JM′K[JΦK][J〈A′ � A〉Kx/x′]]

λx : A.JMK[JΨK] v J〈A→ B � A′ → B′〉K[λx′ : A′.JM′K[JΦK]]

We proceed as follows:

λx : A.JMK[JΨK]

v λx : A.J〈B � B′〉K[JM′K[JΦK][J〈A′ � A〉Kx/x′]] (IH)

wv λx : A.(J〈A→ B � A′ → B′〉K[λx′.JM′K[JΦK]]) x
(cast reduction)

wv J〈A→ B � A′ → B′〉K[λx′.JM′K[JΦK]] (→ η)

27. We need to show

JMK[JΨK] v J〈A→ B � A′ → B′〉K[JM′K[JΦK]]
J〈A′ � A〉K[JVK] v JV ′K[JΦK]

JMK[JΨK] JVK v J〈B � B′〉K[JM′K[JΦK] JV ′K[JΦK]]

We proceed:

JMK[JΨK] JVK

v (J〈A→ B � A′ → B′〉K[JM′K[JΦK]]) JVK (IH)

wv J〈B � B′〉K[JM′K[JΦK] (J〈A′ � A〉KJVK)]
(cast reduction)

v J〈B � B′〉K[JM′K[JΦK] JV ′K[JΦK]] (IH)

28. We need to show

J〈A′ � A〉K[JVK] v JV ′K[JΦK]

ret JVK v J〈FA � FA′〉K[ret JV ′K[JΦK]]

By hom-set definition of adjunction Lemma 136

29. We need to show

JMK[JΨK] v J〈FA � FA′〉K[JM′K[Φ]]

JNK v J〈B � B′〉K[JNK[Φ][J〈A′ � A〉Kx/x′]]

x ← JMK[JΨK]; JNK v J〈B � B′〉K[x′ ← JM′K[JΦK]; JN′K[JΦK]]

We proceed:

x ← JMK[JΨK]; JNK

v x ← J〈FA � FA′〉K[JM′K[Φ]]; J〈B � B′〉K[JNK[Φ][J〈A′ � A〉Kx/x′]]
(IH, congruence)

wv x ← J〈FA � FA′〉K[JM′K[Φ]];

x′ ← ret J〈A′ � A〉K[x]; J〈B � B′〉K[JNK[Φ]] (Fβ)

v x′ ← JM′K[Φ]; J〈B � B′〉K[JNK[Φ]] (Projection)

wv J〈B � B′〉K[x′ ← JM′K[Φ]; JNK[Φ]]

(commuting conversion)



7.3 complex value/stack elimination 203

A : := X | µX.A | UB | 0 | A1 + A2 | 1 | A1 × A2

B ::= Y | νY.B | FA | > | B1 & B2 | A→ B

Γ ::= · | Γ, x : A

∆ ::= · | • : B

V ::= x | rollµX.A V | inl V | inr V | () | (V1, V2) | thunk M

M ::= fB | let x = V; M | unroll V to roll x.M | rollνY.B M | unroll M | abort V |
case V{x1.M1 | x2.M2} | split V to ().M | let (x, y) = V; M | force V |
ret V | x ← M; N | λx : A.M | M V | {} | (M1, M2) | πM | π′M

S ::= • | x ← S; M | S V | πS | π′S | unrollνY.B S

Figure 7.7: Operational CBPV Syntax

As a corollary, we have the following conservativity result, which
says that the homogeneous term precisions in GTT are sound and
complete for inequalities in CBPV*.

Corollary 137 (Conservativity). If Γ | ∆ ` E, E′ : T are two terms of the
same type in the intersection of GTT and CBPV*, then Γ | ∆ ` E v E′ : T
is provable in GTT iff it is provable in CBPV*.

Proof. The reverse direction holds because CBPV* is a syntactic subset
of GTT. The forward direction holds by axiomatic graduality and the
fact that identity casts are identities.

7.3 complex value/stack elimination

Next, to bridge the gap between the semantic notion of complex
value and stack with the more rigid operational notion, we perform
a complexity-elimination pass. This translates a computation with
complex values in it to an equivalent computation without complex
values: i.e., all pattern matches take place in computations, rather
than in values, and translates a term precision derivation that uses
complex stacks to one that uses only “simple” stacks without pattern-
matching and computation introduction forms. Stacks do not appear
anywhere in the grammar of terms, but they are used in the equational
theory (computation η rules and error strictness). This translation clar-
ifies the behavioral meaning of complex values and stacks, following
Führmann [27] and Munch-Maccagnoni [53], and therefore of upcasts
and downcasts.

The syntax of operational CBPV is as in Figure 5.1 (unshaded), but
with recursive types added as in §7.1, and with values and stacks
restricted as in Figure 7.7.

In CBPV, values include only introduction forms, as usual for values
in operational semantics, and CBPV stacks consist only of elimination



204 models

forms for computation types (the syntax of CBPV enforces an A-
normal form, where only values can be pattern-matched on, so case

and split are not evaluation contexts in the operational semantics).
Levy [45] translates CBPV* to CBPV, but not does not prove the

inequality preservation that we require here, so we give an alternative
translation for which this property is easy to verify. We translate both
complex values and complex stacks to fully general computations, so
that computation pattern-matching can replace the pattern-matching
in complex values/stacks. For example, for a closed value, we could
“evaluate away” the complexity and get a closed simple value (if
we don’t use U), but for open terms, evaluation will get “stuck” if
we pattern match on a variable—so not every complex value can be
translated to a value in CBPV. More formally, we translate a CBPV*
complex value V : A to a CBPV computation V† : FA that in CBPV*
is equivalent to ret V. Similarly, we translate a CBPV* complex stack
S with hole • : B to a CBPV computation S† with a free variable
z : UB such that in CBPV*, S† wv S[force z]. Computations M : B
are translated to computations M† with the same type.

The de-complexification procedure is defined as follows.

Definition 138 (De-complexification). We define

•† = force z

x† = ret x

(ret V)† = x ← V†; ret x

(M V)† = x ← V†; M† x

(force V)† = x ← V†; force x

(absurd V)† = x ← V†; absurd x

(case V{x1.E1 | x2.E2})† = x ← V†; case x{x1.E1
† | x2.E2

†}
(split V to ().E)† = w← V; split w to ().E†

(let (x, y) = V; E)† = w← V; let (x, y) = w; E†

(unroll V to roll x.E)† = y← V†; unroll y to roll x.E†

(inl V)† = x ← V†; ret inl x

(inr V)† = x ← V†; ret inr x

()† = ret ()

(V1, V2)
† = x1 ← V1

†; x2 ← V2
†; ret (x1, x2)

(thunk M)† = ret thunk M†

(roll V)† = x ← V†; roll x

The translation is type-preserving and the identity from CBPV*’s
point of view

Lemma 139 (De-complexification De-complexifies). For any CBPV*
term Γ | ∆ ` E : T, E† is a term of CBPV satisfying Γ, ∆† ` E† : T† where
·† = · (• : B)† = z : UB, B† = B, A† = FA.



7.3 complex value/stack elimination 205

Γ, x : A, Γ′ ` x v x : A Γ | • : B ` • v • : B Γ ` f v f : B

Γ ` V v V′ : A Γ, x : A ` M v M′ : B
Γ ` let x = V; M v let x = V′; M′ : B

Γ ` V v V′ : 0

Γ ` abort V v abort V′ : B

Γ ` V v V′ : A1

Γ ` inl V v inl V′ : A1 + A2

Γ ` V v V′ : A2

Γ ` inr V v inr V′ : A1 + A2

Γ ` V v V′ : A1 + A2 Γ, x1 : A1 ` M1 v M′1 : B Γ, x2 : A2 ` M2 v M′2 : B
Γ ` case V{x1.M1 | x2.M2} v case V′{x1.M′1 | x2.M′2} : B

Γ ` () v () : 1
Γ ` V1 v V′1 : A1 Γ ` V2 v V′2 : A2

Γ ` (V1, V2) v (V′1, V′2) : A1 × A2

Γ ` V v V′ : A1 × A2 Γ, x : A1, y : A2 ` M v M′ : B
Γ ` let (x, y) = V; M v let (x, y) = V′; M′ : B

Γ ` V v V′ : A[µX.A/X]

Γ ` rollµX.A V v rollµX.A V′ : µX.A

Γ ` V v V′ : µX.A Γ, x : A[µX.A/X] ` M v M′ : B
Γ ` unroll V to roll x.M v unroll V′ to roll x.M′ : B

Γ ` M v M′ : B
Γ ` thunk M v thunk M′ : UB

Γ ` V v V′ : UB
Γ ` force V v force V′ : B

Γ ` V v V′ : A
Γ ` ret V v ret V′ : FA

Γ ` M v M′ : FA Γ, x : A ` N v N′ : B
Γ ` x ← M; N v x ← M′; N′ : B

Γ, x : A ` M v M′ : B
Γ ` λx : A.M v λx : A.M′ : A→ B

Γ ` M v M′ : A→ B Γ ` V v V′ : A
Γ ` M V v M′ V′ : B

Γ ` M1 v M′1 : B1 Γ ` M2 v M′2 : B2

Γ ` (M1, M2) v (M′1, M′2) : B1 & B2

Γ ` M v M′ : B1 & B2

Γ ` πM v πM′ : B1

Γ ` M v M′ : B1 & B2

Γ ` π′M v π′M′ : B2

Γ ` M v M′ : B[νY.B/Y]
Γ ` rollνY.B M v rollνY.B M′ : νY.B

Γ ` M v M′ : νY.B
Γ ` unroll M v unroll M′ : B[νY.B/Y]

Figure 7.8: CBPV Inequational Theory (Congruence Rules)



206 models

case inl V{x1.M1 | x2.M2} wv M1[V/x1]

case inr V{x1.M1 | x2.M2} wv M2[V/x2]

Γ, x : A1 + A2 ` M : B
Γ, x : A1 + A2 ` M wv case x{x1.M[inl x1/x] | x2.M[inr x2/x]} : B

let (x1, x2) = (V1, V2); M wv M[V1/x1, V2/x2]

Γ, x : A1 × A2 ` M : B
Γ, x : A1 × A2 ` M wv let (x1, x2) = x; M[(x1, x2)/x] : B

Γ, x : 1 ` M : B
Γ, x : 1 ` M wv M[()/x] : B

unroll rollA V to roll x.M wv M[V/x]

Γ, x : µX.A ` M : B
Γ, x : µX.A ` M wv unroll x to roll y.M[rollµX.A y/x] : B

force thunk M wv M
Γ ` V : UB

Γ ` V wv thunk force V : UB

let x = V; M wv M[V/x] x ← ret V; M wv M[V/x]

Γ | • : FA ` • wv x ← •; ret x : FA (λx : A.M)V wv M[V/x]

Γ ` M : A→ B
Γ ` M wv λx : A.M x : A→ B

π(M, M′) wv M π′(M, M′) wv M′

Γ ` M : B1 & B2

Γ ` M wv (πM, π′M) : B1 & B2

Γ ` M : >
Γ ` M wv {} : >

unroll rollB M wv M
Γ ` M : νY.B

Γ ` M wv rollνY.B unroll M : νY.B

Figure 7.9: CBPV β, η rules



7.3 complex value/stack elimination 207

Γ ` f v M : B Γ ` S[f] wv f : B Γ ` M v M : B Γ ` V v V : A

Γ | B ` S v S : B′
Γ ` M1 v M2 : B Γ ` M2 v M3 : B

Γ ` M1 v M3 : B

Γ ` V1 v V2 : A Γ ` V2 v V3 : A
Γ ` V1 v V3 : A

Γ | B ` S1 v S2 : B′ Γ | B ` S2 v S3 : B′

Γ | B ` S1 v S3 : B′

Γ, x : A ` M1 v M2 : B Γ ` V1 v V2 : A
Γ ` M1[V1/x] v M2[V2/x] : B

Γ, x : A ` V′1 v V′2 : A′ Γ ` V1 v V2 : A
Γ ` V′1[V1/x] v V′2[V2/x] : A′

Γ, x : A | B ` S1 v S2 : B′ Γ ` V1 v V2 : A
Γ | B ` S1[V1/x] v S2[V2/x] : B′

Γ | B ` S1 v S2 : B′ Γ ` M1 v M2 : B
Γ ` S1[M1] v S2[M2] : B′

Γ | B′ ` S′1 v S′2 : B′′ Γ | B ` S1 v S2 : B′

Γ | B ` S′1[S1] v S′2[S2] : B′′

Figure 7.10: CBPV logical and error rules



208 models

Lemma 140 (De-complexification is Identity in CBPV*). Considering
CBPV as a subset of CBPV* we have

1. If Γ | · ` M : B then M wv M†.

2. If Γ | ∆ ` S : B then S[force z] wv S†.

3. If Γ ` V : A then ret V wv V†.

Furthermore, if M, V, S are in CBPV, the proof holds in CBPV.

Finally, we need to show that the translation preserves inequalities
(E† v E′† if E v E′), but because complex values and stacks satisfy
more equations than arbitrary computations in the types of their
translations do, we need to isolate the special “purity” property that
their translations have. We show that complex values are translated
to computations that satisfy thunkability [53], which intuitively means
M should have no observable effects, and so can be freely duplicated
or discarded like a value. In the inequational theory of CBPV, this is
defined by saying that running M to a value and then duplicating its
value is the same as running M every time we need its value:

Definition 141 (Thunkable Computation). A computation Γ ` M : FA
is thunkable if

Γ ` ret (thunk M) wv x ← M; ret (thunk (ret x)) : FUFA

Dually, we show that complex stacks are translated to computations
that satisfy (semantic) linearity [53], where intuitively a computation
M with a free variable x : UB is linear in x if M behaves as if when it
is forced, the first thing it does is forces x, and that is the only time it
uses x. This is described in the CBPV inequational theory as follows:
if we have a thunk z : UFUB, then either we can force it now and pass
the result to M as x, or we can just run M with a thunk that will force
z each time M is forced—but if M forces x exactly once, first, these
two are the same.

Definition 142 (Linear Term). A term Γ, x : UB ` M : C is linear in x if

Γ, z : UFUB ` x ← force z; M wv M[thunk (x ← (force z); force x)]

Thunkability/linearity of the translations of complex values/stacks
are used to prove the preservation of the η principles for positive
types and the strictness of complex stacks with respect to errors under
decomplexification.

We need a few lemmas about thunkables and linears to prove that
complex values become thunkable and complex stacks become linear.
Many of them correspond to program optimizations that are valid for
thunkable/linear terms and therefore apply to upcasts and downcasts.

First, the following lemma is useful for optimizing programs with
thunkable subterms. Intuitively, since a thunkable has “no effects”



7.3 complex value/stack elimination 209

it can be reordered past any other effectful binding. Furhmann [27]
calls a morphism that has this property central (after the center of a
group, which is those elements that commute with every element of
the whole group).

Lemma 143 (Thunkables are Central). If Γ ` M : FA is thunkable and
Γ ` N : FA′ and Γ, x : A, y : A′ ` N′ : B, then

x ← M; y← N; N′ wv y← N; x ← M; N′

Proof.

x ← M; y← N; N′

wv x ← M; y← N; x ← force thunk ret x; N′ (Uβ, Fβ)

wv x ← M; w← ret thunk ret x; y← N; x ← force w; N′

(Fβ)

wv w← (x ← M; ret thunk ret x); y← N; x ← force w; N′

(Fη)

wv w← ret thunk M; y← N; x ← force w; N′

(M thunkable)

wv y← N; x ← force thunk M; N′ (Fβ)

wv y← N; x ← M; N′ (Uβ)

Next, we show thunkables are closed under composition and that
return of a value is always thunkable. This allows us to easily build
up bigger thunkables from smaller ones.

Lemma 144 (Thunkables compose). If Γ ` M : FA and Γ, x : A ` N :
FA′ are thunkable, then

x ← M; N

is thunkable.



210 models

Proof.

y← (x ← M; N); ret thunk ret y

wv x ← M; y← N; ret thunk ret y (Fη)

wv x ← M; ret thunk N (N thunkable)

wv x ← M; ret thunk (x ← ret x; N) (Fβ)

wv x ← M; w← ret thunk ret x; ret thunk (x ← force w; N)

(Fβ, Uβ)

wv w← (x ← M; ret thunk ret x); ret thunk (x ← force w; N)

(Fη)

wv w← ret thunk M; ret thunk (x ← force w; N)

(M thunkable)

wv ret thunk (x ← force thunk M; N) (Fβ)

wv ret thunk (x ← M; N) (Uβ)

Lemma 145 (Return is Thunkable). If Γ ` V : A then ret V is thunkable.

Proof. By Fβ:

x ← ret V; ret thunk ret x wv ret thunk ret V

And we can then prove the desired property for complex values:

Lemma 146 (Complex Values Simplify to Thunkable Terms). If Γ ` V :
A is a (possibly) complex value, then Γ ` V† : FA is thunkable.

Proof. Introduction forms follow from return is thunkable and thunk-
ables compose. For elimination forms it is sufficient to show that when
the branches of pattern matching are thunkable, the pattern match is
thunkable.

1. x: We need to show x† = ret x is thunkable, which we proved
as a lemma above.

2. 0 elim, we need to show

y← absurd V; ret thunk ret y wv ret thunk absurd V

but by η0 both sides are equivalent to absurd V.

3. + elim, we need to show

ret thunk (case V{x1.M1 | x2.M2}) wv y← (case V{x1.M1 | x2.M2}); ret thunk ret y



7.3 complex value/stack elimination 211

ret thunk (case V{x1.M1 | x2.M2})
wv case V (+η)

{x1.ret thunk (case inl x1{x1.M1 | x2.M2})
| x2.ret thunk (case inr x2{x1.M1 | x2.M2})}

wv case V (+β)

{x1.ret thunk M1

| x2.ret thunk M2}
wv case V (M1, M2 thunkable)

{x1.y← M1; ret thunk ret y

| x2.y← M2; ret thunk ret y}
wv y← (case V{x1.M1 | x2.M2}); ret thunk ret y

(commuting conversion)

4. × elim

ret thunk (let (x, y) = V; M)

wv let (x, y) = V; ret thunk let (x, y) = (x, y); M
(×η)

wv let (x, y) = V; ret thunk M (×β)

wv let (x, y) = V; z← M; ret thunk ret z
(M thunkable)

wv z← (let (x, y) = V; M); ret thunk ret z
(commuting conversion)

5. 1 elim

ret thunk (split V to ().xyM)

wv split V to ().ret thunk split () to ().M (1η)

wv split V to ().ret thunk M (1β)

wv split V to ().z← M; ret thunk ret z
(M thunkable)

wv z← (split V to ().M); ret thunk ret z
(commuting conversion)



212 models

6. µ elim

ret thunk (unroll V to roll x.M)

wv unroll V to roll x.ret thunk unroll roll x to roll x.M
(µη)

wv unroll V to roll x.ret thunk M (µβ)

wv unroll V to roll x.y← M; ret thunk ret y
(M thunkable)

wv y← (unroll V to roll x.M); ret thunk ret y
(commuting conversion)

Dually, we have that a stack out of a force is linear and that linears
are closed under composition, so we can easily build up bigger linear
morphisms from smaller ones.

Lemma 147 (Force to a stack is Linear). If Γ | • : B ` S : C, then
Γ, x : UB ` S[force x] : B is linear in x.

Proof.

S[force thunk (x ← force z; force x)] wv S[(x ← force z; force x)]
(Uβ)

wv x ← force z; S[force x]
(Fη)

Lemma 148 (Linear Terms Compose). If Γ, x : UB ` M : B′ is linear in
x and Γ, y : B′ ` N : B′′ is linear in y, then Γ, x : UB ` N[thunk M/y] :

Proof.

N[thunk M/y][thunk (x ← force z; force x)/x]

= N[thunk (M[thunk (x ← force z; force x)])/y]

wv N[thunk (x ← force z; M)/y] (M linear)

wv N[thunk (x ← force z; force thunk M)/y] (Uβ)

wv N[thunk (x ← force z; y← ret thunk M; force y)/y]
(Fβ)

wv N[thunk (y← (x ← force z; ret thunk M); force y)/y]
(Fη)

wv N[thunk (y← force w; force y)/y][thunk (x ← force z; ret thunk M)/w]

(Uβ)

wv (y← force w; N)[thunk (x ← force z; ret thunk M)/w]

(N linear)

wv (y← (x ← force z; ret thunk M); N) (Uβ)

wv (x ← force z; y← ret thunk M; N (Fη)

wv x ← force z; N[thunk M/y]



7.3 complex value/stack elimination 213

Lemma 149 (Complex Stacks Simplify to Linear Terms). If Γ | • : B `
S : C is a (possibly) complex stack, then Γ, z : UB ` (S)† : C is linear in z.

Proof. There are 4 classes of rules for complex stacks: those that are
rules for simple stacks (•, computation type elimination forms), in-
troduction rules for negative computation types where the subterms
are complex stacks, elimination of positive value types where the
continuations are complex stacks and finally application to a complex
value.

The rules for simple stacks are easy: they follow immediately from
the fact that forcing to a stack is linear and that complex stacks
compose. For the negative introduction forms, we have to show that
binding commutes with introduction forms. For pattern matching
forms, we just need commuting conversions. For function application,
we use the lemma that binding a thunkable in a linear term is linear.

1. •: This is just saying that force z is linear, which we showed
above.

2. → elim We need to show, assuming that Γ, x : B ` M : C is linear
in x and Γ ` N : FA is thunkable, that

y← N; M y

is linear in x.

y← N; (M[thunk (x ← force z; force x)/x]) y

wv y← N; (x ← force z; M) y (M linear in x)

wv y← N; x ← force z; M y (Fη)

wv x ← force z; y← N; M y (thunkables are central)

3. → intro

λy : A.M[thunk (x ← force z; force x)/x]

wv λy : A.x ← force z; M (M is linear)

wv λy : A.x ← force z; (λy : A.M) y (→ β)

wv λy : A.(x ← force z; (λy : A.M)) y (Fη)

wv x ← force z; (λy : A.M) (→ η)

4. > intro We need to show

w← force z; {} wv {}

Which is immediate by >η



214 models

5. & intro

{π 7→ M[thunk (x ← force z; force x)]/x

| π′ 7→ N[thunk (x ← force z; force x)/x]}
wv {π 7→ x ← force z; M (M, N linear)

| π′ 7→ x ← force z; N}
wv {π 7→ x ← force z; π(M, N) (&β)

| π′ 7→ x ← force z; π′(M, N)}
wv {π 7→ π(x ← force z; (M, N)) (Fη)

| π′ 7→ π′(x ← force z; (M, N))}
wv x ← force z; (M, N) (&η)

6. ν intro

roll M[thunk (x ← force z; force x)/x]

wv roll (x ← force z; M) (M is linear)

wv roll (x ← force z; unroll roll M) (νβ)

wv roll unroll (x ← force z; roll M) (Fη)

wv x ← force z; (roll M) (νη)

7. F elim: Assume Γ, x : A ` M : FA′ and Γ, y : A′ ` N : B, then
we need to show

y← M; N

is linear in M.

y← M[thunk (x ← force z; force x)/x]; N

wv y← (x ← force z; M); N (M is linear)

wv x ← force z; y← M; N (Fη)

8. 0 elim: We want to show Γ, x : UB ` absurd V : C is linear in x,
which means showing:

absurd V wv x ← force z; absurd V

which follows from 0η

9. + elim: Assuming Γ, x : UB, y1 : A1 ` M1 : C and Γ, x : UB, y2 :
A2 ` M2 : C are linear in x, and Γ ` V : A1 + A2, we need to
show

case V{y1.M1 | y2.M2}



7.3 complex value/stack elimination 215

is linear in x.

case V

{y1.M1[thunk (x ← force z; force x)/x]

| y2.M2[thunk (x ← force z; force x)/x]}
wv case V{y1.x ← force z; M1 | y2.x ← force z; M2}

(M1, M2 linear)

wv x ← force z; case V{y1.M1 | y2.M2}

10. × elim: Assuming Γ, x : UB, y1 : A1, y2 : A2 ` M : B is linear in
x and Γ ` V : A1 × A2, we need to show

let (y1, y2) = V; M

is linear in x.

let (y1, y2) = V; M[[thunk (x ← force z; force x)/x]]

wv let (y1, y2) = V; x ← force z; M (M linear)

wv x ← force z; let (y1, y2) = V; M (comm. conv)

11. µ elim: Assuming Γ, x : UB, y : A[µX.A/X] ` M : C is linear in
x and Γ ` V : µX.A, we need to show

unroll V to roll y.M

is linear in x.

unroll V to roll y.M[thunk (x ← force z; force x)/x]

wv unroll V to roll y.x ← force z; M (M linear)

wv x ← force z; unroll V to roll y.M
(commuting conversion)

Composing this with the previous translation from GTT to CBPV*
shows that GTT value type upcasts are thunkable and computation type
downcasts are linear.

Since the translation takes values and stacks to terms, it cannot
preserve substitution up to equality. Rather, we get the following,
weaker notion that says that the translation of a syntactic substitution
is equivalent to an effectful composition.

Lemma 150 (Compositionality of De-complexification). 1. If Γ, x :
A | ∆ ` E : T and Γ ` V : A are complex terms, then

(E[V/x])† wv x ← V†; E†



216 models

2. If Γ | • : B ` S : C and Γ | ∆ ` M : B, then

(S[M])† wv S†[thunk M†/z]

Proof. 1. First, note that every occurrence of a variable in E† is of
the form ret x for some variable x. This means we can define
substitution of a term for a variable in a simplified term by
defining E†[N/ret x] to replace every ret x : FA with N : FA.
Then it is an easy observation that simplification is compositional
on the nose with respect to this notion of substitution:

(E[V/x])† = E†[V†/ret x]

Next by repeated invocation of Uβ,

E†[V†/ret x] wv E†[force thunk V†/ret x]

Then we can lift the definition of the thunk to the top-level by
Fβ:

E†[force thunk V†/ret x] wv thunk ← ret ; V†wE†[force w/ret x]

Then because V† is thunkable, we can bind it at the top-level and
reduce an administrative redex away to get our desired result:

thunk ← ret ; V†wE†[force w/ret x]

wv x ← V†; w← ret thunk ret x; E†[force w/ret x]
(V thunkable)

wv x ← V†; E†[force thunk ret x/ret x] (Fβ)

wv x ← V†; E†[ret x/ret x] (Uβ)

wv x ← V†; E†

2. Note that every occurrence of z in S† is of the form force z. This
means we can define substitution of a term M : B for force z in
S† by replacing force z with M. It is an easy observation that
simplification is compositional on the nose with respect to this
notion of substitution:

(S[M/•])† = S†[M†/force z]

Then by repeated Uβ, we can replace M† with a forced thunk:

S†[M†/force z] wv S†[force thunk M†/force z]

which since we are now substituting a force for a force is the
same as substituting the thunk for the variable:

S†[force thunk M†/force z] wv S†[thunk M†/z]



7.3 complex value/stack elimination 217

Finally we conclude with our desired theorem, that de-complexification
preserves the precision relation.

Theorem 151 (De-complexification Preserves Precision). If Γ | ∆ `
E v E′ : T then Γ, ∆† ` E† v E′† : T†

Proof. 1. Reflexivity is translated to reflexivity.

2. Transitivity is translated to transitivity.

3. Compatibility rules are translated to compatibility rules.

4. Substitution of a Value

Γ, x : A, ∆† ` E† v E′† : T† Γ ` V† v V ′† : FA

Γ, ∆† ` E[V/x]† v E′[V ′/x]† : T†

By the compositionality lemma, it is sufficient to show:

x ← V†; E† v x ← V ′†; E′

which follows by bind compatibility.

5. Plugging a term into a hole:

Γ, z : UC ` S† v S′† : B Γ, ∆† ` M† v M′† : C

Γ, ∆† ` S[M]† v S′[M′]† : B

By compositionality, it is sufficient to show

S†[thunk M†/z] v S′†[thunk M′†/z]

which follows by thunk compatibility and the simple substitution
rule.

6. Stack strictness We need to show for S a complex stack, that

(S[f])† wv f

By stack compositionality we know

(S[f])† wv S†[thunk f/z]

JSK[thunk f/z] wv S†[thunk (y← f;f)/z]
(Stacks preserve f)

wv y← f; S†[thunk f/z]
(S† is linear in z)

wv f (Stacks preserve f)

7. 1β By compositionality it is sufficient to show

x ← ret (); split x to ().E† wv x ← ret (); E†

which follows by Fβ, 1β.



218 models

8. 1η We need to show for Γ, x : 1 | ∆ ` E : T

E† wv x ← ret x; split x to ().(E[()/x])†

after a Fβ, it is sufficient using 1η to prove:

(E[()/x])† wv E†[()/x]

which follows by compositionality and Fβ:

(E[()/x])† wv x ← ret (); E† wv E†[()/x]

9. ×β By compositionality it is sufficient to show

x ← (x1 ← V1
†; x2 ← V2

†; ret (x1, x2)); let (x1, x2) = x; E†

wv x1 ← V1
†; x2 ← V2

†; E†

which follows by Fη, Fβ,×β.

10. ×η We need to show for Γ, x : A1 × A2 | ∆ ` E : T that

E† wv x ← ret x; let (x1, x2) = x; (E[(x1, x2)/x])†

by Fβ,×η it is sufficient to show

E[(x1, x2)/x]† wv E†[(x1, x2)/x]

Which follows by compositionality:

E[(x1, x2)/x]†

wv x1 ← x1; x2 ← x2; x ← ret (x1, x2); E†

(compositionality)

wv x ← ret (x1, x2); E† (Fβ)

wv E†[(x1, x2)/x]

11. 0η We need to show for any Γ, x : 0 | ∆ ` E : T that

E† wv x ← ret x; absurd x

which follows by 0η

12. +β Without loss of generality, we do the inl case By composi-
tionality it is sufficient to show

x ← (x ← V†; inl x); case x{x1.E†
1 | x2.E†

2} wv E1[V/x1]
†

which holds by Fη, Fβ,+β



7.3 complex value/stack elimination 219

13. +η We need to show for any Γ, x : A1 + A2 | ∆ ` E : T that

E† wv x ← ret x; case x{x1.(E[inl x1/x])† | x2.(E[inl x2/x])†}

E†

wv case x{x1.E†[inl x1/x] | x2.E†[inl x2/x]} (+η)

wv case x{x1.x ← ret inl x1; E† | x2.x ← ret inl x2; E†}
(Fβ)

wv case x{x1.E[inl x1]/x† | x2.E[inl x2]/x†}
(compositionality)

wv x ← ret x; case x{x1.E[inl x1]/x† | x2.E[inl x2]/x†}
(Fβ)

14. µβ By compositionality it is sufficient to show

x ← (y← V†; ret roll y); unroll x to roll y.E

wv y← V†; E†

which follows by Fη, Fβ, µβ.

15. µη We need to show for Γ, x : µX.A | ∆ ` E : T that

E† wv x ← ret x; unroll x to roll y.(E[roll y/x])†

by Fβ,×η it is sufficient to show

E[roll y/x]† wv E†[roll y/x]

Which follows by compositionality:

E[roll y/x]†

wv y← ret y; x ← ret roll y; E† (compositionality)

wv x ← ret roll y; E† (Fβ)

wv E†[roll y/x] (Fβ)

16. Uβ We need to show

x ← ret M†; force x wv M†

which follows by Fβ, Uβ

17. Uη We need to show for any Γ ` V : UB that

V† wv ret thunk (x ← V†; force x)

By compositionality it is sufficient to show

V† wv x ← V†; ret thunk (x ← ret x; force x)



220 models

which follows by Uη and some simple reductions:

x ← V†; ret thunk (x ← ret x; force x)

wv x ← V†; ret thunk force x
(Fβ)

wv x ← V†; ret x
(Uη)

wv V† (Fη)

18. → β By compositionality it is sufficient to show

x ← V†; (λx : A.M†) x wv x ← V†; M†

which follows by→ β

19. → η We need to show

z : U(A→ B) ` force z wv λx : A.x ← ret x; (force z) x

which follows by Fβ,→ η

20. >η We need to show

z : U> ` force z wv {}

which is exactly >η.

21. &β Immediate by simple &β.

22. &η We need to show

z : U(B1 & B2) ` force z wv (πforce z, π′force z)

which is exactly &η

23. νβ Immediate by simple νβ

24. νη We need to show

z : U(νY.B) ` force z wv roll unroll z

which is exactly νη

25. Fβ We need to show

x ← V†; M† wv M[V/x]†

which is exactly the compositionality lemma.

26. Fη We need to show

z : U(FA)force z ` x ← force z; x ← ret x; ret x

which follows by Fβ, Fη



7.4 operational model of gtt 221

As a corollary, we also get the following conservativity result that
says that precision in CBPV with complex values and stacks coincides
with CBPV without them. This shows that complex values and stacks
can be viewed as simply a convenient way to manipulate thunkable
and linear terms and the calculus is not fundamentally different from
CBPV.

Corollary 152 (Complex CBPV is Conservative over CBPV). If M, M′

are terms in CBPV and M v M′ is provable in CBPV* then M v M′ is
provable in CBPV.

Proof. Because de-complexification preserves precision, M† v M′† in
simple CBPV. Then it follows because de-complexification is equivalent
to identity (in CBPV):

M wv M† v M′† wv M′

7.4 operational model of gtt

In this section, we establish a model of our CBPV inequational theory
using a notion of observational approximation based on the CBPV
operational semantics. By composition with the axiomatic gradual-
ity theorem, this establishes the operational graduality theorem, i.e., a
theorem analogous to the dynamic gradual guarantee [75].

7.4.1 Call-by-Push-Value Operational Semantics

We use a small-step operational semantics for CBPV in Figure 7.11.
This is morally the same as in Levy [45], but we present stacks in a

manner similar to Hieb-Felleisen style evaluation contexts(rather than
as an explicit stack machine with stack frames). We also make the step
relation count unrollings of a recursive or corecursive type, for the
step-indexed logical relation later. The operational semantics is only
defined for terms of type · ` M : F(1 + 1), which we take as the type
of whole programs.

We can then observe the following standard operational properties.
(We write M 7→ N with no index when the index is irrelevant.)

Lemma 153 (Reduction is Deterministic). If M 7→ M1 and M 7→ M2,
then M1 = M2.

Lemma 154 (Subject Reduction). If · ` M : FA and M 7→ M′ then
· ` M′ : FA.

Lemma 155 (Progress). If · ` M : FA then one of the following holds:

M = f M = ret VwithV : A ∃M′. M 7→ M′



222 models

S[f] 7→0 f
S[case inl V{x1.M1 | x2.M2}] 7→0 S[M1[V/x1]]

S[case inr V{x1.M1 | x2.M2}] 7→0 S[M2[V/x2]]

S[let (x1, x2) = (V1, V2); M] 7→0 S[M[V1/x1, V2/x2]]

S[unroll rollA V to roll x.M] 7→1 S[M[V/x]]

S[force thunk M] 7→0 S[M]

S[let x = V; M] 7→0 S[M[V/x]]

S[x ← ret V; M] 7→0 S[M[V/x]]

S[(λx : A.M)V] 7→0 S[M[V/x]]

S[π(M, M′)] 7→0 S[M]

S[π′(M, M′)] 7→0 S[M′]

S[unroll rollB M] 7→1 S[M]

M 7→0 M

M1 7→i M2 M2 7→j M3

M1 7→i+j M3

Figure 7.11: CBPV Operational Semantics

The standard progress-and-preservation properties allow us to de-
fine the “final result” of a computation as follows:

Corollary 156 (Possible Results of Computation). For any · ` M : F2,
one of the following is true:

M ⇑ M ⇓ f M ⇓ ret true M ⇓ ret false

Proof. We define M ⇑ to hold when if M 7→i N then there exists
N′ with N 7→ N′. For the terminating results, we define M ⇓ R to
hold if there exists some i with M 7→i R. Then we prove the result
by coinduction on execution traces. If M ∈ {f, ret true, ret false}
then we are done, otherwise by progress, M 7→ M′, so we need only
observe that each of the cases above is preserved by 7→.

Definition 157 (Results). The possible results of a computation are
Ω,f, ret true and ret false. We denote a result by R, and define a
function result which takes a program · ` M : F2, and returns its end-
behavior, i.e., result(M) = Ω if M ⇑ and otherwise M ⇓ result(M).

7.4.2 Observational Equivalence and Approximation

Next, we define observational equivalence and approximation in CBPV.
The (standard) definition of observational equivalence is that we con-
sider two terms (or values) to be equivalent when replacing one



7.4 operational model of gtt 223

CV ::= [·] | rollµX.A CV | inl CV | inr CV | (CV , V) | (V, CV) | thunk CM

CM ::= [·] | let x = CV ; M | let x = V; CM | unroll CV to roll x.M

| unroll V to roll x.CM | rollνY.B CM | unroll CM | abort CV

| case CV{x1.M1 | x2.M2} | case V{x1.CM | x2.M2} | case V{x1.M1 | x2.CM}
| split CV to ().M | split V to ().CM | let (x, y) = CV ; M

| let (x, y) = V; CM | force CV | ret CV | x ← CM; N

| x ← M; CM | λx : A.CM | CM V | M CV

| (CM, M2) | (M1, CM) | πCM | π′CM

CS ::= πCS | π′CS | S CV | CS V | x ← CS; M | x ← S; CM

Figure 7.12: CBPV Contexts

with the other in any program text produces the same overall re-
sulting computation. Define a context C to be a term/value/stack
with a single [·] as some subterm/value/stack, and define a typ-
ing C : (Γ ` B) ⇒ (Γ′ ` B′) to hold when for any Γ ` M : B,
Γ′ ` C[M] : B′ (and similarly for values/stacks). Using contexts, we
can lift any relation on results to relations on open terms, values and
stacks.

Definition 158 (Contextual Lifting). Given any relation ∼ ⊆ Result2,
we can define its observational lift ∼ctx to be the typed relation defined
by

Γ | ∆ � E ∼ctx E′ ∈ T = ∀C : (Γ | ∆ ` T)⇒ (· ` F2). result(C[E]) ∼ result(C[E′])

The contextual lifting ∼ctx inherits much structure of the original
relation ∼ as the following lemma shows. This justifies calling ∼ctx a
contextual preorder when ∼ is a preorder (reflexive and transitive) and
similarly a contextual equivalence when ∼ is an equivalence (preorder
and symmetric).

Definition 159 (Contextual Preorder, Equivalence). If ∼ is reflexive,
symmetric or transitive, then for each typing, ∼ctx is reflexive, sym-
metric or transitive as well, respectively.

In the remainder of the paper we work only with relations that are
at least preorders so we write E rather than ∼.

The most famous use of lifting is for observational equivalence,
which is the lifting of equality of results (=ctx), and we will show
that wv proofs in GTT imply observational equivalences. However, as
shown in New and Ahmed [56], the graduality property is defined in
terms of an observational approximation relation v that places f as the
least element, and every other element as a maximal element. Note that
this is not the standard notion of observational approximation, which



224 models

Diverge Approx. �

ret false ret true f

Ω

Error Approx. v

ret false ret true Ω

f

Error Approx. up to
left-divergence �v

ret false ret true

f, Ω

Error Approx. up to
right-divergence v�

Ω

ret false ret true

f

Error Approx. up to
right-divergence Op �w

f

ret false ret true

Ω

Figure 7.13: Result Orderings

we write �, which makes Ω a least element and every other element a
maximal element. To distinguish these, we call v error approximation
and � divergence approximation. We present these graphically (with
two more) in Figure 7.13.

The goal of this section is to prove that a symmetric equality
E wv E′ in CBPV (i.e. E v E′ and E′ v E) implies contextual equiv-
alence E =ctx E′ and that inequality in CBPV E v E′ implies error
approximation E vctx E′, proving graduality of the operational model:

Γ | ∆ ` E wv E′ : T

Γ | ∆ � E =ctx E′ ∈ T

Γ | ∆ ` E v E′ : T

Γ | ∆ � E vctx E′ ∈ T

Because we have non-well-founded µ/ν types, we use a step-indexed
logical relation to prove properties about the contextual lifting of certain
preorders E on results. In step-indexing, the infinitary relation given
by Ectx is related to the set of all of its finitary approximations Ei,
which “time out” after observing i steps of evaluation and declare
that the terms are related. This means that the original relation is only
recoverable from the finite approximations if Ω is always related to



7.4 operational model of gtt 225

another element: if the relation is a preorder, we require that Ω is a
least element.

We call such a preorder a divergence preorder.

Definition 160 (Divergence Preorder). A preorder on results E is a
divergence preorder if Ω E R for all results R.

But this presents a problem, because neither of our intended rela-
tions (= and v) is a divergence preorder; rather both have Ω as a
maximal element. However, there is a standard “trick” for subverting
this obstacle in the case of contextual equivalence [2]: we notice that
we can define equivalence as the symmetrization of divergence ap-
proximation, i.e., M =ctx N if and only if M �ctx N and N �ctx M, and
since � has Ω as a least element, we can use a step-indexed relation
to prove it. As shown in New and Ahmed [56], a similar trick works
for error approximation, but since v is not an equivalence relation, we
decompose it rather into two different orderings: error approximation
up to divergence on the left �v and error approximation up to diver-
gence on the right v�, also shown in Figure 7.13. Note that �v is a
preorder, but not a poset because f, Ω are order-equivalent but not
equal. Then clearly �v is a divergence preorder and the opposite of
v�, written �w is a divergence preorder.

Then we can completely reduce the problem of proving =ctx and
vctx results to proving results about divergence preorders by the
following observations.

Lemma 161 (Decomposing Result Preorders). Let R, S be results.

1. R = S if and only if R v S and S v R.

2. R = S if and only if R � S and S � R.

3. R �v S iff R v S or R � S.

4. R v� S iff R v S or R � S.

To prove Lemma 161, we develop a few lemmas about the interaction
between contextual lifting and operations on relations.

In the following, we write ∼◦ for the opposite of a relation (x ∼◦ y
iff y ∼ x), ⇒ for containment/implication (∼⇒∼′ iff x ∼ y implies
x ∼′ y), ⇔ for bicontainment/equality, ∨ for union (x(∼ ∨ ∼′)y iff
x ∼ y or x ∼′ y), and ∧ for intersection (x(∼ ∧ ∼′)y iff x ∼ y and
x ∼′ y).

Lemma 162 (Contextual Lift commutes with Conjunction).

(∼1 ∧ ∼2)
ctx⇔∼1

ctx ∧ ∼2
ctx

Lemma 163 (Contextual Lift commutes with Dualization).

∼◦ctx⇔∼ctx◦



226 models

As a corollary, the decomposition of contextual equivalence into di-
verge approximation in Ahmed [2] and the decomposition of precision
in New and Ahmed [56] are really the same trick:

Lemma 164 (Contextual Decomposition Lemma). Let ∼ be a reflexive
relation (=⇒∼), and 6 be a reflexive, antisymmetric relation (=⇒ 6 and
(6 ∧6◦)⇔ =). Then

∼ctx⇔(∼ ∨ 6)ctx ∧((∼◦ ∨ 6)ctx)◦

Proof. Note that despite the notation, 6 need not be assumed to be
transitive. Reflexive relations form a lattice with ∧ and ∨ with = as ⊥
and the total relation as > (e.g. (= ∨ ∼)⇔∼ because ∼ is reflexive,
and (= ∧ ∼)⇔=). So we have

∼⇔ (∼ ∨ 6) ∧ (∼ ∨ 6◦)

because expanding the right-hand side gives

(∼ ∧ ∼) ∨ (6 ∧ ∼) ∨ (∼ ∧ 6◦) ∨ (6 ∧ 6◦)

By antisymmetry, (6 ∧ 6◦) is =, which is the unit of ∨, so it cancels.
By idempotence, (∼ ∧ ∼) is ∼. Then by absorption, the whole thing
is ∼.

Opposite is not de Morgan: (P ∨ Q)◦ = P◦ ∨ Q◦, and similarly for
∧. But it is involutive: (P◦)◦ ⇔ P.

So using Lemmas 162, 163 we can calculate as follows:

∼ctx ⇔ ((∼ ∨ 6) ∧ (∼ ∨ 6◦))ctx

⇔ (∼ ∨ 6)ctx ∧ (∼ ∨ 6◦)ctx

⇔ (∼ ∨ 6)ctx ∧ ((∼ ∨ 6◦)◦)◦ctx

⇔ (∼ ∨ 6)ctx ∧ ((∼◦ ∨(6◦)◦)◦)ctx

⇔ (∼ ∨ 6)ctx ∧ (∼◦ ∨ 6)◦ctx

⇔ (∼ ∨ 6)ctx ∧ (∼◦ ∨ 6)ctx◦

7.4.3 CBPV Step Indexed Logical Relation

Next, we turn to the problem of proving results about E Ectx E′

where E is a divergence preorder. Dealing directly with a contextual
preorder is practically impossible, so instead we develop an alternative
formulation as a logical relation that is much easier to use. Fortunately,
we can apply standard logical relations techniques to provide an
alternate definition inductively on types. However, since we have non-
well-founded type definitions using µ and ν, our logical relation will
also be defined inductively on a step index that times out when we’ve
exhausted our step budget. To bridge the gap between the indexed



7.4 operational model of gtt 227

logical relation and the divergence preorder we care about, we define
the “finitization” of a divergence preorder to be a relation between
programs and results: the idea is that a program approximates a result
R at index i if it reduces to R in less than i steps or it reduces at least i
times.

Definition 165 (Finitized Preorder). Given a divergence preorder E,
we define the finitization of E to be, for each natural number i, a
relation between programs and results

Ei ⊆ {M | · ` M : F2} × Results

defined by

M Ei R = (∃M′. M 7→i M′)∨ (∃(j < i).∃RM. M 7→j RM ∧ RM E R)

Note that in this definition, unlike in the definition of divergence,
we only count non-well-founded steps. This makes it slightly harder to
establish the intended equivalence M Eω R if and only if result(M) E
R, but makes the logical relation theorem stronger: it proves that
diverging terms must use recursive types of some sort and so any
term that does not use them terminates. This issue would be alleviated
if we had proved type safety by a logical relation rather than by
progress and preservation.

However, the following properties of the indexed relation can easily
be established. First, a kind of “transitivity” of the indexed relation
with respect to the original preorder, which is key to proving transitiv-
ity of the logical relation.

Lemma 166 (Indexed Relation is a Module of the Preorder). If M Ei R
and R E R′ then M Ei R′

Proof. If M 7→i M′ then there’s nothing to show, otherwise M 7→j<i

result(M) so it follows by transitivity of the preorder: result(M) E
R E R′.

Then we establish a few basic properties of the finitized preorder.

Lemma 167 (Downward Closure of Finitized Preorder). If M Ei R and
j ≤ i then M Ej R.

Proof.

1. If M 7→i Mi then M 7→j Mj and otherwise

2. If M 7→j≤ki result(M) then M 7→j Mj

3. if M 7→k<j≤i result(M) then result(M) E R.

Lemma 168 (Triviality at 0). For any · ` M : F2, M E0 R



228 models

Elog
A,i ⊆ {· ` V : A}2 Elog

B,i ⊆ {· | B ` S : F(1 + 1)}2

· Elog
·,i · = >

γ1, V1/x Elog
Γ,x:A,i γ2, V2/x = γ1 E

log
Γ,i γ2 ∧V1 E

log
A,i V2

V1 E
log
0,i V2 = ⊥

inl V1 E
log
A+A′ ,i inl V2 = V1 E

log
A,i V2

inr V1 E
log
A+A′ ,i inr V2 = V1 E

log
A′ ,i V2

() Elog
1,i () = >

(V1, V′1) E
log
A×A′ ,i (V2, V′2) = V1 E

log
A,i V2 ∧V′1 E

log
A′ ,i V′2

rollµX.A V1 E
log
µX.A,i rollµX.A V2 = i = 0∨V1 E

log
A[µX.A/X],i−1 V2

V1 E
log
UB,i V2 = ∀j ≤ i, S1 E

log
B,j S2.

S1[force V1] Ej result(S2[force V2])

S1[•V1] E
log
A→B,i S1[•V2] = V1 E

log
A,i V2 ∧ S1 E

log
B,i S2

S1[π1•] E
log
B&B′ ,i S2[π1•] = S1 E

log
B,i S2

S1[π2•] E
log
B&B′ ,i S2[π2•] = S1 E

log
B′ ,i S2

S1 E
log
>,i S2 = ⊥

S1[unroll •] E
log
νY.B,i S2[unroll •] = i = 0∨ S1 E

log
B[νY.B/Y],i−1 S2

S1 E
log
FA,i S2 = ∀j ≤ i, V1 E

log
A,j V2.

S1[ret V1] Ej result(S2[ret V2])

Figure 7.14: Logical Relation from a Preorder E

Proof. Because M 7→0 M

Lemma 169 (Result (Anti-)reduction). If M 7→i N then result(M) =

result(N).

Lemma 170 (Anti-reduction). If M Ei R and N 7→j M, then N Ei+j R

Proof. 1. If M 7→i M′ then N 7→i+j M′

2. If M 7→k<i result(M) then N 7→k+j result(M) and result(M) =

result(N) and k + j < i + j.

Next, we define the (closed) logical preorder (for closed values/s-
tacks) by induction on types and the index i in Figure 7.14. Specifically,
for every i and value type A we define a relation Elog

A,i between closed
values of type A because these are the only ones that will be pattern-
matched against at runtime. The relation is defined in a type-directed
fashion, the intuition being that we relate two positive values when



7.4 operational model of gtt 229

they are built up in the same way: i.e., they have the same introduc-
tion form and their subterms are related. For µ, this definition would
not be well-founded, so we decrement the step index, giving up and
relating the terms if i = 0. Finally U is the only negative value type,
and so it is treated differently. A thunk V : UB cannot be inspected
by pattern matching, rather the only way to interact with it is to force
its evaluation. By the definition of the operational semantics, this only
ever occurs in the step S[force V], so (ignoring indices for a moment),
we should define V1 E V2 to hold in this case when, given S1 E S2, the
result of S2[force V2] is approximated by S1[force V1]. To incorporate
the indices, we have to quantify over j ≤ i in this definition because
we need to know that the values are related in all futures, including
ones where some other part of the term has been reduced (consuming
some steps). Technically, this is crucial for making sure the relation
is downward-closed. This is known as the orthogonal of the relation,
and one advantage of the CBPV language is that it makes the use of
orthogonality explicit in the type structure, analogous to the benefits
of using Nakano’s later modality [54] for step indexing (which we
ironically do not do).

Next, we define when two stacks are related. First, we define the
relation only for two “closed” stacks, which both have the same type
of their hole B and both have “output” the observation type F2. The
reason is that in evaluating a program M, steps always occur as
S[N] 7→∗ S[N′] where S is a stack of this form. An intuition is that for
negative types, two stacks are related when they start with the same
elimination form and the remainder of the stacks are related. For ν,
we handle the step indices in the same way as for µ. For FA, a stack
S[• : FA] is strict in its input and waits for its input to evaluate down
to a value ret V, so two stacks with FA holes are related when in
any future world, they produce related behavior when given related
values.

We note that in the CBV restriction of CBPV, the function type is
given by U(A → FA′) and the logical relation we have presented
reconstructs the usual definition that involves a double orthogonal.

Note that the definition is well-founded using the lexicographic
ordering on (i, A) and (i, B): either the type reduces and the index
stays the same or the index reduces. We extend the definition to
contexts to closing substitutions pointwise: two closing substitutions for
Γ are related at i if they are related at i for each x : A ∈ Γ.

The logical preorder for open terms is defined as usual by quantify-
ing over all related closing substitutions, but also over all stacks to the
observation type F(1 + 1):

Definition 171 (Logical Preorder). For a divergence preorder E, its
step-indexed logical preorder is



230 models

1. Γ � M1 E
log
i M2 ∈ B iff for every γ1 E

log
Γ,i γ2 and S1 E

log
B,i S2,

S1[M1[γ1]] E
i result(S2[M2[γ2]]).

2. Γ � V1 E
log
i V2 ∈ A iff for every γ1 E

log
Γ,i γ2,

V1[γ1] E
log
A,i V2[γ2].

3. Γ | B � S1 E
log
i S2 ∈ B′ iff for every γ1 E

log
Γ,i γ2 and S′1 E

log
B′,i S′2,

S′1[S1[γ1]] E
log
B,i S′2[S2[γ2]]).

We next want to prove that the logical preorder is a congruence
relation, i.e., the fundamental lemma of the logical relation. This
requires the easy lemma, that the relation on closed terms and stacks
is downward closed.

Lemma 172 (Logical Relation Downward Closure). For any type T, if
j ≤ i then Elog

T,i⊆E
log
T,j

Next, we show the fundamental theorem:

Theorem 173 (Logical Preorder is a Congruence). For any divergence
preorder, the logical preorder E Elog

i E′ is a congruence relation, i.e., it is
closed under applying any value/term/stack constructors to both sides.

Proof. For each congruence rule

Γ | ∆ ` E1 v E′1 : T1 · · ·
Γ′ | ∆′ ` Ec v E′c : Tc

we prove for every i ∈N the validity of the rule

Γ | ∆ � E1 E
log
i E′1 ∈ T1 · · ·

Γ | ∆ � Ec E
log
i E′c ∈ Tc

1. Γ, x : A, Γ′ � x Elog
i x ∈ A. Given γ1 E

log
Γ,x:A,Γ′,i γ2, then by defini-

tion γ1(x) Elog
A,i γ2(x).

2. Γ � f Elog
i f ∈ B We need to show S1[f] Ei result(S2[f]). By

anti-reduction and strictness of stacks, it is sufficient to show
f Elog

i f. If i = 0 there is nothing to show, otherwise, it follows
by reflexivity of E.

3.
Γ � V Elog

i V ′ ∈ A Γ, x : A � M Elog
i M′ ∈ B

Γ � let x = V; M Elog
i let x = V ′; M′ ∈ B

Each side takes a 0-cost step, so by anti-reduction, this reduces
to

S1[M[γ1, V/x]] Ei result(S2[M′[γ2, V ′/x]])

which follows by the assumption Γ, x : A � M Elog
i M′ ∈ B



7.4 operational model of gtt 231

4.
Γ � V Elog

i V ′ ∈ 0

Γ � abort V Elog
i abort V ′ ∈ B

. By assumption, we get V[γ1] E
log
0,i

V ′[γ2], but this is a contradiction.

5.
Γ � V Elog

i V ′ ∈ A1

Γ � inl V Elog
i inl V ′ ∈ A1 + A2

. Direct from assumption, rule

for sums.

6.
Γ � V Elog

i V ′ ∈ A2

Γ � inr V Elog
i inr V ′ ∈ A1 + A2

Direct from assumption, rule

for sums.

7.
Γ � V Elog

i V ′ ∈ A1 + A2 Γ, x1 : A1 � M1 E
log
i M′1 ∈ B Γ, x2 : A2 � M2 E

log
i M′2 ∈ B

Γ � case V{x1.M1 | x2.M2} Elog
i case V ′{x1.M′1 | x2.M′2} ∈ B

By case analysis of V[γ1] E
log
i V ′[γ2].

a) If V[γ1] = inl V1, V ′[γ2] = inl V ′1 with V1 E
log
A1,i V ′1, then

taking 0 steps, by anti-reduction the problem reduces to

S1[M1[γ1, V1/x1]] E
i result(S1[M1[γ1, V1/x1]])

which follows by assumption.

b) For inr , the same argument.

8. Γ � () Elog
i () ∈ 1 Immediate by unit rule.

9.
Γ � V1 E

log
i V ′1 ∈ A1 Γ � V2 E

log
i V ′2 ∈ A2

Γ � (V1, V2) E
log
i (V ′1, V ′2) ∈ A1 × A2

Immediate by pair

rule.

10.
Γ � V Elog

i V ′ ∈ A1 × A2 Γ, x : A1, y : A2 � M Elog
i M′ ∈ B

Γ � let (x, y) = V; M Elog
i let (x, y) = V ′; M′ ∈ B

By

V Elog
A1×A2,i V ′, we know V[γ1] = (V1, V2) and V ′[γ2] = (V ′1, V ′2)

with V1 E
log
A1,i V ′1 and V2 E

log
A2,i V ′2. Then by anti-reduction, the

problem reduces to

S1[M[γ1, V1/x, V2/y]] Ei result(S1[M′[γ1, V ′1/x, V ′2/y]])

which follows by assumption.

11.
Γ � V Elog

i V ′ ∈ A[µX.A/X]

Γ � rollµX.A V Elog
i rollµX.A V ′ ∈ µX.A

If i = 0, we’re done.

Otherwise i = j+ 1, and our assumption is that V[γ1] E
log
A[µX.A/X],j+1

V ′[γ2] and we need to show that roll V[γ1] E
log
µX.A,j+1 roll V ′[γ2].

By definition, we need to show V[γ1] E
log
A[µX.A/X],j V ′[γ2], which

follows by downward-closure.



232 models

12.
Γ � V Elog

i V ′ ∈ µX.A Γ, x : A[µX.A/X] � M Elog
i M′ ∈ B

Γ � unroll V to roll x.M Elog
i unroll V ′ to roll x.M′ ∈ B

If

i = 0, then by triviality at 0, we’re done. Otherwise, V[γ1] E
log
µX.A,j+1

V ′[γ2] so V[γ1] = roll Vµ, V ′[γ2] = roll V ′µ with Vµ E
log
A[µX.A/X],j

V ′µ. Then each side takes 1 step, so by anti-reduction it is suffi-
cient to show

S1[M[γ1, Vµ/x]] Ej result(S2[M′[γ2, V ′µ/x]])

which follows by assumption and downward closure of the stack,
value relations.

13.
Γ � M Elog

i M′ ∈ B

Γ � thunk M Elog
i thunk M′ ∈ UB

. We need to show thunk M[γ1] E
log
UB,i

thunk M′[γ2], so let S1 E
log
B,j S2 for some j ≤ i, and we need to

show

S1[force thunk M1[γ1]] E
j result(S2[force thunk M2[γ2]])

Then each side reduces in a 0-cost step and it is sufficient to
show

S1[M1[γ1]] E
j result(S2[M2[γ2]])

Which follows by downward-closure for terms and substitutions.

14.
Γ � V Elog

i V ′ ∈ UB

Γ � force V Elog
i force V ′ ∈ B

.

We need to show S1[force V[γ1]] Ei result(S2[force V ′[γ2]]),
which follows by the definition of V[γ1] E

log
UB,i V ′[γ2].

15.
Γ � V Elog

i V ′ ∈ A

Γ � ret V Elog
i ret V ′ ∈ FA

We need to show S1[ret V[γ1]] Ei result(S2[ret V ′[γ2]]), which
follows by the orthogonality definition of S1 E

log
FA,i S2.

16.
Γ � M Elog

i M′ ∈ FA Γ, x : A � N Elog
i N′ ∈ B

Γ � x ← M; N Elog
i x ← M′; N′ ∈ B

.

We need to show x ← M[γ1]; N[γ2] Ei result(x ← M′[γ2]; N′[γ2]).
By M Elog

i M′ ∈ FA, it is sufficient to show that

x ← •; N[γ1] E
log
FA,i x ← •; N′[γ2]

So let j ≤ i and V Elog
A,j V ′, then we need to show

x ← ret V; N[γ1] E
log
FA,j x ← ret V ′; N′[γ2]



7.4 operational model of gtt 233

By anti-reduction, it is sufficient to show

N[γ1, V/x] Ej result(N′[γ2, V ′/x])

which follows by anti-reduction for γ1 E
log
Γ,i γ2 and N Elog

i N′.

17.
Γ, x : A � M Elog

i M′ ∈ B

Γ � λx : A.M Elog
i λx : A.M′ ∈ A→ B

We need to show

S1[λx : A.M[γ1]] E
i result(S2[λx : A.M′[γ2]]).

By S1 E
log
A→B,i S2, we know S1 = S′1[•V1], S2 = S′2[•V2] with

S′1 E
log
B,i S′2 and V1 E

log
A,i V2. Then by anti-reduction it is sufficient

to show

S′1[M[γ1, V1/x]] Ei result(S′2[M
′[γ2, V2/x]])

which follows by M Elog
i M′.

18.
Γ � M Elog

i M′ ∈ A→ B Γ � V Elog
i V ′ ∈ A

Γ � M V Elog
i M′ V ′ ∈ B

We need to show

S1[M[γ1]V[γ1]] E
i result(S2[M′[γ2]V ′[γ2]])

so by M Elog
i M′ it is sufficient to show S1[•V[γ1]] E

log
A→B,i

S2[•V ′[γ2]] which follows by definition and assumption that
V Elog

i V ′.

19. Γ ` {} : > We assume we are given S1 E
log
>,i S2, but this is a

contradiction.

20.
Γ � M1 E

log
i M′1 ∈ B1 Γ � M2 E

log
i M′2 ∈ B2

Γ � (M1, M2) E
log
i (M′1, M′2) ∈ B1 & B2

We need to show

S1[(M1[γ1], M2[γ1])] E
i result(S2[(M′1[γ1], M′2[γ2])]).

We proceed by case analysis of S1 E
log
B1&B2,i S2

a) In the first possibility S1 = S′1[π•], S2 = S′2[π•] and S′1 E
log
B1,i

S′2. Then by anti-reduction, it is sufficient to show

S′1[M1[γ1]] E
i result(S′2[M

′
1[γ2]])

which follows by M1 E
log
i M′1.

b) Same as previous case.

21.
Γ � M Elog

i M′ ∈ B1 & B2

Γ � πM Elog
i πM′ ∈ B1

We need to show S1[πM[γ1]] Ei result(S2[πM′[γ2]]),

which follows by S1[π•] E
log
B1&B2,i S2[π•] and M Elog

i M′.



234 models

22.
Γ � M Elog

i M′ ∈ B1 & B2

Γ � π′M Elog
i π′M′ ∈ B2

Similar to previous case.

23.
Γ � M Elog

i M′ ∈ B[νY.B/Y]

Γ � rollνY.B M Elog
i rollνY.B M′ ∈ νY.B

We need to show that

S1[rollνY.B M[γ1]] E
i result(S2[rollνY.B M′[γ2]])

If i = 0, we invoke triviality at 0. Otherwise, i = j + 1 and
we know by S1 E

log
νY.B,j+1 S2 that S1 = S′1[unroll •] and S2 =

S′2[unroll •] with S′1 E
log
B[νY.B/Y],j S′2, so by anti-reduction it is

sufficient to show

S′1[M[γ1]] E
i result(S′2[M

′[γ2]])

which follows by M Elog
i M′ and downward-closure.

24.
Γ � M Elog

i M′ ∈ νY.B

Γ � unroll M Elog
i unroll M′ ∈ B[νY.B/Y]

We need to show

S1[unroll M] Ei result(S2[unroll M′]),

which follows because S1[unroll •] E
log
νY.B,i S2[unroll •] and

M Elog
i M′.

As a direct consequence we get the reflexivity of the relation:

Corollary 174 (Reflexivity). For any Γ ` M : B, and i ∈N, Γ � M Elog
i

M ∈ B.

Therefore we have the following strengthening of the progress-and-
preservation type soundness theorem: because Ei only counts un-
rolling steps, terms that never use µ or ν types (for example) are
guaranteed to terminate.

Corollary 175 (Unary LR). For every program · ` M : F2 and i ∈ N,
M Ei result(M)

Proof. By reflexivity, · � M Ei M ∈ F2 and by definition • Elog
F2,i •, so

unrolling definitions we get M Ei result(M).

Using reflexivity, we prove that the indexed relation between terms
and results recovers the original preorder in the limit as i → ω. We
write Eω to mean the relation holds for every i, i.e., Eω=

⋂
i∈N E

i.

Corollary 176 (Limit Lemma). For any divergence preorderE, result(M) E
R iff M Eω R.



7.4 operational model of gtt 235

Proof. Two cases

1. If result(M) E R then we need to show for every i ∈ N, M Ei

R. By the unary model lemma, M Ei result(M), so the result
follows by the module Lemma 166.

2. If M Ei R for every i, then there are two possibilities: M is
always related to R because it takes i steps, or at some point M
terminates.

a) If M 7→i Mi for every i ∈ N, then result(M) = Ω, so
result(M) E R because E is a divergence preorder.

b) Otherwise there exists some i ∈M such that M 7→i result(M),
so it follows by the module Lemma 166.

Corollary 177 (Logical implies Contextual). If Γ � E Elog
ω E′ ∈ B then

Γ � E Ectx E′ ∈ B.

Proof. Let C be a closing context. By congruence, C[M] Elog
ω C[N], so

using empty environment and stack, C[M] Eω result(C[N]) and by
the limit lemma, we have result(C[M]) E result(C[N]).

This establishes that our logical relation can prove graduality, so it
only remains to show that our inequational theory implies our logical
relation. Having already validated the congruence rules and reflexivity,
we validate the remaining rules of transitivity, error, substitution, and
βη for each type constructor. Other than the f v M rule, all of these
hold for any divergence preorder.

For transitivity, with the unary model and limiting lemmas in hand,
we can prove that all of our logical relations (open and closed) are
transitive in the limit. To do this, we first prove the following kind of
“quantitative” transitivity lemma, and then transitivity in the limit is a
consequence.

Lemma 178 (Logical Relation is Quantitatively Transitive).

1. If V1 E
log
A,i V2 and V2 E

log
A,ω V3, then V1 E

log
A,i V3

2. If S1 E
log
B,i S2 and S2 E

log
B,ω S3, then S1 E

log
B,i S3

Proof. Proof is by mutual lexicographic induction on the pair (i, A) or
(i, B). All cases are straightforward uses of the inductive hypotheses
except the shifts U, F.

1. If V1 E
log
UB,i V2 and V2 E

log
UB,ω V3, then we need to show that for

any S1 E
log
B,j S2 with j ≤ i,

S1[force V1] E
j result(S2[force V3])



236 models

By reflexivity, we know S2 E
log
B,ω S2, so by assumption

S2[force V2] Eω result(S2[force V3])

which by the limiting Lemma 176 is equivalent to

result(S2[force V2]) E result(S2[force V3])

so then by the module Lemma 166, it is sufficient to show

S1[force V1] E
j result(S2[force V2])

which holds by assumption.

2. If S1 E
log
FA,i S2 and S2 E

log
FA,ω S3, then we need to show that for

any V1 E
log
j,A V2 with j ≤ i that

S1[ret V1] E
j result(S3[ret V2])

First by reflexivity, we know V2 E
log
A,ω V2, so by assumption,

S2[ret V2] Eω result(S3[ret V2])

Which by the limit Lemma 176 is equivalent to

result(S2[ret V2]) Eω result(S3[ret V2])

So by the module Lemma 166, it is sufficient to show

S1[ret V1] E
j result(S2[ret V2])

which holds by assumption.

Lemma 179 (Logical Relation is Quantitatively Transitive (Open Terms)).

1. If γ1 E
log
Γ,i γ2 and γ2 E

log
Γ,ω γ3, then γ1 E

log
Γ,i γ3

2. If Γ � M1 E
log
i M2 ∈ B and Γ � M2 E

log
ω M3 ∈ B, then Γ � M1 E

log
i

M3 ∈ B.

3. If Γ � V1 E
log
i V2 ∈ A and Γ � V2 E

log
ω V3 ∈ A, then Γ � V1 E

log
i

V3 ∈ A.

4. If Γ | • : B � S1 E
log
i S2 ∈ B′ and Γ | • : B � S2 E

log
ω S3 ∈ B′, then

Γ | • : B � S1 E
log
i S3 ∈ B′.

Proof. 1. By induction on the length of the context, follows from
closed value case.



7.4 operational model of gtt 237

2. Assume γ1 E
log
Γ,i γ2 and S1 E

log
B,i S2. We need to show

S1[M1[γ1]] E
i result(S2[M3[γ2]])

by reflexivity and assumption, we know

S2[M2[γ2]] Eω result(S2[M3[γ2]])

and by limit Lemma 176, this is equivalent to

result(S2[M2[γ2]]) E result(S2[M3[γ2]])

so by the module Lemma 166 it is sufficient to show

S1[M1[γ1]] E
i result(S2[M2[γ2]])

which follows by assumption.

3. Assume γ1 E
log
Γ,i γ2. Then V1[γ1] E

log
A,i V2[γ2] and by reflexivity

γ2 E
log
Γ,ω γ2 so V2[γ2] E

log
A,ω V3[γ2] so the result holds by the closed

case.

4. Stack case is essentially the same as the value case.

Corollary 180 (Logical Relation is Transitive in the Limit). 1. If Γ �
M1 E

log
ω M2 ∈ B and Γ � M2 E

log
ω M3 ∈ B, then Γ � M1 E

log
ω M3 ∈

B.

2. If Γ � V1 E
log
ω V2 ∈ A and Γ � V2 E

log
ω V3 ∈ A, then Γ � V1 E

log
ω

V3 ∈ A.

3. If Γ | • : B � S1 E
log
ω S2 ∈ B′ and Γ | • : B � S2 E

log
ω S3 ∈ B′, then

Γ | • : B � S1 E
log
ω S3 ∈ B′.

Next, we verify the β, η equivalences hold as orderings each way.

Lemma 181 (β, η). For any divergence preorder, the β, η laws are valid for
Elog

ω

Proof. The β rules for all cases except recursive types are direct from
anti-reduction.

1. µX.A− β:

a) We need to show

S1[unroll rollµX.A V[γ1] to roll x.M[γ1]] E
log
i result(S2[M[γ2, V[γ2]/x]])

The left side takes 1 step to S1[M[γ1, V[γ1]/x]] and we
know

S1[M[γ1, V[γ1]/x]] Elog
i result(S2[M[γ2, V[γ2]/x]])

by assumption and reflexivity, so by anti-reduction we have

S1[unroll rollµX.A V[γ1] to roll x.M[γ1]] E
log
i+1 result(S2[M[γ2, V[γ2]/x]])

so the result follows by downward-closure.



238 models

b) For the other direction we need to show

S1[M[γ1, V[γ1]/x]] Elog
i result(S2[unroll rollµX.A V[γ2] to roll x.M[γ2]])

Since results are invariant under steps, this is the same as

S1[M[γ1, V[γ1]/x]] Elog
i result(S2[M[γ2, V[γ2/x]]])

which follows by reflexivity and assumptions about the
stacks and substitutions.

2. µX.A− η:

a) We need to show for any Γ, x : µX.A ` M : B, and appro-
priate substitutions and stacks,

S1[unroll rollµX.A γ1(x) to roll y.M[rollµX.A y/x][γ1]] E
log
i result(S2[M[γ2]])

By assumption, γ1(x) Elog
µX.A,i γ2(x), so we know

γ1(x) = rollµX.A V1

and

γ2(x) = rollµX.A V2

so the left side takes a step:

S1[unroll roll γ1(x) to roll y.M[roll y/x][γ1]] 7→1 S1[M[roll y/x][γ1][V1/y]]

= S1[M[roll V1/x][γ1]]

= S1[M[γ1]]

and by reflexivity and assumptions we know

S1[M[γ1]] E
log
i result(S2[M[γ2]])

so by anti-reduction we know

S1[unroll rollµX.A γ1(x) to roll y.M[rollµX.A y/x][γ1]] E
log
i+1 result(S2[M[γ2]])

so the result follows by downward closure.

b) Similarly, to show

S1[M[γ1]] E
log
i result(S2[unroll rollµX.A γ2(x) to roll y.M[rollµX.A y/x][γ2]])

by the same reasoning as above, γ2(x) = rollµX.A V2, so
because result is invariant under reduction we need to show

S1[M[γ1]] E
log
i result(S2[M[γ2]])

which follows by assumption and reflexivity.



7.4 operational model of gtt 239

3. νY.B− β

a) We need to show

S1[unroll rollνY.B M[γ1]] E
i result(S2[M[γ2]])

By the operational semantics,

S1[unroll rollνY.B M[γ1]] 7→1 S1[M[γ1]]

and by reflexivity and assumptions

S1[M[γ1]] E
i S2[M[γ2]]

so the result follows by anti-reduction and downward clo-
sure.

b) We need to show

S1[M[γ1]] E
i result(S2[unroll rollνY.B M[γ2]])

By the operational semantics and invariance of result under
reduction this is equivalent to

S1[M[γ1]] E
i result(S2[M[γ2]])

which follows by assumption.

4. νY.B− η

a) We need to show

S1[roll unroll M[γ1]] E
i result(S2[M[γ2]])

by assumption, S1 E
log
νY.B,i S2, so

S1 = S′1[unroll •]

and therefore the left side reduces:

S1[roll unroll M[γ1]] = S′1[unroll roll unroll M[γ1]]

7→1 S′1[unroll M[γ1]]

= S1[M[γ1]]

and by assumption and reflexivity,

S1[M[γ1]] E
i result(S2[M[γ2]])

so the result holds by anti-reduction and downward-closure.

b) Similarly, we need to show

S1[M[γ1]] E
i result(S2[roll unroll M[γ2]])



240 models

as above, S1 E
log
νY.B,i S2, so we know

S2 = S′2[unroll •]

so

result(S2[roll unroll M[γ2]]) = result(S2[M[γ2]])

and the result follows by reflexivity, anti-reduction and
downward closure.

5. 0η Let Γ, x : 0 ` M : B.

a) We need to show

S1[absurd γ1(x)] Ei result(S2[M[γ2]])

By assumption γ1(x) Elog
0,i γ2(x) but this is a contradiction

b) Other direction is the same contradiction.

6. +η. Let Γ, x : A1 + A2 ` M : B

a) We need to show

S1[case γ1(x){x1.M[inl x1/x][γ1] | x2.M[inr x2/x][γ1]}] Ei result(S2[M[γ2]])

by assumption γ1(x) Elog
A1+A2,i γ2(x), so either it’s an inl

or inr. The cases are symmetric so assume γ1(x) = inl V1.
Then

S1[case γ1(x){x1.M[inl x1/x][γ1] | x2.M[inr x2/x][γ1]}]
= S1[case (inl V1){x1.M[inl x1/x][γ1] | x2.M[inr x2/x][γ1]}]

7→0 S1[M[inl V1/x][γ1]]

= S1[M[γ1]]

and so by anti-reduction it is sufficient to show

S1[M[γ1]] E
i S2[M[γ2]]

which follows by reflexivity and assumptions.

b) Similarly, We need to show

result(S1[M[γ1]]) E
i result(S2[case γ2(x){x1.M[inl x1/x][γ2] | x2.M[inr x2/x][γ2]}])

and by assumption γ1(x) Elog
A1+A2,i γ2(x), so either it’s an

inl or inr. The cases are symmetric so assume γ2(x) =

inl V2. Then

S2[case γ2(x){x1.M[inl x1/x][γ2] | x2.M[inr x2/x][γ2]}] 7→0 S2[M[γ2]]

So the result holds by invariance of result under reduction,
reflexivity and assumptions.



7.4 operational model of gtt 241

7. 1η Let Γ, x : 1 ` M : B

a) We need to show

S1[M[()/x][γ1]] E
i result(S2[M[γ2]])

By assumption γ1(x) Elog
1,i γ2(x) so γ1(x) = (), so this is

equivalent to

S1[M[γ1]] E
i result(S2[M[γ2]])

which follows by reflexivity, assumption.

b) Opposite case is similar.

8. ×η Let Γ, x : A1 × A2 ` M : B

a) We need to show

S1[let (x1, y1) = x; M[(x1, y1)/x][γ1]] E
i result(S2[M[γ2]])

By assumption γ1(x) Elog
A1×A2,i γ2(x), so γ1(x) = (V1, V2),

so

S1[let (x1, y1) = x; M[(x1, y1)/x][γ1]] = S1[let (x1, y1) = (V1, V2); M[(x1, y1)/x][γ1]]

7→0 S1[M[(V1, V2)/x][γ1]]

= S1[M[γ1]]

So by anti-reduction it is sufficient to show

S1[M[γ1]] E
i result(S2[M[γ2]])

which follows by reflexivity, assumption.

b) Opposite case is similar.

9. Uη Let Γ ` V : UB

a) We need to show that

thunk force V[γ1] E
log
UB,i V[γ2]

So assume S1 E
log
B,j S2 for some j ≤ i, then we need to show

S1[force thunk force V[γ1]] E
j result(S2[force V[γ2]])

The left side takes a step:

S1[force thunk force V[γ1]] 7→0 S1[force V[γ1]]

so by anti-reduction it is sufficient to show

S1[force V[γ1]] E
j result(S2[force V[γ2]])

which follows by assumption.



242 models

b) Opposite case is similar.

10. Fη

a) We need to show that given S1 E
log
FA,i S2,

S1[x ← •; ret x] Elog
FA,i S2

So assume V1 E
log
A,j V2 for some j ≤ i, then we need to show

S1[ret V1 ← •; ret x] Ej result(S2[ret V2])

The left side takes a step:

S1[ret V1 ← •; ret x] 7→0 S1[ret V1]

so by anti-reduction it is sufficient to show

S1[ret V1] E
j result(S2[ret V2])

which follows by assumption

b) Opposite case is similar.

11. → η Let Γ ` M : A→ B

a) We need to show

S1[(λx : A.M[γ1] x)] Ei result(S2[M[γ2]])

by assumption that S1 E
log
A→B,i S2, we know

S1 = S′1[•V1]

so the left side takes a step:

S1[(λx : A.M[γ1] x)] = S′1[(λx : A.M[γ1] x)V1]

7→0 S′1[M[γ1]V1]

= S1[M[γ1]]

So by anti-reduction it is sufficient to show

S1[M[γ1]] E
i result(S2[M[γ2]])

which follows by reflexivity, assumption.

b) Opposite case is similar.

12. &η Let Γ ` M : B1 & B2

a) We need to show

S1[(πM[γ1], π′M[γ1])] E
i result(S1[M[γ2]])



7.4 operational model of gtt 243

by assumption, S1 E
log
B1&B2,i S2 so either it starts with a π or

π′ so assume that S1 = S′1[π•] (π′ case is similar). Then the
left side reduces

S1[(πM[γ1], π′M[γ1])] = S′1[π(πM[γ1], π′M[γ1])]

7→0 S′1[πM[γ1]]

= S1[M[γ1]]

So by anti-reduction it is sufficient to show

S1[M[γ1]] E
i result(S2[M[γ2]])

which follows by reflexivity, assumption.

b) Opposite case is similar.

13. >η Let Γ ` M : >

a) In either case, we assume we are given S1 E
log
>,i S2, but this

is a contradiction.

And that the logical relation behaves well is closed under substitu-
tion of related terms.

Lemma 182 (Substitution Principles). For any divergence preorder E, the
following are valid

1.
Γ � V1 E

log
i V2 ∈ A Γ, x : A � V ′1 E

log
V
′
2∈ A′

Γ � V ′1[V1/x] Elog
V
′
2 [V2/x] ∈ A′

2.
Γ � V1 E

log
i V2 ∈ A Γ, x : A � M1 E

log
M 2∈ B

Γ � M1[V1/x] Elog
M 2 [V2/x] ∈ B

Proof. We do the term case, the value case is similar. Given γ1 E
log
Γ,i γ2,

we have V1[γ1] E
log
A,i V2[γ2] so

γ1, V1[γ1]/x Elog
Γ,x:A,i γ2, V2[γ2]/x

and by associativity of substitution

M1[V1/x][γ1] = M1[γ1, V1[γ1]/x]

and similarly for M2, so if S1 E
log
B,i S2 then

S1[M1[γ1, V1[γ1]/x]] Ei result(S2[M2[γ2, V2[γ2]/x]])

For errors, the strictness axioms hold for any E, but the axiom that
f is a least element is specific to the definitions of �v,v�



244 models

Lemma 183 (Error Rules). For any divergence preorderE and appropriately
typed S, M,

S[f] Elog
ω f f Elog

ω S[f] f �vlog
ω M M �wlog

ω f

Proof. 1. It is sufficient by the limit lemma to show result(S[f]) E
f which holds by reflexivity because S[f] 7→0 f.

2. We need to show S[f] �vi R for arbitrary R, so by the limit
lemma it is sufficient to show f �v R, which is true by defini-
tion.

3. By the limit lemma it is sufficient to show R �w f which is true
by definition.

The lemmas we have proved cover all of the inequality rules of
CBPV, so applying them with E chosen to be �v and �w gives

Lemma 184 (�v and v� are Models of CBPV). If Γ | ∆ ` E v E′ : B
then Γ | ∆ � E �vω E′ ∈ B and Γ | ∆ � E′ �wω E ∈ B.

Because logical implies contextual equivalence, we can conclude
with the main theorem:

Theorem 185 (Contextual Approximation/Equivalence Model CBPV).
If Γ | ∆ ` E v E′ : T then Γ | ∆ � E vctx E′ ∈ T.
If Γ | ∆ ` E wv E′ : T then Γ | ∆ � E =ctx E′ ∈ T.

Proof. For the first part, from Lemma 184, we have E �vω E′ and
E′ �wω E. By Lemma 177, we then have E �vctx E′ and E′ �wctx E.
Finally, by Lemma 164, E vctx E′ iff E �vctx E′and E((�w)ctx)◦E′, so
we have the result.

For the second part, applying the first part twice gives E vctx E′

and E′ vctx E, and we concluded in Lemma 164 that this coincides
with contextual equivalence.



Part III

G R A D UA L T Y P I N G A N D PA R A M E T R I C
P O LY M O R P H I S M





8
I N T R O D U C T I O N T O PA RT I I I

While simple types like sums, products and extensional functions
have their cast structure completely determined by βη equations,
many programming features and their associated reasoning principles
do not naturally fall into this pattern. In the following chapters we
focus on the problem of developing a gradually typed language whose
typing features include support for data abstraction using parametric
polymorphism, i.e. universal and existential types. Our main design goal
is to develop languages that satisfy both graduality and parametricity.

Parametric polymorphism, in the form of universal and existential
types, allows for abstraction over types within a program. Universal
types, written ∀X.A, allow for the definition of functions that can be
used at many different types. Dually, existential types provide a simple
model of a module system. A value of type ∃X.A can be thought of as
a module that exports a newly defined type X and then a value A that
may include X that gives the interface to the type. Languages with
parametric polymorphism provide very strong reasoning principles
regarding data abstraction, formalized by the relational parametricity
theorem [64].

The relational parametricity theorem captures the idea that an ab-
stract type is truly opaque to its users: for instance, a consumer of a
value of existential type ∃X.A can only interact with X values using
the capabilities provided by the interface type A. This allows program-
mers to use existential types to model abstract data types [50]. For
instance, the existential type ∃X.X × (X → X)× (X → Int) repre-
sents the type of an abstract functional counter. The X represents the
state, the first component of the tuple is the initial state, the second
component is an increment function, and the final component reads
out an observable integer value from the state. One obvious example
implementation would use Int for X, 0 as the initial state, addition
by 1 as the increment, and the identity function as the read-out. In a
language with proper data abstraction, we should be able to guarantee
that with this implementation, the read-out function should only ever
produce positive numbers, because even though the type Int allows
for negative numbers, the interface only enables the construction of
positive numbers. This pattern of reasoning naturally generalizes to
sophisticated data structure invariants such as balanced trees, sorted
lists, etc.

In this part of the dissertation we will analyze to what extent para-
metric polymorphism and parametricity are compatible with gradual
typing. First, in Chapter 9, we will show that under certain conditions

247



248 introduction to part III

common in dynamically typed languages, enforcement of parametric-
ity is not computable, and so no gradual typing scheme for para-
metricity can be developed that is not an over approximation. Then in
Chapter 10, we analyze previous attempts to combine parametricity
and gradual typing using a technique called dynamic sealing and de-
velop a new language design with a novel syntax that makes dynamic
sealing explicit and provides both data abstraction and graduality.

Chapter 10 is an expanded version of the paper New, Jamner,
and Ahmed [57], with a simpler syntax for polymorphic function
application. Chapter 9 is novel material.



9
G R A D UA L T Y P I N G & C U R RY S T Y L E
P O LY M O R P H I S M

In this chapter we study the problem of correct dynamic enforcement
of parametricity for Curry-style, i.e., implicitly polymorphic, languages,
and show that it is not computable if the language features any non-
trivial total functions on the dynamic type such as tag tests, instance
checks or printing. By Curry-style polymorphism we mean languages
with polymorphic function types but where this polymorphism is not
present in the syntax of terms. For instance, in a Curry-style system
the following identity function

λx.x

can be given the polymorphic type ∀X.X → X. By contrast, in a
Church-style or explicitly polymorphic language, the polymorphic
type variable would need to be explicitly quantified in the syntax, and
a polymorphic identity function would be written

ΛX.λx : X.x.

In the context of gradual typing, Curry-style is especially relevant
because dynamically typed languages do not typically quantify over
type variables, and so if the typed sublanguage has the same syntax
as the dynamic language, then Curry-style is the most relevant.

9.1 informal proof

In this section we show that correct enforcement of Curry-style para-
metricity is incompatible with having a total, non-trivial predicate
in the dynamically typed sublanguage. Note that total, non-trivial
predicates are quite common in dynamically typed programming:
testing if an input is an integer, if an input is an instance of a specific
class, or printing an input to a string are all typical, benign features of
dynamically typed languages that allow for the construction of such a
predicate.

First, we present an informal argument. Let p be our predicate
and Vt be an input such that p Vt 7→∗ true and Vf an input such
that p Vf 7→∗ false. Let N be an arbitrary closed dynamically typed
program. We will show that it is decidable if let y = N; true ∼= true.
This would imply that we can determine in finite time if a term N
diverges.

Construct the following program Q?[N]:

Q?[N] = λ?x.if p(x) then (let y = N; true) else true

249



250 gradual typing & curry style polymorphism

Q?[N] is a dynamically typed function that checks if its input satisfies
p and either runs N and then returns true, or just returns true. Next,
define Q∀ to be that function cast to a polymorphic type of constant
functions that return booleans:

Q∀[N] = Q?[N] :: ∀X.X → Bool

The free theorem for this type says that the input doesn’t matter at all.
For any VA : A and VB : B, we should have

Q∀[N][A]VA
∼= Q∀[N] [A] VB

Now, note that if let y = N; true ∼= true, then Q?[N] is equivalent
to a constant function λ?x.true. Constant functions are clearly para-
metric so Q∀[N] should also be equivalent to a function that always
returns true. However, if let y = N; true 6∼= true, then we can pass
values to Q?[N] to have it perform each behavior: if we pass it Vt it
will perform N’s side-effects, but if passed Vf it will reduce to true

with no observable side-effects.
By graduality, Q∀[N] must approximate the behavior of Q?[N], so

when passed Vt it must “error more than” let y = N; true and if
passed Vf it must error more than simply true. But by parametricity,
its behavior must be the same in both cases since it cannot depend on
its input so it must have a single behavior that errors more than true

and also let y = N; true. Finally, the only valid behaviors that error
more than true are f and true itself, so Q∀[N] must always error.

So to summarize, to decide if let y = N; true ∼= true, run the
program:

Q∀[N]Vt

If let y = N; true ∼= true then this will reduce to true in finite time,
otherwise it will reduce to f in finite time.

9.2 formalizing the assumptions of the proof

In order to formalize what the assumptions of the proof above are, we
list some axioms that are sufficient to reproduce the proof. To keep
things as generalizable as possible, we will axiomatize this based on an
equivalence relation between closed programs ∼=. This corresponds in
our previous chapters to “semantic equivalence”, for instance saying
two terms are equivalent if they both terminate, both error or both
diverge. But we leave this abstract to avoid making assumptions about
what effects are present in the language. To be completely precise,
some axioms will fix a call-by-value evaluation order, but the analysis
should be easily modifiable to other evaluation orders.

First, we review some basic relevant notions of computability theory.
Informally a predicate is semidecidable if we can determine in finite time



9.2 formalizing the assumptions of the proof 251

if something satisfies a predicate, but might not be able to determine
in finite time if something does not satisfy a predicate. Formally, a
predicate on strings Q is semidecidable if there exists a program
in a Turing-equivalent language that accepts an input s if and only
Q(s) is true. On other inputs, the program may either diverge or
reject the input. A predicate is co-semidecidable if its complement is
semidecidable. A predicate Q is decidable when it is semidecidable and
co-semidecidable. Equivalently, it can be correctly implemented as
an always terminating program that accepts when inputs satisfy the
predicate and rejects otherwise.

Now, the axioms we choose are as follows.

• The language is sufficiently strong to satisfy Rice’s theorem: any
total, computable, semantic predicate of terms in the language
is trivial: always true or always false. Here by semantic we will
mean that it respects ∼=.

• Termination and error are finitary in that M ∼= true and M ∼= f
are both semidecidable.

• Some basic call-by-value reductions

– let x = true; true ∼= true and let x = f; true ∼= f. In
lazy languages, this could be replaced by an if-statement or
any other strict function.

– Call-by-value β reduction for dynamically typed functions.
We need that for pure terms V.

(λ?x.M) V ∼= M[V/x]

– β reduction for if-statements:

if true then M else N ∼= M

and

if false then M else N ∼= N

• There is a non-trivial total predicate on the dynamic type. I.e.,
a term in the language p such that for any dynamically typed
input v, p(v) reduces deterministically to either true or false

and there is at least one value vt such that p(vt) is true and at
least one value v f such that p(v f ) is false.

More formally, we say a term t is pure if for any u, let y =

t; u ∼= u[t/y]. First, we require that p is a total predicate in that
for any pure t, p(t) is pure. Then, we say that it is boolean in
that

x dynamic ` u

let x = p(t); u ∼= if p(t) then u[true/x] else u[false/x]
: A



252 gradual typing & curry style polymorphism

And non-trivial in that there are pure terms Vt and Vf such that
p(Vt) ∼= true and p(Vf ) ∼= false.

A typical example of such a predicate in a dynamic language
would be a tag-testing function such as integer? in Racket, or
checking if an object is an instance of a given class. In addition,
any total, non-trivial function that prints values to an observ-
able string can likely be used to construct such a predicate by
checking if the first character of the string is equal to “a”.

• To formalize graduality of the language, we have an ordering v
on terms (possibly of different types). Think of this ordering not
as the syntactic term precision ordering, but rather the semantic
term ordering that term precision implies.

1. The graduality ordering respects semantic equivalence.

M′ ∼= M M v N N ∼= N′

M′ v N′

2. (Ground Value) If M 6∼= true, and N v M and N v true,
then N ∼= f.

3. Polymorphic functions are considered more precise than
(non-polymorphic) dynamically typed functions and poly-
morphic type instantiation is more precise than dynamically
typed function application in that

M∀ v Md : ∀X.X → X v ?→ ? NX v Nd : A v ?

M∀[A] NX v Md Nd : A v ?

• To formalize parametricity, we ask only for a couple of conse-
quences of parametricity for terms of type M : ∀X.X → Bool.
The first property tells us that all such functions are uniform,
and the second gives us an example of a function that should
successfully be castable to this type.

1. Every term M : ∀X.X → Bool is uniform in that for any A
and VA : A and VB : B that

M[A]VA
∼= M[B]VB

2. The constant function λx.true is parametric in that casting
dλx.truee :: ∀X.X → Bool results in a term satisfying

(dλx.truee :: ∀X.X → Bool)[A]M ∼= let y = M; true

Then we can show the following lemma which shows that running
Q∀ [N] Vt is equivalent to testing N runs to true.



9.2 formalizing the assumptions of the proof 253

Lemma 186. Define (as before)

Q?[N] = λ?x.if p(x) then (let y = N; true) else true

and

Q∀[N] = Q?[N] :: ∀X.X → Bool

Then from our axioms we can show that,

Q∀[N] [?]Vt ∼= true if and only if let y = N; true ∼= true

and

Q∀[N] [?]Vt ∼= f if and only if let y = N; true 6∼= true

Proof. By excluded middle and since f 6∼= true, it is sufficient to show
the reverse cases only.

• Assume let y = N; true ∼= true. We need to show that Q∀[N] [?] Vt ∼=
true.

First, since let y = N; true ∼= true,

Q?[N]

= λ?x.if p(x) then let y = N; true else true

∼= λ?x.if p(x) then true else true

∼= λ?x.let y = p(x); if y then true else true

∼= λ?x.let y = p(x); true
∼= λ?x.true

Then by our parametricity assumption,

Q∀[N] [?] Vt ∼= let y = Vt; true ∼= true

• Assume let y = N; true ∼= f. We need to show that Q∀[N] [?] Vt ∼=
false.

First, by β reductions and our assumption we know

Q?[N] Vt = (λ?x.if p(x) then let y = N; true else true)Vt

∼= if p(Vt) then let y = N; true else true

∼= if true then let y = N; true else true

∼= let y = N; true
∼= f

and by similar reasoning Q?[N] Vf
∼= true.

Next, by graduality we know that applying Q∀[N] to the same
inputs must approximate the behavior of Q?[N], so

Q∀[N] [?] Vt v Q?[N]Vt ∼= f



254 gradual typing & curry style polymorphism

and

Q∀[N] [?] Vf v Q?[N]Vf
∼= true

Then, by parametricity we also know that Q∀[N] must be uni-
form, so

Q∀[N] [?] Vt ∼= Q∀[N] [?] Vf

So we know that Q∀[N] [?] Vt is below both f and true, so by
our ground value assumption we know

Q∀[?] Vt ∼= f

which is our intended conclusion.

Then we can derive a contradiction by showing that this constructs
a counter-example to Rice’s theorem.

Theorem 187. let y = N; true ∼= true is a decidable, non-trivial, seman-
tic predicate on N.

Proof. • First, the predicate is semidecidable because M ∼= true is
semidecidable for any M. Second, the predicate is co-semidecidable
because let y = N; true 6∼= true if and only if Q∀[N] [?] Vt ∼= f
which is semidecidable.

• Next, the predicate is non-trivial since let y = true; true ∼=
true and let y = f; true ∼= f by one of our axioms.

• Finally, the predicate is semantic by congruence.

9.3 consequences

What conclusions should we draw from this? First, we should under-
stand that the goal of correct dynamic enforcement of parametricity
is unrealistic, and should be considered to be in the same category
of properties as enforcing termination. But what is on the frontier of
this impossibility results: which of our axioms can be violated in a
reasonable system?

First, we might have a language in which there are no non-trivial
total predicates on the dynamic type. This means introducing some
error cases into things like tag tests. This is somewhat common in
dynamic sealing approaches to enforcing parametricity, which we will
examine in more detail in the next chapter. In these systems, the func-
tion Q∀[N] above would always error, essentially because any use of a
predicate p (think integer?) on a value of abstract type is considered



9.3 consequences 255

“non-parametric”, whether or not the result of the predicate is used
in a way that is extensionally non-parametric! So in particular the
function

λx.if integer?x then true else true

would be considered non-parametric, even though in a typical dynam-
ically typed language it would be observationally equivalent to a con-
stant function. From the perspective of a user of the original dynamic
language, having this function be non-parametric would be considered
overly conservative, punishing the function for utilizing integer? rather
than the intended property of exhibiting non-parametric behavior.
Furthermore, programmers may have used the assumption that a
predicate was pure to justify refactorings, such as lifting a predicate
into or out of a loop or callback, and so introducing these erroring
behaviors might be considered a backwards-incompatible change to the
language, and so should accordingly be carefully considered.

The next axiom we might drop is the one that says that it is semide-
cidable if M ≈ctx f, i.e., to replace our finitary notion of an error with
a more liberal notion of either erroring or diverging. This is more in
line with the domain-theoretic notion of a universal domain than the
gradual typing notion of a dynamic type. Such a system might be of
interest for dynamically testing some functions to detect parametricity
violations, but the fact that making types more precise might introduce
divergence into a program means it is not very useful for a gradual
typing system.

A final axiom we might drop is the ground value axiom that says
that if a term M is inequivalent to a ground value like true, then
the only behavior that can refine both terms is an error. This axiom
is satisfied in all the logical relations models we have of the error
ordering in this thesis, but all of these languages have a deterministic
semantics. It may be possible to have a non-deterministic semantics
where more non-deterministic terms are considered to be more precise,
but we do not know of an existing model for this.





10
G R A D UA L I T Y A N D PA R A M E T R I C I T Y: T O G E T H E R
A G A I N F O R T H E F I R S T T I M E

Now we have seen that any approach to “enforcing” parametricity
must adopt some compromise, we move to concrete language designs
that attempt it anyway, using a mechanism called dynamic sealing. First,
we will review some previous language designs, and why they all
fail to satisfy at least one of graduality and parametricity. Then the
remainder of the chapter will present an alternative language design
that separates the gradual typing notion of type enforcement with the
dynamic sealing mechanism altogether. The language using a different
syntax from System F polymorphism, instead making alternative
“fresh” universal and existential types that make dynamic sealing an
explicit language feature rather than an opaque built-in enforcement
scheme.

In previous chapters we have focused on how to make the gradu-
ality theorem true by ensuring that all casts arise from embedding-
projection pairs, but now we review why graduality can fail. Lan-
guages can fail to satisfy the graduality theorem for a variety of
reasons but a common culprit is type-directed computation. Whenever
a form in a gradual language has behavior that is defined by inspec-
tion of the type of an argument, rather than by its behavior, there is a
potential for a graduality violation, because the computation must be
ensured to be monotone in the type. For instance, the Grace language
supports a construct the designers call “structural type tests”. That
is, it includes a form M is A that checks if M has type A at runtime.
Boyland [11] shows that care must be taken in designing the semantics
of this construct if A is allowed to be an arbitrary type. For instance,
it might seem reasonable to say that (λx : ?.x) is Int→ Int should
run to false because the function has type ? → ?. However, if we
increase the precision of the types by changing the annotation, we
get (λx : Int.x) is Int→ Int which should clearly evaluate to true,
violating the graduality principle. In such a system, we can’t think of
types as just properties whose precision can be tuned up or down: we
also need to understand how changing the type might influence our
use of type tests at runtime.

As discussed in earlier chapters (1, 2), graduality is crucial to a
programmer easily reasoning about the migration process, and the
more complicated the mechanisms of enforcement are, the more im-
portant it is to provide a system that provides graduality. Gradual
typing researchers have designed languages that support reasoning
principles enabled by a variety of advanced static features—such as ob-

257



258 graduality and parametricity : together again for the first time

jects [70, 79], refinement types [44], union and intersection types [12],
typestates [89], effect tracking [66], subtyping [29], ownership [68],
session types [41], and secure information flow [18, 23, 84]. As these
typing features become more complicated, the behavior of casts can
become sophisticated as well, and the graduality principle is a way of
ensuring that these sophisticated mechanisms stay within programmer
expectations.

Polymorphic languages can fail to satisfy the parametricity theo-
rem for a variety of reasons but one common culprit is type-directed
computation on abstract types. For instance in Java, values of a generic
type T can be cast to an arbitrary object type. If the type T happens
to be instantiated with the same type as the cast, then all information
about the value will be revealed, and data abstraction is entirely lost.
The problem is that the behavior of this runtime type-cast is directed
by the type of the input: at runtime the input must carry some in-
formation indicating its type so that this cast can be performed. A
similar problem arises when naïvely combining gradual typing with
polymorphism, as we will see in §10.1.

While parametric polymorphism ensures data abstraction by means
of a static type discipline, dynamic sealing provides a means of ensuring
data abstraction even in a dynamically typed language. To protect
abstract data from exposure, a fresh “key” is generated and imple-
mentation code must “seal” any abstract values before sending them
to untrusted parties, “unsealing” them when they are passed into the
exposed interface. For instance, we can ensure data abstraction for
an untyped abstract functional counter by generating a fresh key σ,
and producing a tuple where the first component is a 0 sealed with
σ, and the increment and read-out function unseal their inputs and
the increment function seals its output appropriately. If this is the
only way the seal σ is used in the program, then the abstraction is
ensured. While the programmer receives less support from the static
type checker, this runtime sealing mechanism gives much of the same
abstraction benefits.

One ongoing research area has been to satisfactorily combine the
static typing discipline of parametric polymorphism with the runtime
mechanism of dynamic sealing in a gradually typed language [4, 5,
42, 43, 85, 90]. However, no such language design has satisfied both of
the desired fundamental theorems: graduality for gradual typing and
relational parametricity for parametric polymorphism. Recent work
by Toro, Labrada, and Tanter [85] claims to prove that graduality and
parametricity are inherently incompatible, which backed by analogous
difficulties for secure information flow [84] has led to the impression
that the graduality property is incompatible with parametric reasoning.
This would be the wrong conclusion to draw, for the following two
reasons. First, the claimed proof has a narrow applicability. It is based
on the definition of their logical relation, which we show in §10.1.3



10.1 graduality and parametricity, friends or enemies? 259

does not capture a standard notion of parametricity. Second, and more
significantly, we should be careful not to conclude that graduality and
parametricity are incompatible properties, and that language designs
must choose one. In this paper, we reframe the problem: both are
desirable, and should be demanded of any gradual or parametric
language. The failure of graduality and parametricity in previous
work can be interpreted not as an indictment of these properties, but
rather points us to reconsider the combination of System F’s syntax
with runtime semantics based on dynamic sealing. In this paper, we
will show that graduality and parametricity are not in conflict per se,
by showing that by modifying System F’s syntax to make the sealing
visible, both properties are achieved. Far from being in opposition to
each other, both graduality and parametricity can be proven using a
single logical relation theorem (§10.6).

10.1 graduality and parametricity, friends or enemies?

First, we review the issues in constructing a polymorphic gradual
language that satisfies parametricity and graduality that have arisen in
previous work. We see in each case that the common obstacle to para-
metricity and graduality is the presence of type-directed computation.
This motivates our own language design, which obviates the need
for type-directed computation by making dynamic sealing explicit in
code.

10.1.1 “Naïve” Attempt

Before considering any dynamic sealing mechanisms, let’s see why
the most obvious combination of polymorphism with gradual typing
produces a language that does not maintain data abstraction. Consider
a polymorphic function of type ∀X.X → Bool. In a language satisfying
relational parametricity, we know that the function must treat its input
as having abstract type X and so this input cannot have any influence
on what value is returned. However, in a gradually typed language,
any value can be cast using type ascriptions, such as in the function
ΛX.λx : X.(x :: ?) :: Bool. Here :: represents a type ascription. In a
gradually typed language, a term M of type A can be ascribed a type
B if it is “plausible” that an A is a B. This is typically formalized
using a type consistency relation ∼ or more generally consistent
subtyping relation <∼, but in either case, it is always plausible that
an A is a ? and vice-versa, so in effect a value of any type can be
cast to any other by taking a detour through the dynamic type. These
ascriptions would then be elaborated to casts producing the term
ΛX.λx : X.〈Bool ⇐ ?〉〈? ⇐ X〉x If this function is applied to any
value that is not compatible with Bool, then the function will error,



260 graduality and parametricity : together again for the first time

but if passed a boolean, the natural substitution-based semantics
would result in the value being completely revealed:

(ΛX.λx : X.〈Bool⇐ ?〉〈?⇐ X〉x)[Bool]true 7→∗ 〈Bool⇐ ?〉〈?⇐ Bool〉true 7→∗ true

From a semantic perspective this should not be surprising. Polymor-
phic functions allow for the parameterization of a function over a
type, but the notion of type differs between different languages. In
Chapter 3, we made a model where a gradual type A was interpreted
as a pair of a logical type |A| and an ep pair |A| / ?. This “naïve”
semantics is just the natural result of this idea: polymorphic functions
receive both the logical type and the corresponding ep pair as inputs,
which allows them to implement casts such as 〈Bool ⇐ ?〉. This is
the root-cause of this parametricity violation is that we allow casts
like 〈? ⇐ X〉 whose behavior depends on how X is instantiated. To
construct a gradual language with strong data abstraction we must
somehow avoid the dependency of 〈?⇐ X〉 on X.

One option, is to ban casts like 〈? ⇐ X〉 altogether. Syntactically,
this means changing the notion of plausibility to say that ascribing a
term of type X with the dynamic type ? is not allowed. Semantically,
this corresponds to only quantifying over the logical type |X|, and
not having access to the ep pair. This is possible using the system
presented by Igarashi, Sekiyama, and Igarashi [42] if you only allow
Λs that use the “static” label. This is compatible with parametricity
and graduality, but is somewhat against the spirit of gradual typing,
where typically all programs could be written as dynamically typed
programs, and dynamically typed functions can be used on values of
any type.

A fairly ingenious alternative, based on the insights of Morris [52],
is called dynamic sealing. The basic idea is that polymorphic functions
will still be parameterized by a logical type and an ep pair, but we
ensure that the ep pair is always constructed by a fresh tag on the
dynamic type, So dynamic sealing allows casts like 〈? ⇐ X〉, but
ensures that their behavior does not depend on how X is instantiated.

10.1.2 Type-directed Sealing

In sealing-based gradual parametric languages like λB [4, 5], we en-
sure that casts of abstract type do not depend on their instantiation by
adding a layer of indirection. Instead of the usual β rule for polymor-
phic functions

(ΛX.M)[A] 7→ M[A/X],

in λB, we dynamically generate a fresh type α and pass that in for X.
This first of all means the runtime state must include a store of fresh



10.1 graduality and parametricity, friends or enemies? 261

types, written Σ. When reducing a type application, we generate a
fresh type α and instantiate the function with this new type

Σ; (ΛX.M)[A] 7→ Σ, α := A; M[α/X]

In this case, we interpret α as being a new tag on the dynamic type that
tags values of type A but is different from all previously used tags. The
casts involving α are treated like a new base type, incompatible with
all existing types. However, if we look at the resulting term, it is not
well-typed: if the polymorphic function has type ∀X.B, then M[α/X]

has type B[α/X], but the context of this term expects it to be of type
B[A/X]. To paper over this difference, λB wraps the substitution with
a type-directed coercion, distinct from casts, that mediates between the
two types:

Σ; (ΛX.M)[A] 7→ Σ, α := A; M[α/X] : B[α/X]
+α
=⇒ B[A/X]

This type-directed coercion M[α/X] : B[α/X]
+α
=⇒ B[A/X] is the

part of the system that performs the actual sealing and unsealing,
and is defined by recursion on the type B. The +α indicates that
we are unsealing values in positive positions and sealing at negative
positions. For instance if B = X× Bool, and X = Bool, then on a pair
(sealαtrue, false) the coercion will unseal the sealed boolean on the
left and leave the boolean on the right alone. If B is of function type,
the definition will involve the dual coercion using −α, which seals at
positive positions. So for instance applying the polymorphic identity
function will reduce as follows

Σ; (ΛX.λx : X.x)[Bool]true

7→ Σ, α := Bool; (λx : α.x : α→ α
+α
=⇒ Bool→ Bool)true

7→ Σ, α := Bool; (λx : α.x)(true : X −α
=⇒ α) : α

+α
=⇒ X

7→ Σ, α := Bool; (λx : α.x)(sealαtrue) : α
+α
=⇒ X

7→ Σ, α := Bool; sealαtrue : α
+α
=⇒ X

7→ true

While this achieves the goal of maintaining data abstraction, it unfor-
tunately violates graduality, as first pointed out by Igarashi, Sekiyama,
and Igarashi [42]. The reason is that the coercion is a type-directed
computation, this time directed by the type ∀X.B of the polymorphic
function, whose behavior observably differs at type X from its behav-
ior at type ?. Specifically, a coercion M : X −α

=⇒ α results in sealing the
result of M, whereas if X is replaced by dynamic, then M : ? −α

=⇒ α is
an identity function. An explicit counter-example is given by modify-
ing the identity function to include an explicit annotation. The term
M1 = (ΛX.λx : X.x :: X)[Bool]true reduces by generating a seal α,
sealing the input true with α, then unsealing it, finally producing
true. On the other hand, if the type of the input were dynamic rather



262 graduality and parametricity : together again for the first time

than X, we would get a term M2 = (ΛX.λx : ?.(x :: X))[Bool]true.
In this case, the input is not sealed by the implementation, and the
ascription of X results in a failed cast since Bool is incompatible with
α. The only difference between the two terms is a type annotation,
meaning that M1 v M2 in the term precision ordering (M1 is more
precise than M2), and so the graduality theorem states that if M1

does not error, it should behave the same as M2, but in this case M2

errors while M1 does not. The problem here is that the type of the
polymorphic function determines whether to seal or unseal the inputs
and outputs, but graduality says that the behavior of the dynamic type
must align with both abstract types X (indicating sealing/unsealing)
and concrete types like Bool (indicating no sealing/unsealing). These
demands are contradictory since dynamic code would have to simul-
taneously be opaque until unsealing and available to interact with.
So we see that the attempt to remove the type-directed casts which
break parametricity by using dynamic sealing led to the need for a
type-directed coercion which breaks graduality.

10.1.3 To Seal, or not to Seal

The language GSF was introduced by Toro, Labrada, and Tanter [85]
to address several criticisms of the type system and semantics of λB.
We agree with the criticisms of the type system and so we will focus
on the semantic differences. GSF by design has the same violation of
graduality as λB, but has different behavior when using casts.

One motivating example for GSF is what happens when casting the
polymorphic identity function to have a dynamically typed output:
(((ΛX.λx : X.x) :: ∀X.X → ?)[Int]1) + 2. In λB, the input 1 is sealed
as dictated by the type, but the dynamically typed output is not
unsealed when it is returned from the function, resulting in an error
when we try to add it. Ahmed et al. [4] argue that it should be
a free theorem that the behavior of a function of type ∀X.X → ?
should be independent of its argument: it always errors, diverges or it
always returns the same dynamic value, based on the intuition that
the dynamic type ? does not syntactically contain the free variable X,
and that this free theorem holds in System F. This reasoning is suspect
since at runtime, the dynamic type does include a case for the freshly
allocated type X, so intuitively we should consider ? to include X (and
any other abstract types in scope).

Toro, Labrada, and Tanter [85] argue on the other hand that intu-
itively the identity function was written with the intention of having
a sealed input that is returned and then unsealed, and so casting the
program to be more dynamic should result in the same behavior and
so the program should succeed. The function application runs to the
equivalent of 〈? ⇐ Int〉1 which is then cast to Int and added to 2,
resulting in the number 3. The mechanism for achieving this semantics



10.1 graduality and parametricity, friends or enemies? 263

is a system of runtime evidence, based on the Abstracting Gradual Typing
(AGT) framework [29]. An intuition for the behavior is that the sealing
is still type-directed, but rather than being directed by the static type
of the function being instantiated, it is based on the most precise type
that the function has had. So here because the function was originally
of type ∀X.X → X, the sealing behavior is given by that type.

However, while we agree that the analysis in Ahmed et al. [4] is
incomplete, the behavior in GSF is inherently non-parametric, because
the polymorphic program produces values with different dynamic type
tags based on what the input type is. As a user of this function, we
should be able to replace the instantiating type Int with Bool and give
any boolean input and get related behavior at the type ?, but in the
program (((ΛX.λx : X.x) :: ∀X.X → ?)[Bool]true) + 2 the function
application reduces to 〈?⇐ Bool〉true which errors when cast to Int.
Intuitively, this behavior is not parametric because the first program
places an Int tag on its input, and the second places a Bool tag on its
input.

The non-parametricity is clearer if we look at a program of type
∀X.?→ Bool and consider the following function, a constant function
with abstract input type cast to have dynamic input:

const = (ΛX.λx : X.true) :: ∀X.?→ Bool

X now has no effect on static typing, so both const[Int]3 and const[Bool]
are well-typed. However, since the sealing behavior is actually deter-
mined by the type ∀X.X → Bool, the program will try to seal its input
after downcasting it to whatever type X is instantiated at. So the first
program casts 〈Int⇐ ?〉〈?⇐ Int〉3, which succeeds and returns true,
while the second program performs the cast 〈Bool ⇐ ?〉〈? ⇐ Int〉3
which fails. In effect, we have implemented a polymorphic function
that for any type X, is a recognizer of dynamically typed values for
that type, returning true if the input matches X and erroring oth-
erwise. Any implementation of this behavior would clearly require
passing of some syntactic representation of types at runtime.

Formally, the GSF language does not satisfy the following defining
principle of relational parametricity, as found in standard axiomatizations
of parametricity such as Dunphy [19], Ma and Reynolds [48], and
Plotkin and Abadi [63]. In a parametric language, the user of a term M
of a polymorphic function type ∀X.A→ B should be guaranteed that
M will behave uniformly when instantiated multiple times. Specifically,
a programmer should be able to instantiate M with two different types
B1, B2 and choose any relation R ∈ Rel[B1, B2] (where the notion of
relation depends on the type of effects present), and be ensured that
if they supply related inputs to the functions, they will get related



264 graduality and parametricity : together again for the first time

outputs. Formally, for a Kripke-style relation, the following principle
should hold:

M : ∀X.A→ B R ∈ Rel[B1, B2] (w, V1, V2) ∈ VJAKρ[X 7→ R]

(w, M[B1]V1, M[B2]V2) ∈ EJBKρ[X 7→ R]

Here w is a “world” that gives the invariants in the store and ρ is the
relational interpretation of free variables. VJ·K and EJ·K are value and
expression relations formalizing an approximation ordering on values
and expressions respectively, and X 7→ R means that the relational
interpretation of X is given by R.

Toro, Labrada, and Tanter [85] use an unusual logical relation for
their language based on a similar relation in Ahmed et al. [5], so
there is no direct analogue of the relational mapping X 7→ R. Instead,
the application extends the world with the association of α to R and
the interpretation sends X to α. However, we can show that this
parametricity principle is violated by any ρ we pick for the term const
above, using the definition of EJ·K given in [85]1. Instantiating the
lemma would give us that (w, const[Int]3, const[Bool]3) ∈ EJBoolKρ

since (w, 3, 3) ∈ VJ?Kρ for any ρ. The definition of EJBoolKρ then says
(again for any ρ) that it should be the case that since const[Int]3 runs
to a value, it should also be the case that const[Bool]3 runs to a value
as well, but in actuality it errors, and so this parametricity principle
must be false.

How can the above parametricity principle be false when Toro,
Labrada, and Tanter [85] prove a parametricity theorem for GSF? We
have not found a flaw in their proof, but rather a mismatch between
their theorem statement and the expected meaning of parametricity. The
definition of VJ∀X.AK in Toro, Labrada, and Tanter [85] is not the usual
interpretation, but rather is an adaptation of a non-standard definition
used in Ahmed et al. [5]. Neither of their definitions imply the above
principle, so we argue that neither paper provides a satisfying proof
of parametricity. With GSF, we see that the above behavior violates
some expected parametric reasoning, using the definition of VJ?K
given in Toro, Labrada, and Tanter [85]. With λB, we know of no
counterexample to the above principle, and we conjecture that it
would satisfy a more standard formulation of parametricity.

It is worth noting that the presence of effects—such as nontermina-
tion, mutable state, control effects—requires different formulations of
the logical relation that defines parametricity. However, those logical
relations capture parametricity in that they always formalize uni-
formity of behavior across different type instantiations. For instance,
for a language that supports nontermination, the logical relation for
parametricity ensures that two different instantiations have the same
termination behavior: either both diverge, or they both terminate with

1 they use slightly different notation, but we use notation that matches the logical
relation we present later



10.1 graduality and parametricity, friends or enemies? 265

related values. Because of this, the presence of effects usually leads to
weaker free theorems—in pure System F all inhabitants of ∀X.X → X
are equivalent to the identity function, but in System F with non-
termination, every inhabitant is either the identity or always errors.
Though the free theorems are weaker, parametricity still ensures uni-
formity of behavior. As our counterexample above (const[Int]3 vs.
const[Bool]3) illustrates, GSF is non-parametric since it does not en-
sure uniform behavior. However, since the difference in behavior was
between error and termination, it is possible that GSF satisfies a prop-
erty that could be called “partial parametricity” (or parametricity
modulo errors) that weakens the notion of uniformity of behavior:
either one side errors or we get related behaviors. However, it is not
clear to us how to formulate the logical relation for the dynamic type
to prove this. We show how this weakened reasoning in the presence
of ? compares to reasoning in our language PolyGν in §10.7.

Our counter-example crucially uses the dynamic type, and we con-
jecture that when the dynamic type does not appear under a quantifier,
that the usual parametric reasoning should hold in GSF. This would
mean that in GSF once polymorphic functions become “fully static”,
they support parametric reasoning, but we argue that it should be the
goal of gradual typing to support type-based reasoning even in the
presence of dynamic typing, since migration from dynamic to static
is a gradual process, possibly taking a long time or never being fully
completed.

10.1.4 Resolution: Explicit Sealing

Summarizing the above examples, we see that

1. The naïve semantics leads to type-directed casts at abstract types,
violating parametricity.

2. λB’s type-directed sealing violates graduality because of the
ambiguity of whether or not the dynamic type indicates seal-
ing/unsealing or not.

3. GSF’s variant of type-directed sealing based on the most precise
type violates graduality as the others do, but also violates para-
metricity because the polymorphic function gets to determine
which dynamically typed values are sealed (i.e. abstract) and
which are not.

We see that in each case, the use of a type-directed computational
step leads to a violation of graduality or parametricity. The GSF
semantics makes the type-directed sealing of λB more flexible by using
the runtime evidence attached to the polymorphic function rather than
the type at the instantiation point, but unfortunately this makes it



266 graduality and parametricity : together again for the first time

impossible for the continuation to reason about which dynamically
typed values it passes will be treated as abstract or concrete.

In the remainder of this chapter we will present the syntax and se-
mantics of PolyGν, an alternative approach to incorporating dynamic
sealing with gradual typing that avoids the need for any type-directed
sealing. We designed PolyGνby revisiting some of the basic ideas of
dynamic sealing approaches. First, notice that the dynamic “enforce-
ment” of parametricity provided by dynamic sealing approaches is
fundamentally different from the gradual typing semantics of previ-
ous chapters in that it takes place regardless of whether or not any
casts occur in the program. Whenever we instantiate a polymorphic
type with a variable, a new type tag is created and the inputs and
outputs are sealed and unsealed as dictated by the types, even if the
only type used is the dynamic type. The sealing affects what certain
casts mean, such as casting from abstract X to ? or vice-versa, but the
sealing itself does not arise because some not necessarily parametric
function is cast to parametric type. If dynamic sealing is “enforcing”
parametricity, it is “enforcing” it on all polymorphic functions, even
those that are completely written in the statically typed portion of the
language.

As we saw in the previous chapter, the idea of “enforcing” para-
metricity is fundamentally flawed, and so in PolyGν we abandon the
idea entirely. Instead, we think of the dynamic sealing version of
universal and existential types as being a new type, fundamentally
different from the System F notion of universal and existential types,
but similar enough to provide some of the same benefits.

The dynamic sealing version of universally quantified types, which
we will call fresh universal types, ensures that any instantiation of the
polymorphic function uses a fresh type. However recall that when we
use the syntax of System F instantiation:

M : ∀X.A

M[B] : A[B/X]

We get a mismatch, instead of instantiating with B we instantiate with
a fresh type α that is merely isomorphic to B, not the same as it.

Σ; (ΛX.M)[A] 7→ Σ, α := A; M[α/X]

This results in the need for type-directed sealing to mask the dif-
ference. This is the main difference in PolyGν. In PolyGν, we make
manifest the fact that when we instantiate a fresh polymorphic func-
tion, it creates a new type. Then, the continuation of the instantiation
must use this fresh type, rather than the original. To give a simple scop-
ing for this, we need to introduce an ANF-restriction to instantiations,
giving us the syntax

let x = M{X ∼= B}; N



10.1 graduality and parametricity, friends or enemies? 267

Here M is instantiated with the type X, which is a newly generated type
that is constructed to be isomorphic to, but not identical to, B. The
result is then bound to x and the continuation N now has an explicit
isomorphism in scope sealX : B→ X and unsealX : X → B allows it
to manually seal and unseal inputs and outputs of x as necessary. Then
rather than the runtime system implementing the complex system of
sealing by induction over types, the programmer explicitly seals in the
program, and so avoids the need for type-directed sealing.

A similar syntax works for existential types, but the instantiating
party is the introduction form

packν(X ∼= A, M)

Which when unpacked will create a fresh type X isomorphic to A in
M. We can think of this as a simplistic kind of module system where
X is a new type created to be isomorphic to A and is exported without
exposing this isomorphism, resembling the use of modules in Haskell
to provide data abstraction.

Summarizing the high level ideas behind PolyGν:

1. We depart from the syntax of System F.

2. Sealing/unsealing of values is explicit and programmable, rather
than implicit and type-directed.

3. The party that instantiates an abstract type is the party that
determines which values are sealed and unsealed. For existen-
tial types, this is the package (i.e., the module) and dually for
universal types it is the continuation of the instantiation.

The dynamic semantics of PolyGν are similar to λB without the type-
directed coercions, removing the obstacle to proving the graduality
theorem. By allowing user-programmable sealing and unsealing, more
complicated forms of sealing and unsealing are possible: for instance,
we can seal every prime number element of a list, which would require
a very rich type system to express using type-directed sealing! We
conjecture that the language is strictly more expressive than λB in
the sense of Felleisen [22]: λB should be translatable into PolyGν in
a way that simulates its operational semantics. Because the sealing is
performed by the instantiating party rather than the abstracting party,
the expressivity of PolyGν is incomparable to GSF.



268 graduality and parametricity : together again for the first time

We summarize the contributions of this chapter as follows

• We identify type-directed computation as the common cause
of graduality and parametricity violations in previous work on
gradual polymorphism.

• We show that certain polymorphic programs in Toro, Labrada,
and Tanter [85]’s language GSF exhibit non-parametric behavior.

• We present a new surface language PolyGν that supports a novel
form of universal and existential types where the creation of
fresh types is exposed in a controlled way. The semantics of
PolyGν is similar to previous gradual parametric languages, but
the explicit type creation and sealing eliminates the need for
type-directed computation.

• We elaborate PolyGν into an explicit cast calculus PolyCν. We
then give a translation from PolyCν into a typed target language,
CBPVOSum, essentially call-by-push-value with polymorphism
and an extensible sum type.

• We develop a novel logical relation that proves both graduality
and parametricity for PolyGν. Thus, we show that parametricity
and graduality are compatible, and we strengthen the connec-
tion alluded to by New and Ahmed [56] that graduality and
parametricity are analogous properties.

10.2 PolyGν : a gradual language with polymorphism and

sealing

Next, we present a our gradual language, PolyGν, that supports a
variant of existential and universal quantification while satisfying
parametricity and graduality. The language has some unusual features,
so we start with an extended example to illustrate what programs look
like, and then in §10.2.2 introduce the formal syntax and typing rules.

10.2.1 PolyGν Informally

Let’s first consider an example of existential types, since they are
simpler than universal types in PolyGν. In a typed, non-gradual lan-
guage, we can define an abstract “flipper” type, FLIP = ∃X.X× (X →
X)× (X → Bool). The first element is the initial state, the second is a
“toggle” function and the last element reads out the value as a concrete
boolean.

Then we could create an instance of this abstract flipper using
booleans as the carrier type X and negation as the toggle func-
tion pack(Bool, (true, (NOT, ID))) as FLIP. Note that we must explicitly



10.2 PolyGν : a gradual language with polymorphism and sealing 269

mark the existential package with a type annotation, because other-
wise we wouldn’t be able to tell which occurrences of Bool should
be hidden and which should be exposed. With different type anno-
tations, the same package could be given types ∃X.Bool× (Bool →
Bool)× (Bool→ Bool) or ∃X.X× (X → X)× (X → X).

The PolyGν language existential type works differently in a few
ways. We write ∃ν rather than ∃ to emphasize that we are only quanti-
fying over fresh types, and not arbitrary types. The equivalent of the
above existential package would be written as

packν(X ∼= Bool, (sealXtrue, ((λx : X.sealX(NOT(unsealXx))), (λx : X.unsealXx)))

The first thing to notice is that rather than just providing a type Bool

to instantiate the existential, we write a declaration X ∼= Bool. The X
here is a binding position and the body of the package is typed under
the assumption that X ∼= Bool. Then, rather than substituting Bool

for X when typing the body of the package, the type checker checks
that the body has type X × ((X → X) × (X → Bool)) under the
assumption that X ∼= Bool: Crucially, X ∼= Bool is a weaker assumption
than X = Bool. In particular, there are no implicit casts from X to Bool

or vice-versa, but the programmer can explicitly “seal” Bool values
to be X using the form sealX M, which is only well-typed under the
assumption that X ∼= A for some A consistent with Bool. We also get
a corresponding unseal form unsealX M, and the runtime semantics
in §10.4.4 defines these to be a bijection. At runtime, X will be a
freshly generated type with its own tag on the dynamic type. An
interesting side-effect of making the difference between X and Bool

explicit in the term is that existential packages do not require type
annotations to resolve any ambiguities. For instance, unlike in the
typed case, the gradual package above could not be ascribed the type
∃νX.Bool× ((Bool→ Bool)× (Bool→ Bool)) because the functions
explicitly take X values, and not Bool values.

The corresponding elimination form for ∃ν is a standard unpack:
unpack (X, x) = M; N, where the continuation for the unpack is typed
with just X and x added to the context, it doesn’t know that X ∼= A for
any particular A. We call this ordinary type variable assumption an
abstract type variable, whereas the new assumption X ∼= A is a known
type variable which acts more like a type definition than an abstract type.
At runtime, when an existential is unpacked, a fresh type X is created
that is isomorphic to A but whose behavior with respect to casts is
different.

While explicit sealing and unsealing might seem burdensome to the
programmer, note that this is directly analogous to a common pattern
in Haskell, where modules are used in combination with newtype to
create a datatype that at runtime is represented in the same way as an
existing type, but for type-checking purposes is considered distinct.
We give an analogous Haskell module as follows:



270 graduality and parametricity : together again for the first time

module Flipper(State, start, toggle, toBool) where

newtype State = Seal { unseal :: Bool }

start :: State

start = Seal True

inc :: State -> State

inc s = Seal (not (unseal s)

toBool :: State -> Bool

toBool = unseal

Then a different module that imports Flipper is analogous to an
unpack, as its only interface to the State type is through the functions
provided.

We also add universal quantification to the language, using the
duality between universals and existentials as a guide. Again we write
the type differently, as ∀νX.A. In an ordinary polymorphic language,
we would write the type of the identity function as ∀X.X → X and
implement it using a Λ form: ΛX.λx : X.x. The elimination form
passes in a type for X. For instance applying the identity function to a
boolean would be written as ID [Bool] true. And a free theorem tells
us that this term must ultimately diverge, error, or return true.

The introduction form Λν is dual to the unpack form, and corre-
spondingly looks the same as the ordinary Λ, for example in the
identity function

IDν = (ΛνX.λx : X.x) : ∀νX.X → X

The body of the Λν is typed with an abstract type variable X in scope.
The elimination form of type application is dual to the pack form, and
so similarly introduces a known type variable assumption. Instantiating
the identity function as above would be written as

(let f = IDν{X ∼= Bool}; unsealX( f (sealXtrue))) : Bool

which introduces a known type variable X ∼= Bool into the context.
Rather than the resulting type being Bool→ Bool, it is X → X with
the assumption X ∼= Bool. Then the argument to the function must
be explicitly sealed as an X to be passed to the function. The output
of the function is also of type X and so must be explicitly unsealed to
get a boolean out. However since the X ∼= Bool needs to be bound in
the continuation of the application, we introduce an explicit binding
form, giving us a somewhat inconvenient ANF-like restriction on
universal types. In the original paper version of this Chapter, we
consider an alternative “inside-out” binding structure, but present the
simpler ANF restriction here. While unusual, the elimination form is
intuitively justified by the duality with existentials: we can think of



10.2 PolyGν : a gradual language with polymorphism and sealing 271

the continuation for an instantiation of a ∀ν as being analogous to the
body of the existential package.

To get an understanding of how PolyGν compares to λB and GSF
and why it avoids their violation of graduality, let’s consider how we
might write the examples from the previous section. In PolyGν, if we
apply a function of type ∀X.X → X, we have to mark explicitly that
the input is sealed, and furthermore if we want to use the output as a
boolean, we must unseal the output:

let f = (ΛX.λx : X.x :: X){X ∼= Bool}; (unsealX( f (sealXtrue))) 7→∗ true

Then if we change the type of the input from X to ? the explicit
sealing and unsealing remain, so even though the input is dynamically
typed it will still be a sealed boolean, and the program exhibits the
same behavior:

let f = (ΛX.λx : ?.x :: X){X ∼= Bool}; (unsealX( f (sealXtrue))) 7→∗ true

If we remove the seal of the input, then the cast to X in the function
will fail, giving us the behavior of λB/GSF:

let f = (ΛX.λx : ?.x :: X){X ∼= Bool}; (unsealX( f true)) 7→∗ f

but there are two crucial differences with λB/GSF. First, this involved
changing the term, not just the type, so the graduality theorem does
not tell us that the programs should have related behavior. Second,
we don’t think of this error that we get as a “parametricity violation”
error, but simply the entirely normal “tag mismatch” dynamic type
error, where we explicitly tagged certain values as being of the new
type X in one program and left it as Bool-tagged in the other.

Next, let’s consider the parametricity violation from GSF. When we
instantiate the constant function, the programmer, not the runtime
system, decides if the argument is sealed or not. We get the behavior
of GSF when we instantiate with Int and seal the input 3:

let f = const{X ∼= Int}; f (sealX3) 7→∗ true

However, if we try to write the analogous program with Bool: instead
of Int

let f = const{X ∼= Bool}; f (sealX3)

then the program is not well typed because X ∼= Bool and 3 has type
Int which is not compatible. We can replicate the outcome of the GSF
program by not sealing the 3:

let f = const{X ∼= Bool}; f 3

But this is not a parametricity violation because the 3 here will be
embedded at the dynamic type with the Int tag, whereas above the 3
was tagged with the X tag, which is not related.



272 graduality and parametricity : together again for the first time

types A, B ::= ? |X | Bool | A× B | A→ B | ∃νX.A | ∀νX.A

Ground types G ::= X | Bool | ?× ? | ?→ ? | ∃νX.? | ∀νX.?

terms M, N ::= x |M :: A | sealX M | unsealX M | is(G)? M

| let x = M; N | true | false | if M then N1 else N2

| (M, N) | let (x, y) = M; N

| λx : A.M |M N

| packν(X ∼= A, M) | unpack (X, x) = M; N

| ΛνX.M | let x = M{X ∼= A}; N

environment Γ ::= · | Γ, x : A | Γ, X | Γ, X ∼= A

Figure 10.1: PolyGν Syntax

` ·
` Γ Γ ` A

` Γ, x : A

` Γ

` Γ, X

` Γ Γ ` A

` Γ, X ∼= A

Γ ` ?
X ∈ Γ

Γ ` X
Γ ` Bool

Γ ` A1 Γ ` A2

Γ ` A1 × A2

Γ ` A1 Γ ` A2

Γ ` A1 → A2

Γ, X ` A

Γ ` ∃νX.A

Γ, X ` A

Γ ` ∀νX.A

Figure 10.2: Well-formedness of Environments, Types

10.2.2 PolyGν Formal Syntax and Semantics

Figure 10.1 presents the syntax of the surface language types, terms
and environments. Most of the language is a typical gradual functional
language, using ? as the dynamic type, and including type ascription
M :: A. The unusual aspects of the language are the sealX M and
unsealX M forms and the “fresh” existential ∃νX.A and universal
∀νX.A. Note also the non-standard environments Γ, which include
ordinary typing assumptions x : A, abstract type variable assumptions
X and known type variable assumptions X ∼= A. For simplicity, we
assume freshness of all type variable bindings, i.e. when we write Γ, X
or Γ, X ∼= A that X does not occur in Γ. The well-formedness of these
environments is mutually defined with well-kindedness of types in
Figure 10.2

The typing rules are presented in Figure 10.3. We follow the usual
formulation of gradual surface languages in the style of Siek and Taha
[69]: type checking is strict when checking compatibility of different
connectives, but lax when the dynamic type is involved. The first
rule GAnn for the type annotation form M :: B says the term is well



10.2 PolyGν : a gradual language with polymorphism and sealing 273

formed when the type of the term A is consistent with the annotation
B, codified in the type consistency relation A ∼ B. We define this in the
standard way below the typing rules as being the least congruence
relation including equality and rules making ? consistent with every
type.

We include variable (GVar) and let-binding (GLet) rules. Next, the
sealing rule (GSeal) says we can seal a term M’s value at a know
type variable X if the type A that X is known to be isomorphic
to (X ∼= A ∈ Γ) is consistent with the type of M. The unseal rule
(GUnseal) gives access to the opposite direction of the isomorphism,
requiring that the type of M be consistent with the given known type
variable X. It is crucial for graduality to hold that this bijection is
explicit and not implicit, because the behavior of casts involving X
and A are very different. To show that PolyGν is compatible with
total predicates, we also include a form is(G)? M that checks at
runtime whether M returns a value that has the tag associated with
the ground type G. The rule (GCheckTag) states that M can have any
type in this case because it is always a safe operation, but the result is
either trivially true or false unless M has type ?. For example, if M
has static type X then is(X)? M will always evaluate to true (if M
reduces to a value) and if M has any other non-dynamic type, such as
A→ B, then this will always evaluate to false.

Next, we have boolean values (GTrue, GFalse) true and false.
Then the GIf rule for an if-statement checks that the scrutinee has
a type compatible with Bool, and as in previous work uses gradual
meet Bt u B f for the output type [28]. Gradual meet, defined in the
bottom right of the figure, is a partial operation, since this ensures
that if the two sides have different (non-?) head connectives then type
checking errors.

Next, we have pairs (GPair,GPmPair) and functions (GFun,GApp),
which are fairly standard. We use pattern-matching as the elimina-
tion form for pairs. To reduce the number of rules, we present the
elimination forms in the style of Garcia and Cimini [28], using partial
functions πi, dom, cod and later un∀ν, un∃ν to extract the subformula
from a type “up to ?”. For the correct type this extracts the actual
subformula, but for ? is defined to be ? and for other connectives is
undefined. We define these at the bottom left of the figure, where
uncovered cases are undefined. Next, we have existentials, which are
as described in §10.2.1. The introduction rule (GPack) introduces a
known type variable X ∼= A when type checking the body of the
pack, rather than substituting A for X as in the System F-style rule.
In the elimination rule (GUnpack), we essentially destructure the
scrutinee to get out an unknown type variable X and the value of type
un∃ν

X(A) where A is the type of the scrutinee M. Note that unlike
the other partial operations, un∃ν

X (and un∀ν
X) is indexed by a type

variable since it potentially is instantiating a bound variable. Similar



274 graduality and parametricity : together again for the first time

GAnn

Γ ` M : A A ∼ B
Γ ` (M :: B) : B

GVar

x : A ∈ Γ

Γ ` x : A

GLet

Γ ` M : A Γ, x : A ` N : B
Γ ` let x = M; N : B

GSeal

Γ ` M : B
X ∼= A ∈ Γ B ∼ A

Γ ` sealX M : X

GUnseal

Γ ` M : B
X ∼= A ∈ Γ B ∼ X

Γ ` unsealX M : A

GCheckTag

Γ ` M : A Γ ` G
Γ ` is(G)? M : Bool

GTrue

Γ ` true : Bool
GFalse

Γ ` false : Bool

GIf
Γ ` M : A A ∼ Bool

Γ ` Nt : Bt Γ ` N f : B f

Γ ` if M then Nt else N f : Bt u B f

GPair

Γ ` M1 : A1 Γ ` M2 : A2

Γ ` (M1, M2) : A1 × A2

GPmPair

Γ ` M : A Γ, x : π1(A), y : π2(A) ` N : B
Γ ` let (x, y) = M; N : B

GFun

Γ ` A Γ, x : A ` M : B
Γ ` λx : A.M : A→ B

GApp

Γ ` M : A Γ ` N : B dom(A) ∼ B
Γ ` M N : cod(A)

GPack

Γ, X ∼= A ` M : B
Γ ` packν(X ∼= A, M) : ∃νX.B

GUnpack

Γ ` M : A
Γ, X, x : un∃ν

X(A) ` N : B Γ ` B
Γ ` unpack (X, x) = M; N : B

GPolyFun

Γ, X ` M : A
Γ ` ΛνX.M : ∀νX.A

GPolyApp

Γ ` M : A Γ ` B
Γ, X ∼= B, x : un∀ν

X(A) ` N : Bo Γ ` Bo

Γ ` let x = M{X ∼= B}; N : Bo

? ∼ A A ∼ ? Bool ∼ Bool X ∼ X

Ai ∼ Bi Ao ∼ Bo

Ai → Ao ∼ Bi → Bo

A1 ∼ B1 A2 ∼ B2

A1 × A2 ∼ B1 × B2

A ∼ B
∃νX.A ∼ ∃νX.B

A ∼ B
∀νX.A ∼ ∀νX.B

dom(A→ B) = A

dom(?) = ?

cod(A→ B) = B

cod(?) = ?

πi(A1 × A2) = Ai

πi(?) = ?

un∃ν
Y(∃νX.A) = A[Y/X]

un∃ν
Y(?) = ?

un∀ν
Y(∀νX.A) = A[Y/X]

un∀ν
Y(?) = ?

A u ? = A

? u B = B

X u X = X

Boolu Bool = Bool

(A1 × A2) u (B1 × B2) = (A1 u B1)× (A2 u B2)

(Ai → Ao) u (Bi → Bo) = (Ai u Bi)→ (Ao u Bo)

(∃νX.A) u (∃νX.B) = ∃νX.(A u B)

(∀νX.A) u (∀νX.B) = ∀νX.(A u B)

Figure 10.3: PolyGν Type System



10.3 a dynamically typed variant of PolyGν
275

tags T ::= X | Bool | × |→ | ∃ν | ∀ν

terms M ::= x | sealX M | unsealX M | is(T)? M | true | false
| if M then M else M | (M, M) | let (x, x) = M; M

| M M | λx : A.M | packν(newX, M) | unpack (X, x) = M; N

| ΛνX.M | let x = M {newX}; N | let x = M; M

environment Γ ::= · | Γ, x | Γ, unknown X | Γ, known X

Figure 10.4: Dynamically Typed PolyGν

to System F there is a side condition Γ ` B that ensures the type of
the continuation does not leak the abstract type variable X. Finally,
we have universals. The introduction form (GPolyFun) is as a typical
System F Λ. The polymorphic function elimination form GPolyApp is
dual to the pack form: the scrutinee M is instantiated with a freshly
created type X ∼= B, and the result of the application is bound to a
variable x. Then the newly created known type variable is bound in
the continuation N in addition to the value x. Similar to the unpack
form, ensuring that the type of the continuation does not leak the
known type variable X.

10.3 a dynamically typed variant of PolyGν

Next, we present a syntax for the dynamically typed fragment of
PolyGν, which will demonstrate what dynamically typed features, the
existential and universal types of PolyGνcorrespond to. The existential
types give a kind of generative module system, while the universal
types give an exotic dual. Dynamically typed PolyGν is unusual for a
dynamically typed language in that it includes second class “tag vari-
ables” X like in PolyGν. Like how PolyGν has abstract type variables
X and known type variables X ∼= A, Dynamic PolyGν has unkown type
variables unknown X and known type variables known X. When we
elaborate to PolyGν, these known type variables will be interpreted as
X ∼= ?. We can think of the difference between known and unknown
type variables as a difference in capabilities: unknown type variables
unknown X only allow for checking if a value has the tag X, and
known type variables known X additionally allow for sealing and
unsealing values at the type X.

We present the abstract syntax of Dynamically typed PolyGν in Fig-
ure 10.4 and the scope-checking rules in Figure 10.5. Most of the rules
are typical for a dynamically typed λ-calculus, so we will only describe
the non-standard ones. First, the tag checking rule (DCheckTag), is
indexed by a tag T rather than a ground type G since the language
doesn’t have types per se. These tags, defined in Figure 10.4 include



276 graduality and parametricity : together again for the first time

all the basic forms of the language (booleans, products, etc) in addi-
tion to the fresh tags X, whether they are known or unknown. Next,
values can be “sealed” and “unsealed” with a known tag variable
known X ∈ Γ (DSeal, DUnseal). Further down, we see where known
and unknown type variables are actually produced. First, the pack
rule (DPack) introduces a new known tag variable in the body of the
“module”. When unpacking a module (DUnpack), the tag name X is
scoped as unknown, so the continuation cannot create directly create or
use values with tag X. Next, the Church-style polymorphic functions
(DPolyFun) abstract over an unknown type variable, whereas the
elimination form (DPolyApp) creates a new known type variable that
can be used by the continuation of the application.

These features enable data abstraction with no need for explicit
typing. For instance, our flipper module from earlier would be written:

packν(newX, (sealXtrue, ((λx.sealX(NOT(unsealXx))), (λx.unsealXx))))

where NOT = λx.if x then false else true.
This corresponds in PolyGν to using a pack instantiating X with ?,

i.e.,

packν(X ∼= ?, (sealXtrue, ((λx : X.sealX(NOT(unsealXx))), (λx : X.unsealXx))))

where NOT = λxBool.if x then false else true. and the free theo-
rems are equally valid with that instantiation.

While the known and unknown type variables might seem an odd
feature for a dynamically typed language, they should just be thought
of as capabilities to perform certain operations. An unknown type
variable X provides access to sealX and unsealX, while a known
type variable provides additional access to the tag checking function
is(X)? . Since these are just functions, it is easy to then use ordinary
functional programming to abstract over and pass these capabilities
around as first class values in the dynamically typed language.

To give a semantics to the dynamically typed PolyGν, we simply
elaborate to PolyGν in Figure 10.6. As mentioned above, unknown
type variables correspond to abstract type variables and known type
variables X correspond to known type variables isomorphic to the
dynamic type (X ∼= ?). The remaining rules are straightforward, with
all existential modules and polymorphic function instantiations using
?.



10.4 PolyCν : cast calculus 277

DVar

x ∈ Γ

Γ ` x

DLet

Γ ` M Γ, x ` N

Γ ` let x = M; N

DCheckTag

Γ ` M Γ ` G

Γ ` is(G)? M

DSeal

Γ ` M known X ∈ Γ

Γ ` sealX M

DUnseal

Γ ` M known X ∈ Γ

Γ ` unsealX M

DTrue

Γ ` true

DFalse

Γ ` false

DIf
Γ ` M

Γ ` Nt Γ ` N f

Γ ` if M then Nt else N f

DPair

Γ ` M1 Γ ` M2

Γ ` (M1, M2)

DPmPair

Γ ` M Γ, x, y ` N

Γ ` let (x, y) = M; N

DFun

Γ, x ` M

Γ ` λx.M

DApp

Γ ` M Γ ` N

Γ ` M N

DPack

Γ, known X ` M : B

Γ ` packν(newX, M)

DUnpack

Γ ` M Γ, unknown X, x ` N

Γ ` unpack (X, x) = M; N

DPolyFun

Γ, unknown X ` M

Γ ` ΛνX.M

DPolyApp

Γ ` M Γ, known X, x ` N

Γ ` let x = M {newX}; N

Figure 10.5: Dynamic PolyGν Scope Checking

10.4 PolyCν : cast calculus

As is standard in gradual languages, rather than giving the surface
language an operational semantics directly, we define a cast calculus
that makes explicit the casts that perform the dynamic type checking
in gradual programs. We present the cast calculus syntax in Figure 10.7.
The cast calculus syntax is almost the same as the surface syntax, with
a few runtime-specific forms added, and the type annotation form
replaced by two cast forms. First, we add runtime type tags σ to the
types. These will be generated fresh at runtime and substituted in
for type variables. We use α to refer to either a runtime type tag σ

or a type variable X. Ground types G are the same as before except
that they also include runtime type tags. Next, the terms remove the
type annotation form, and in their stead adds upcasts 〈Av〉

�

M and
downcasts 〈Av〉

�

M, which are here annotated by a type precision



278 graduality and parametricity : together again for the first time

d·e = ·
dΓ, xe = dΓe, x : ?

dΓ, known Xe = dΓe, X ∼= ?

dΓ, unknown Xe = dΓe, X

dXe = X

dBoole = Bool

d×e = ?× ?

d→e = ?→ ?

d∃νe = ∃νX.?

d∀νe = ∀νX.?

dxe = x

dlet x = M; Ne = let x = dMe; dNe
dsealX Me = (sealXdMe) :: ?

dunsealX Me = (unsealXdMe) :: ?

dis(T)? Me = is(dTe)? dMe
dtruee = true :: ?

dfalsee = false :: ?

dif M then Nt else N f e = if dMe then dNte else dN f e
d(M1, M2)e = (dM1e, dM2e) :: ?

dlet (x, y) = M; Ne = let (x, y) = dMe; dNe
dλx.Me = (λx : ?.dMe) :: ?

dM Ne = dMe dNe
dpackν(newX, M)e = (packν(X ∼= ?, dMe)) :: ?

dunpack (X, x) = M; Ne = unpack (X, x) = dMe; dNe
dΛνX.Me = (ΛνX.dMe) :: ?

dlet x = M {newX}; Ne = let x = dMe{X ∼= ?}; dNe

Figure 10.6: Translation of Dynamic PolyGνinto Gradual PolyGν



10.4 PolyCν : cast calculus 279

types A, B + ::= σ

type names α ::= σ |X
ground types G ::= α | Bool | ?× ? | ?→ ? | ∃νX.? | ∀νX.?

prec. derivations Av, Bv ::= ? | tagG(Av) | α | Bool | Av × Av

| Av → Bv | ∃νX.Av | ∀νX.Av

terms M, N − ::= (M :: A)

+ ::= f | 〈Av〉

�

M | 〈Av〉 � M
| | sealσ M | unsealσ M | is(σ)? M

| packν(X ∼= A, [Bv l], M) |Λν{X.([Bv l], M)}
values V ::= 〈tagG(G)〉

�

V | sealαV | true | false | x | (V, V)

| λ(x : A).M | 〈Av → Bv〉l V

| Λν{X.([Bv l], M)} | packν(X ∼= A, [Bv l], M)

eval. contexts E ::= [] | (E, M) | (V, E) | E M |V E

| if E then M else M | let (x, y) = E; M

| 〈Av〉l E | sealαE | unsealαE | is(α)? E

| unpack (X, x) = E; M | let x = E{X ∼= A}; N

Figure 10.7: PolyCν Syntax

derivation Av, which will be introduced shortly. Next, we also add seal,
unseal and tag checking with runtime type tags. Finally, we introduce
proxy forms for existential packages and polymorphic functions that
collect a sequence of casts that will be run when the elimination form
is used. We use the up-down arrow l is used to stand in for either
an upcast arrow

�

or downcast arrow �. So for example, the pack
proxy form packν(X ∼= A, [Bv l], M) is essentially equivalent to the
application of a sequence of existential type casts ∃X.Bv applied to
a pack packν(X ∼= A, M). Similarly the polymorphic function proxy
Λν{X.([Bv l], M)} is essentially equivalent to a sequence of casts
applied to a polymorphic function ΛνX.M. Next we have value forms,
which include dynamically typed values, tagged with a ground type
G, values sealed with a type name sealαV, booleans, variables, pairs,
functions, proxied functions, proxied polymorphic functions, and
proxied existential packages. Evaluation contexts are mostly standard
for call-by-value, with the addition of casts, seals/unseals and runtime
tag checks.

10.4.1 PolyCν Type Precision

Based on our analysis in Chapter 3, we add two cast forms: an upcast
〈Av〉

�

M and a downcast 〈Av〉 � M, whereas most prior work includes
a single cast form 〈A⇐ B〉. The Av used in the upcast and downcast
forms here is a proof that Al v Ar for some types Al , Ar, i.e., that



280 graduality and parametricity : together again for the first time

Γ ` Av : A v G

Γ ` tagG(Av) : A v ?
Γ ` ? : ? v ? Γ ` Bool : Bool v Bool

X ∈ Γ

Γ ` X : X v X
Γ ` Av1 : Al1 v Ar1 Γ ` Av2 : Al2 v Ar2

Γ ` Av1 × Av2 : Al1 × Al2 v Ar1 × Ar2

Γ ` Av : Al v Ar Γ ` Bv : Bl v Br

Γ ` Av → Bv : Al → Bl v Ar → Br

Γ, X ` Av : Al v Ar

Γ ` ∃νX.Av : ∃νX.Al v ∃νX.Ar

Γ, X ` Av : Al v Ar

Γ ` ∀νX.Av : ∀νX.Al v ∀νX.Ar

Figure 10.8: PolyCν Type Precision

Al is a more precise (less dynamic) type than Ar. This type precision
definition is key to formalizing the graduality property, but previous
work has shown that it is useful for formalizing the semantics of casts
as well. We emphasize the structure of these proofs because the central
semantic constructions of this work: the operational semantics of casts,
the translation of casts into functions and finally our graduality logical
relation are all naturally defined by recursion on these derivations.

We present the definition of type precision in Figure 10.8. The
judgment Γ ` Av : Al v Ar is read as “using the variables in Γ”, Av

proves that Al is more precise (less dynamic) than Ar. If you ignore
the precision derivations, our definition of type precision is a simple
extension of the usual notion: type variables are only related to the
dynamic type and themselves, and similarly for ∀ and ∃. Since we
have quantifiers and type variables, we include a context Γ of known
and abstract type variables. Crucially, even under the assumption that
X ∼= A, X and A are unrelated precision-wise unless A is ?. As before,
X ∈ Γ ranges over both known and abstract type variables. It is easy
to see that precision reflexive and transitive, and that ? is the greatest
element. Finally, ? is the least precise type, meaning for any type A
there is a derivation that A v ?. The precision notation is a natural
extension of the syntax of types: with base types ?, Bool serving as the
proof of reflexivity at the type and constructors ×,→, etc. serving as
syntax for congruence proofs. It is important to note that while we
give a syntax for derivations, there is at most one derivation Av that
proves any given Al v Ar.

10.4.2 PolyCν Type System

The static type system for the cast calculus is given in Figure 10.9. The
cast calculus type system differs from the surface language in that all
type checking is strict and precise. This manifests in two ways. First,



10.4 PolyCν : cast calculus 281

the dynamic type is not considered implicitly compatible with other
types. Instead, in the translation from PolyGν to PolyCν, we insert
casts wherever consistency is used in the judgment. Second, in the if
rule, the branches must have the same type, and an upcast is inserted
in the translation to make the two align.

Some of the semantics in Figure 10.11 involve terms with σs in
places we would expect Xs, in particular instantiations, seals, and
unseals. We also have our aforementioned intermediate form for pack
and Λν casts. Figure 10.9 gives the static typing rules for runtime terms.
Note that the typing of runtime terms depends on a given Σ. To reason
about well-typed terms at runtime, we also thread a store through the
rules.

10.4.3 Elaboration from PolyGν to PolyCν

We define the elaboration of PolyGν into the cast calculus PolyCν in
Figure 10.10. Following [56], an ascription is interpreted as a cast up to
? followed by a cast down to the ascribed type. Most of the elaboration
is standard, with elimination forms being directly translated to the
corresponding PolyCν form if the head connective is correct, and in-
serting a downcast if the elimination position has type ?. We formalize
this using the metafunction G

 

M defined towards the bottom of the
figure. For the if case, in PolyCν the two branches of the if have to have
the same output type and export the same names, so we downcast
each branch.

10.4.4 PolyCν Operational Semantics

The operational semantics of PolyCν, presented in Figure 10.11, ex-
tends traditional cast semantics with appropriate rules for our name-
generating universals and existentials. The runtime state is a pair of a
term M and a case store Σ. A case store Σ represents the set of cases
allocated so far in the program. Formally, a store Σ is just a pair of a
number Σ.n and a function Σ. f : [n] → Ty where Ty is the set of all
types and [n] = {m ∈N |m < n} is from some prefix of natural num-
bers to types. All rules take configurations Σ . M to configurations
Σ′ . M′. When the step does not change the store, we write M 7→ M′

for brevity.
The first rule states that all non-trivial evaluation contexts propagate

errors. Next, unsealing a seal gets out the underlying value, and
is(G)? V literally checks if the tag of V is G. The pack and Λν forms
step to intermediate states used for building up a stack of casts that
will be used again in the elimination rule. The unpack rule generates
a fresh seal for the X ∼= A and then applies all of the accumulated
casts to the body of the pack. Here we use l to indicate one of

�

and

�. The ∀ν instantiation, rule is similar, generating a seal, casting the



282 graduality and parametricity : together again for the first time

CErr

Σ; Γ ` f : A

CVar

x : A ∈ Γ

Σ; Γ ` x : A

CLet

Σ; Γ ` M : A Σ; Γ, x : A ` N : B
Σ; Γ ` let x = M; N : B

CUpcast

Σ; Γ ` M : Al
Σ; Γ ` Av : Al v Ar

Σ; Γ ` 〈Av〉

�

M : Ar

CDowncast

Σ; Γ ` M : Ar
Σ; Γ ` Av : Al v Ar

Σ; Γ ` 〈Av〉 � M : Al

CCheckTy

Σ; Γ ` M : ? Σ; Γ ` G
Σ; Γ ` is(G)? M : Bool

CSeal

Σ; Γ ` M : A X ∼= A ∈ Γ

Σ; Γ ` sealX M : X

CUnseal

Σ; Γ ` M : X X ∼= A ∈ Γ

Σ; Γ ` unsealX M : A

CSealRT
Σ; Γ ` M : A σ : A ∈ Σ

Σ; Γ ` sealσ M : σ

CUnealRT
Σ; Γ ` M : σ σ : A ∈ Σ

Σ; Γ ` unsealσ M : A

CTrue

Σ; Γ ` true : Bool
CFalse

Σ; Γ ` false : Bool

CIf
Σ; Γ ` M : Bool

Σ; Γ ` Nt : B Σ; Γ ` N f : B

Σ; Γ ` if M then Nt else N f : B

CPair

Σ; Γ ` M1 : A1 Σ; Γ ` M2 : A2

Σ; Γ ` (M1, M2) : A1 × A2

CPmPair

Σ; Γ ` M : A1 × A2 Σ; Γ, x : A1, y : A2 ` N : B
Σ; Γ ` let (x, y) = M; N : B

CFun

Σ; Γ ` A Σ; Γ, x : A ` M : B
Σ; Γ ` λx : A.M : A→ B

CApp

Σ; Γ ` M : A→ B Σ; Γ ` N : A
Σ; Γ ` M N : B

CPack

Σ; Γ, X ∼= A ` M : B
Σ; Γ ` packν(X ∼= A, M) : ∃νX.B

CPackProxy

Σ; Γ, X ∼= A′ ` 〈Av〉lM : B

Σ; Γ ` packν(X ∼= A′, [Av l], M) : ∃νX.B

CUnpack

Σ; Γ ` M : ∃νX.A Σ; Γ, X, x : A ` N : B Σ; Γ ` B
Σ; Γ ` unpack (X, x) = M; N : B

CPolyFun

Σ; Γ, X ` M : A
Σ; Γ ` ΛνX.M : ∀νX.A

CPolyFunProxy

Σ; Γ, X ` 〈Bv〉lM : A

Σ; Γ ` Λν{X.([Bv l], M)} : ∀νX.A

CPolyApp

Σ; Γ ` M : ∀νX.A Σ; Γ ` B Σ; Γ, X, x : A ` N : Bo Σ; Γ ` Bo

Σ; Γ ` let x = M{X ∼= B}; N : Bo

Figure 10.9: PolyCν Typing



10.4 PolyCν : cast calculus 283

(M :: B)+ = 〈B?v〉 � 〈A?v〉

�

M+

(where M : A, A?v : A v ?, B?v : B v ?)

x+ = x

(let x = M; N)+ = let x = M+; N+

(sealX M)+ = sealX(M :: A)+ (where X ∼= A)

(unsealX M)+ = unsealX(X
 

M)

(is(G)? M)+ = is(G)? (〈A?v〉

�

M)
(where M : A, A?v : A v ?)

b+ = b (b ∈ {true, false})

(if M then Nt else N f )
+ = if Bool

 

M then (〈Bvt 〉 � N
+
t )

else (〈Bvf 〉 � N
+
f )

(where if M then Nt else N f : Bt u B f )

(and Bvt : Bt u B f v Bt, Bvf : Bt u B f v B f )

(M1, M2)
+ = (M+

1 , M+
2 )

(let (x, y) = M; N)+ = let (x, y) = ?× ?

 

M; N+

(λx : A.M)+ = λx : A.M+

(M N)+ = (?→ ?

 

M) (N :: dom(A))+

(where M : A)

(packν(X ∼= A, M))+ = packν(X ∼= A, M+)

(unpack (X, x) = M; N)+ = unpack (X, x) = ∃νX.?

 

M; N+

ΛνX.M+ = ΛνX.M+ (where M : A)

let x = M{X ∼= A}; N+ = let x = ∀νY.?

 

M{X ∼= A}; N+

G

 

M = 〈tagG(G)〉 � M+ (when M : ?)

G

 

M = M+ (otherwise)

Figure 10.10: Elaborating PolyGν to PolyCν



284 graduality and parametricity : together again for the first time

E[f] 7→ f where E 6= []

E[let x = V; M] 7→ E[M[V/x]]

E[unsealσ(sealσV)] 7→ E[V]

E[is(G)? (〈tagG(G)〉

�

V)] 7→ E[true]

E[is(G)? (〈tagH(H)〉

�

V)] 7→ E[false] where G 6= H

Σ . E

[
let x = (Λν{X.([Bv l], M)}){Y ∼= A};
N

]
7→ Σ, σ : A . E

[
let y = 〈Bv[σ/X]〉lM[σ/X];

N[σ/Y]

]

Σ . E

[
unpack (Y, x) = packν(X ∼= A, [Bv l], M);

N

]
7→ Σ, σ : A . E

[
let y = 〈Bv[σ/X]〉lM[σ/X];

N[σ/Y]

]
E [packν(X ∼= A, M)] 7→ E[packν(X ∼= A′, [], M)]

E[(λ(x : A).M) Va] 7→ E[M[Va/x]]

E[(〈Av → Bv〉l Vf ) Va] 7→ E[〈Bv〉l (Vf (〈Av〉l− Va))]E[M[V/x]]

E[if true then M1 else M2] 7→ E[M1]

E[if false then M1 else M2] 7→ E[M2]

E[let (x, y) = (V1, V2); M] 7→ E[M[V1/x][V2/y]]

E[〈Av〉l V] 7→ E[V] where Av ∈ {Bool, σ, ?}
E[〈Av1 × Av2 〉l (V1, V2)] 7→ E[(〈Av1 〉l V1, 〈Av2 〉l V2)]

E[〈tagG(Av)〉

�

V] 7→ E[〈tagG(G)〉

�

〈Av〉

�

V] when Av 6= G

E[〈tagG(Av)〉 � 〈tagG(G)〉

�

V] 7→ E[〈Av〉 � V]

E[〈tagG(Av)〉 � 〈tagH(H)〉

�

V] 7→ f where H 6= G

E[〈∃νX.Av〉l packν(Y ∼= A′, [Bv l], M)] 7→ E[packν(Y ∼= A′, [Av[Y/X] l, Bv l], M)]

E[〈∀νX.Av〉l Λν{Y.([Bv l], M)}] 7→ E[Λν{Y.([Av[Y/X] l, Bv l], M)}]

Figure 10.11: PolyCν Operational Semantics

function and substituting the seal in. As is typical for a cast calculus,
the remaining types have ordinary call-by-value β reductions.

The remaining rules give the behavior of casts. Other than the use of
type precision derivations, the behavior of our casts is mostly standard:
identity casts for Bool, σ and ? are just the identity, and the product
cast proceeds structurally. Function casts are values, and when applied
to a value, the cast is performed on the output and the oppositely
oriented case on the input. We use l− to indicate the opposite arrow,
so

� −
= � and �

−=

�

to cut down the number of rules. Next, the ∀ν casts
are also values that reduce when the instantiating type is supplied.
As with existentials, the freshly generated type σ is substituted for X
in the precision derivation guiding the cast. Finally, the upcast case
for tagG(Av) simply injects the result of upcasting with Av into the
dynamic type using the tag G. For the downcast case, the opposite
is done if the input has the right tag, and otherwise a dynamic type
error is raised.

We mention a few standard operational lemmas that are easily
verified.



10.5 typed interpretation of the cast calculus 285

Lemma 188 (Unique Decomposition). If Σ1; · ` M1 : A, then there exist
unique E, M2 such that M1 = E[M2].

Lemma 189 (Cast calculus dynamic semantics are deterministic). If
Σ . M 7→ Σ1 . M1 and Σ . M 7→ Σ2 . M2 then Σ1 = Σ2 and M1 = M2.

Lemma 190 (Progress). If Σ1; · ` M1 : A then either Σ1 . M1 7→ Σ2 . M2,
M1 = f, or M1 = V for some V.

10.5 typed interpretation of the cast calculus

In the previous section we developed a cast calculus with an opera-
tional semantics defining the behavior of the name generation and
gradual type casts. However, this ad hoc design addition of new type
connectives and complex cast forms make the cast calculus less than
ideal for proving meta-theoretic properties of the system.

Instead of directly proving metatheoretic properties of the cast cal-
culus, we give a contract translation of the cast calculus into a statically
typed core language, translating the gradual type casts to ordinary
terms in the typed language that raise errors. The key benefit of the
typed language is that it does not have built-in notions of fresh ex-
istential and universal quantification. Instead, the type translation
decomposes these features into the combination of ordinary existential
and universal quantification combined with a somewhat well-studied
programming feature: a dynamically extensible “open” sum type we
call OSum. Finally, it gives a static type interpretation of the dynamic
type: rather than being a finitary sum of a few statically fixed cases, the
dynamic type is implemented as the open sum type which includes
those types allocated at runtime.

10.5.1 Typed Metalanguage

We present the syntax of our typed language CBPVOSum in Figure 10.12,
an extension of Levy’s Call-by-push-value calculus [45], which we use
as a convenient metalanguage to extend with features of interest. We
utilized Call-by-push-value (CBPV) extensively in Part II, but we re-
view it quickly now to make this chapter more independently readable.
CBPV is a typed calculus with highly explicit evaluation order, pro-
viding similar benefits to continuation-passing style and A-normal
form [65]. The main distinguishing features of CBPV are that values
V and effectful computations M are distinct syntactic categories, with
distinct types: value types A and computation types B. The two “shift”
types U and F mediate between the two worlds. A value of type UB
is a first-class “thUnk” of a computation of type B that can be forced,



286 graduality and parametricity : together again for the first time

value types A ::= X |Case A |OSum | A× A | Bool | ∃X.A |UB

computation types B ::= A→ B | ∀X.B | FA

values V ::= σ | injV V | pack(A, V) as ∃X.A | x | (V, V)

| true | false | thunk M

computations M ::= f | force V | ret V | x ← M; N |M V | λx : A.M

| newcaseA x; M | match V with V{inj x.M |N}
| unpack (X, x) = V; M | let (x, y) = V; M

| ΛX.M |M[A] | if V then M else M

stacks S ::= • | S V | S [A] | x ← S; M

value typing context Γ ::= · | Γ, x : A

type variable context ∆ ::= · |∆, X

Figure 10.12: CBPVOSum Syntax

behaving as a B. A computation of type FA is a computation that can
perform effects and return a value of type A, and whose elimination
form is a monad-like bind. Notably while sums and (strict) tuples are
value types, function types A→ B are computations since a function
interacts with its environment by receiving an argument. We include
existentials as value type and universals as computation types, that
in each case quantify over value types because we are using it as the
target of a translation from a call-by-value language.

We furthermore extend CBPV with two new value types: OSum
and Case A, which add an open sum type similar to the extensible
exception types in ML, but with an expression-oriented interface more
suitable to a core calculus. The open sum type OSum is initially empty,
but can have new cases allocated at runtime. A value of Case A is a
first class representative of a case of OSum. The introduction form
injVc V for OSum uses a case Vc : Case A to inject a value V : A
into OSum. The elimination form match Vo with Vc{inj x.M |N} for
OSum is to use a Vc : Case A to do a pattern match on a value
Vo : OSum. Since OSum is an open sum type, it is unknown what
cases Vo might use, so the pattern-match has two branches: the one
inj x.M binds the underlying value to x : A and proceeds as M and
the other is a catch-all case N in case Vo was not constructed using Vc.
Finally, there is a form newcaseA x; M that allocates a fresh Case A,
binds it to x and proceeds as M. In addition to the similarity to ML
exception types, they are also similar to the dynamically typed sealing
mechanism introduced in Sumii and Pierce [77].

10.5.2 Static and Dynamic Semantics

We show the typing rules for CBPVOSum in Figure 10.13. There are
two judgments corresponding to the two syntactic categories of terms:
∆; Γ ` V : A for typing a value and ∆; Γ ` M : A for typing a



10.5 typed interpretation of the cast calculus 287

computation. ∆ is the environment of type variables and Γ is the
environment for term variables. Unlike in PolyGν and PolyCν, these
are completely standard, and there is no concept of a known type
variable.

First, an error f is a computation and can be given any type.
Variables are standard and the OSum/Case forms are as described
above. Existentials are a value form and are standard as in CBPV
using ordinary substitution in the pack form. In all of the value
type elimination rules, the discriminee is restricted to be a value. A
computation M : B can be thunked to form a value thunk M : UB,
which can be forced to run as a computation. Like the existentials,
the universal quantification type is standard, using substitution in
the elimination form. Finally, the introduction form for FA returns
a value V : A, and the elimination form is a bind, similar to a
monadic semantics of effects, except that the continuation can have
any computation type B, rather than restricted to FA.

The operational semantics is given in Figure 10.14. S represents a
stack, the CBPV analogue of an evaluation context, defined in Fig-
ure 10.12. Here Σ is like the Σ in PolyCν, but maps to value types. The
semantics is standard, other than the fact that we assign a count to
each step of either 0 or 1. The only steps that count for 1 are those that
introduce non-termination to the language, which is used later as a
technical device in our logical relation in §10.6.

Note that this is a simple deterministic operational semantics.

Lemma 191 (target language operational semantics are deterministic).
If Σ′ . M′ 7→ Σ′1 . M′1 and Σ′ . M′ 7→ Σ′2 . M′2 then Σ′1 = Σ′2 and M′1 =

M′2.

10.5.3 Translation

Next, we present the “contract translation” of PolyCν into CBPVOSum.
This translation can be thought of as an alternate semantics to the
operational semantics for PolyCν, but with a tight correspondence
given in §10.5.4. Since CBPVOSum is a typed language that uses or-
dinary features like functions, quantification and an open sum type,
this gives a simple explanation of the semantics of PolyCν in terms of
fairly standard language features.

In the left side of Figure 10.15, we present the type translation
from PolyCν to CBPVOSum. Since PolyCν is a call-by-value language,
types are translated to CBPVOSum value types. Booleans and pairs
are translated directly, and the function type is given the standard
CBPV translation for call-by-value functions, U(JAK→ FJBK): a call-
by-value function is a thunked computation of a function that takes
an JAK as input and may return a JBK as output. The dynamic type ?
is interpreted as the open sum type. The meaning of a type variable
depends on the context: if it is an abstract type variable, it is translated



288 graduality and parametricity : together again for the first time

Σ; ∆; Γ ` VT : Case A Σ; ∆; Γ ` V : OSum
Σ; ∆; Γ, x : A | · ` M : B Σ; ∆; Γ | · ` N : B

Σ; ∆; Γ | · ` match VT with V{inj x.M |N} : B

σ : A ∈ Σ ∆ ` A

Σ; ∆; Γ ` σ : Case A

∆ ` A Σ; ∆; Γ, x : Case A | · ` M : B

Σ; ∆; Γ | · ` newcaseA x; M : B

Σ; ∆; Γ ` VT : Case A Σ; ∆; Γ ` V : A

Σ; ∆; Γ ` injVT
V : OSum

Σ; ∆, X; Γ | · ` M : B

Σ; ∆; Γ | · ` ΛX.M : ∀X.B

Σ; ∆; Γ |Θ ` M : ∀X.B ∆ ` A

Σ; ∆; Γ |Θ ` M[A] : B[A/X]

Σ; ∆; Γ ` V : A[A′/X]

Σ; ∆; Γ ` pack(A′, V) as ∃X.A : ∃X.A

Σ; ∆; Γ ` V : ∃X.A ∆ ` B Σ; ∆, X; Γ, x : A | · ` M : B

Σ; ∆; Γ | · ` unpack (X, x) = V; M : B

Σ; ∆; Γ, x : A, Γ′ ` x : A Σ; ∆; Γ | • : B ` • : B

Σ; ∆; Γ ` V : Bool Σ; ∆; Γ | · ` M1 : B Σ; ∆; Γ | · ` M2 : B

Σ; ∆; Γ | · ` if V then M1 else M2 : B

Σ; ∆; Γ ` true : Bool Σ; ∆; Γ ` false : Bool

Σ; ∆; Γ ` V1 : A1 Σ; ∆; Γ ` V2 : A2

Σ; ∆; Γ ` (V1, V2) : A1 × A2

Σ; ∆; Γ ` V : A1 × A2 Σ; ∆; Γ, x : A1, y : A2 | · ` M : B

Σ; ∆; Γ | · ` let (x, y) = V; M : B

Σ; ∆; Γ | · ` M : B

Σ; ∆; Γ ` thunk M : UB

Σ; ∆; Γ ` V : UB

Σ; ∆; Γ | · ` force V : B

Σ; ∆; Γ ` V : A

Σ; ∆; Γ | · ` ret V : FA

Σ; ∆; Γ |Θ ` M : FA Σ; ∆; Γ | · ` N : B

Σ; ∆; Γ |Θ ` x ← M; N : B

Σ; ∆; Γ |Θ ` M : A→ B Σ; ∆; Γ ` V : A

Σ; ∆; Γ |Θ ` M V : B

∆ ` A Σ; ∆; Γ, x : A | · ` V : B

Σ; ∆; Γ | · ` λx : A.V : A→ B Σ; ∆; Γ | · ` f : B

Figure 10.13: CBPV Type System



10.5 typed interpretation of the cast calculus 289

S[f] 7→ f
Σ . S[newcaseA x; M] 7→ Σ, σ : A . S[M[σ/x]]

S[match injσ V with σ{inj x.M |N}] 7→ S[M[V/x]]

S[match injσ1
V with σ2{inj x.M |N}] 7→ S[N]

(where σ1 6= σ2)

S[if true then M else N] 7→ S[M]

S[if false then M else N] 7→ S[N]

S[let (x, y) = (V1, V2); M] 7→ S[M[V1/x, V2/y]]

S[force (thunk M)] 7→ S[M]

S[unpack (X, x) = pack(A, V); M] 7→ S[M[A/X, V/x]]

S[(ΛX.M)[A]] 7→ S[M[A/X]]

S[(λ(x : A).M) V] 7→ S[M[V/x]]

S[x ← ret V; N] 7→ S[N[V/x]]

Figure 10.14: CBPV Operational Semantics

to a type variable, but if it is a known type variable X ∼= A, it is
translated to JAK! That is, at runtime, values of a known type variable
X are just values of the type isomorphic to X, and as we will see
later, sealing and unsealing are no-ops. Similarly, a runtime type tag σ

is translated to the type that the corresponding case maps to. These
are inductively well-defined because Σ stays constant in the type
translation and Γ only adds abstract type variables.

The final two cases are the most revealing. First the fresh universal
quantifier, ∀νX.A, translates to not just a thunk of a universally quan-
tified computation, but also takes in a Case X as input. The body of
a Λ will then use that Case X in order to interpret casts involving X.
This is precisely why parametricity is more complex for our source
language: if it were translated to just U(∀X.FJAK), then parametricity
would follow directly by parametricity for CBPVOSum, but the Case X
represents additional information that the function is being passed
that potentially provides information about the type X. It is only be-
cause code translated from PolyCν always generates a fresh case that
this extra input is benign. The fresh existential ∃νX.A is translated
to a real existential of a thunk that expects a Case X and returns
a JAK. Note that while the quantification is the dual of the ∀ν case,
both of them receive a Case X from the environment, which is freshly
generated.

Next, while PolyGν and PolyCν have a single environment Γ that
includes type variables and term variables, in CBPVOSum, these are
separated into a type variable environment ∆ and a term variable



290 graduality and parametricity : together again for the first time

JΣ; Γ ` ?K = OSum

JΣ; Γ ` XK = X (where X ∈ Γ)

JΣ; Γ ` XK = JAK (where X ∼= A ∈ Γ)

JΣ; Γ ` σK = JAK (where σ : A ∈ Σ)

JΣ; Γ ` BoolK = Bool

JΣ; Γ ` A→ BK = U(JΣ; Γ ` AK→ FJΣ; Γ ` BK)
JΣ; Γ ` A1 × A2K = JΣ; Γ ` A1K× JΣ; Γ ` A2K

JΣ; Γ ` ∃νX.AK = ∃X.U(Case X → FJΣ; Γ, X ` AK)
JΣ; Γ ` ∀νX.AK = U(∀X.Case X → FJΣ; Γ, X ` AK)

JΣ ` ·K = ·; ·
JΣ ` Γ, x : AK = ∆′; Γ′, x : JΣ; Γ ` AK

(where JΣ ` ΓK = ∆′; Γ′)

JΣ ` Γ, XK = ∆′, X; Γ′, cX : Case X
(where JΣ ` ΓK = ∆′; Γ′)

JΣ ` Γ, X ∼= AK = ∆′; Γ′, cX : Case JΣ; Γ ` AK
(where JΣ ` ΓK = ∆′; Γ′)

Figure 10.15: PolyCν type and environment translation

environment Γ. For this reason in the right side of Figure 10.15 we
define the translation of an environment Γ to be a pair of environments
in CBPVOSum. The term variable x : A is just translated to a variable
x : JAK, but the type variables are more interesting. An abstract type
variable X is translated to a pair of a type variable X but also an
associated term variable cX : Case X, which represents the case of the
dynamic type that will be instantiated with a freshly generated case.
On the other hand, since known type variables X ∼= A are translated
to JAK, we do not extend ∆ with a new variable, but still produce a
variable cX : JAK as with an unknown type variable. Finally, the empty
context · is translated to a pair of empty contexts.

To translate a whole program, written JΣ; · ` MKp, we insert a
preamble that generates the cases of the open sum type for each
ground type. In Figure 10.16, we show our whole-program translation
which inserts a preamble to generate a case of the OSum type for each
ground type. This allows us to assume the existence of these cases in
the rest of the translation. These can be conveniently modeled as a
sequence of “global” definitions of some known type variables, which
we write as Γp. We also define a function case(·) from types to their
corresponding case value, which is a case variable for all types except
those generated at runtime σ.

For later convenience, we also define the store and substitution that
are generated when this preamble runs.



10.5 typed interpretation of the cast calculus 291

JMKp = newcaseJBoolK cBool;

newcaseJ?→?K cFun;

newcaseJ?×?K cTimes;

newcaseJ∃νX.?K cEx;

newcaseJ∀νX.?K cAll;

JMK

case(Bool) = cBool

case(A→ B) = cFun

case(A× B) = cTimes

case(∃νX.A) = cEx

case(∀νX.A) = cAll

case(X) = cX

case(σ) = σ

Γp = Bool ∼= Bool, Fun ∼= ?→ ?, Times ∼= ?× ?, Ex ∼= ∃νX.?, All ∼= ∀νX.?

Figure 10.16: Ground type tag management

Definition 192 (Preamble store, substitution). We name the store gen-
erated by the preamble Σp, defined as

Σp = (4, f )

f (0) = Bool

f (1) = U(OSum→ FOSum)

f (2) = OSum×OSum

f (3) = ∃X.U(Case X → FOSum)

f (4) = U(∀X.Case X → FOSum)

We define γp to be a substitution that closes terms with respect to
Γp using the store Σp:

γp(cBool) = 0

γp(cFun) = 1

γp(cTimes) = 2

γp(cEx) = 3

γp(cAll) = 4

Next, we consider the term translation, which is defined with the
below type preservation Theorem 193 in mind. First, all PolyCν terms
of type A are translated to CBPVOSum computations, with type FJAK,
which is standard for translating CBV to CBPV. Finally, we include the
preamble context Γp to the front of the terms to account for the fact
that all terms can use the cases generated in the preamble.
Theorem 193. If Γ1 ` M : A, Γ2 then ∆; Γ ` JMK : FJΣ; Γ1, Γ2 ` AK
where JΓp, Γ1, Γ2K = ∆; Γ.

We show the term translation in Figures 10.17 and 10.18. To reduce
the context clutter in the translations, we elide the contexts Σ, Γ in
the definition of the semantics. While they are technically needed to
translate type annotations, they do not affect the operational semantics
and so can be safely ignored.



292 graduality and parametricity : together again for the first time

JxK = ret x

Jlet x = M; NK = x ← JMK; JNK

JfAK = f
Jsealα MK = JMK

Junsealα MK = JMK

Jis(G)? MK = r ← JMK;

match r with case(G){inj y.ret true | ret false}
J〈Av〉l MK = JAvKl [JMK]

JtrueK = ret true

JfalseK = ret false

Jif M1 then M2 else M3K = r ← JM1K; if r then JM2K else JM3K

J(M1, M2)K = x1 ← JM1K; x2 ← JM2K; ret (x1, x2)

Jlet (x, y) = M; NK = r ← JMK; let (x, y) = r; JNK

Jpackν(X ∼= A, M)K = ret pack(A, thunk (λcX : Case A.JMK))

Jpackν(X ∼= A′, [Avn ln ... Av1 l1], M)K = ret pack(A, thunk (λcX : Case A.M′n))

where M′0 = JMK

and M′i+1 =

JAvi+1Kl i+1[force (thunk (λcX : Case A′.JMiK)) cX ]

Junpack (X, x) = M; NK = r ← JMK; unpack (X, f ) = r;

newcaseX cX ; x ← (force f ) cX ; JNK

JΛνX.MK = ret (thunk (ΛX.λ(cX : Case X).JMK))

JΛν{X.([Avn l, . . . , Av1 l], M)}K = ret (thunk (ΛX.λ(cX : Case X).Mn))

where M′0 = JMK

M′i+1 =

JAvi+1Kl i+1[force (thunk (ΛX..λcX : Case X.JMiK)) [X] cX ]

Jlet x = M{X ∼= A}; NK = f ← JMK; newcaseJAK cX ;

x ← f JAK cX ; JNK

Jλ(x : A).MK = ret thunk λ(x : JAK).JMK

JM NK = f ← JMK; a← JNK; (force f ) a

Figure 10.17: PolyCν term translation



10.5 typed interpretation of the cast calculus 293

JGKl = • (when G = ?, α, or Bool)

JtagG(Av)K

�

= r ← JAvK

�

[•]; ret injcase(G) r

JtagG(Av)K � = x ← •; match x with case(G){inj y.JAvK � [ret y] |f}
JAv1 × Av2 Kl = x ← •; let (x1, x2) = x;

x′1 ← JAv1 Kl [ret x1]; x′2 ← JAv2 Kl [ret x2]; ret (x′1, x′2)

JAv1 → Av2 Kl = x ← •; ret thunk (λy : A′.a← JAv1 Kl− [ret y]; JAv2 Kl [force x a])

where Av1 : A1l v A1r and if l=� , A′ = A1r, else A′ = A1l

J∀νX.AvKl = x ← •; ret thunk (ΛX.λcX : Case X.JAvKl [force x [X] cX ])

J∃νX.AvKl = x ← •; unpack (Y, f ) = x;

ret pack(Y, thunk (λcX : Case Y.JAvKl [(force f ) cX ]))

Figure 10.18: PolyCν cast translation

Variables translate to a return of the variable, let is translated bind,
and errors are translated to errors. Since the type translation maps
known type variables to their bound types, the target language seal

and unseal disappear in the translation. Injection into the dynamic
type translates to injection into the open sum type and ground type
checks in PolyCν are implemented using pattern matching on OSum
in CBPVOSum.

Next, we cover the cases involving thunks. As a warmup, the func-
tions follow the usual CBV translation into CBPV: a CBV λ is translated
to a thunk of a CBPV λ, and the application translation makes the
evaluation order explicit and forces the function with an input. We
translate existential packages in the cast calculus to CBPVOSum pack-
ages containing functions from a case of the open sum type to the
body of the package. In PolyCν we delay execution of pack bodies, so
the translation inserts a thunk to make the order of execution explicit.
Since pack bodies translate to functions, the translation of an unpack

must provide a case of the open sum type to the package it unwraps.
Type abstractions (Λν), like packs, wrap their bodies in functions that,
on instantiation, expect a case of the open sum type matching the
instantiating type. Type application, similar to unpack, generates the
requisite type tag using a newcase and passes its given type and
that fresh tag associated with its type variable into the supplied type
abstraction.

Next, we define the implementation of casts as “contracts”, i.e.,
ordinary functions in the CBPVOSum. Reflexive casts at atomic types,
?, α, and Bool, translate away. Structural casts at composite types,
pair types, function types, universals, and existentials, push casts for
their sub-parts into terms of each type. Function and product casts
are entirely standard, noting that we use r(Av) = Ar. Universal casts
delay until type application and then cast the output. Existential casts
push their subcasts into whatever package they are given.



294 graduality and parametricity : together again for the first time

10.5.4 Adequacy

Next, to show that we can reason about PolyCν reductions by study-
ing the corresponding CBPVOSum reductions of their translations, we
need to prove adequacy, i.e., that programs diverge, error or terminate
if and only if their translations do. We will show this by proving
a simulation relation between source and target operational seman-
tics. A naïve attempt at a simulation theorem would be to show
that values and errors are preserved by the translation, and that
if M1 7→ M2 then JM1K 7→ JM2K. However, both of these notions
fail. First, values are not directly preserved by the translation be-
cause the translation introduces administrative redexes. For instance
(true, false) is translated to ret true← x; ret false← y; ret (x, y).
Note that this also means that some reductions in the source corre-
spond to multiple reductions in the target, since the translation of
let (x, y) = (true, false); N will have to first reduce the scrutinee
to a value before performing the pattern match. Second, some source
reductions, such as unsealσsealσV 7→ V correspond to no steps in
the target. This presents a challenge to showing that diverging terms
are translated to diverging terms. Finally, because of administrative
redexes, JM1K may never reduce to JM2K exactly. For instance in a β re-
duction (λx.M)V 7→ M[V/x] the translation of (λx.M)V will reduce
V’s translation to a value and then substitute, whereas M[V/x] will
include administrative redexes everywhere x occurs in M, meaning
they may never be eliminated because they occur under binders. To
address these issues, we introduce two notions. First, to account for
administrative redexes, we define a translation relation M  CT M′

between PolyCν and CBPVOSum terms that we can think of as a multi-
valued translation function that non-deterministically eliminates some
administrative redexes. This translation relation generalizes the trans-
lation in that M CT JMK, and because we can eliminate administra-
tive redexes, we can also show that every value translates to some
CBPVOSumvalue: V  CT ret V ′. Then we will be able to show that
simulation is preserved Second, to account for invisible steps, we
introduce a size function on source terms, | · |, and show that whenever
a PolyCν reduction does not correspond to a CBPVOSum step that the
size of the PolyCν term reduces, so that a PolyCν term cannot reduce
indefinitely without at least one corresponding CBPVOSum step.

The translation relation is defined in Figures 10.19 and 10.20. The
first rule allows for the non-deterministic elimination of any bind redex
in the translation. This includes all administrative redexes, though
also some others. All of the remaining rules are just relational re-
formulations of the cases of the translation function. Since all of the
original cases are included, it is very easy to see by induction that our
translation function is included in our multi-function.

Lemma 194. For any M CT JMK.



10.5 typed interpretation of the cast calculus 295

M CT x ← ret V; N′

M CT N′[V/x] f CT f
x CT ret x

M CT M′ N  CT N′

let x = M; N  CT x ← M′; N′

M1  
CT M′1 M2  

CT M′2x

(M1, M2) 
CT x1 ← M′1; x2 ← M′2; ret (x1, x2)

M CT M′ N  CT N′

let (x, y) = M; N  CT r ← M′; let (x, y) = r; N′

true CT ret true false CT ret false

M CT M′ M1  
CT M′1 M2  

CT M′2
if M then M1 else M2  

CT r ← M′; if r then M′1 else M′2

M CT M′ : A→ B N  CT N′ : A

M N  CT f ← M′; a← N′; (force f ) a

M CT M′ : B

λx : A.M CT ret thunk λx : JAK.M′
M CT M′

sealX M CT M

M CT M′

unsealX M CT M′

Figure 10.19: PolyCν translation relation



296 graduality and parametricity : together again for the first time

M CT M′

〈Av〉

�

M CT JAvK

�

[M′]

M CT M′

〈Av〉 � M CT JAvK � [M
′]

M CT M′

is(G)? M CT r ← M′;

match case(G) with r{inj y.ret true | ret false}

M CT M′

packν(X ∼= A, M) CT ret pack(JAK, thunk λ(cX : Case JAK).M′) as J∃νX.BK

M CT M′

packν(X ∼= A, [], M) CT ret pack(JAK, thunk λ(cX : Case JAK).M′) as J∃νX.BK

packν(X ∼= A, [A l], M) CT ret pack(A′, thunk λ(cX : Case A′).M′)

packν(X ∼= A, [A1 l1, A l], M) CT

ret pack(A′, thunk λcX : Case A′.

JAvK l1 [(force thunk λcX : Case A′.M′) cX ])

M CT M′ N  CT N′

unpack (X, x) = M; N  CT r ← M′; unpack (X, f ) = r;

newcaseX cX ; x ← (force f ) cX ; N′

M CT M′

ΛνX.M CT ret thunk ΛX.λ(cX : Case X).M′

M CT M′

Λν{X.([], M)} CT ret thunk ΛX.λ(cX : Case X).M′

Λν{X.([Bv l], M)} CT ret V′

Λν{X.([Bv1 l1, Bv l], M)} CT ret thunk ΛX.λ(cX : Case X).JBv1 K l1 [(force V′) [X] cX ]

M CT M′ N  CT N′

let x = M{X ∼= B}; N  CT f ← M′; newcaseJBK cX ; x ← (force f ) JBK cX ; N′

Figure 10.20: PolyCν translation relation (Continued)



10.5 typed interpretation of the cast calculus 297

Next, we prove a few simple lemmas about how the translation re-
lation interacts with substitutions and evaluation contexts, since these
are central to the operational semantics. First, we want a translation
relation that directly relates cast calculus values (respectively evalu-
ation contexts) to CBPVOSum values (respectively stacks). For values,
we can re-use the term relation, but restricting the output to be return
of a value: V  CT ret V ′. For evaluation contexts, we will need a
separate translation relation, defined in Figure 10.21. The relation is
straightforward, essentially reducing the administrative redexes that
would be present in the direct translation.

Next, we establish a few lemmas about these value and evaluation
context translations. We need both forward reasoning, that says that
it is a valid translation to homomorphically translate substitutions
and evaluation contexts, but we also need backwards reasoning that
says that any translation is essentially equivalent to a homomorphic
translation.

First, we establish forward reasoning. We show that the relation is a
congruence with respect to substituting values for variables, seals for
types and terms in evaluation contexts.

Lemma 195. If M CT M′ and Vx  CT
v V ′x then M[Vx/x] CT M′[V ′x/x],

and if V  CT
v V ′ and Vx  CT

v V ′x then V[Vx/x]  CT
v V ′[V ′x/x]. and if

E CT
v S′ and Vx  CT

v V ′x then E[Vx/x] CT
v S′[V ′x/x].

Lemma 196. If M CT M′ and X abstract in M and σ : A then M[σ/X] CT

M′[JAK/X][σ/cX]. Similarly for values and evaluation contexts.

Lemma 197. If M  CT M′ X ∼= A in M and σ : A then M[σ/X]  CT

M′[σ/cX]. Similarly for values and evaluation contexts.

Lemma 198. If M CT M′ and E CT S′, then E[M] CT M′[S′].

For backwards reasoning, it would be most convenient to know that if
E[M] CT N′ then N′ can be split into a pieces S′[M′] where E CT

s S′

and M  CT M′, but this might not be the case because (1) N′ may
contain administrative redexes that will be evaluated before the stack
is S′ but also (2) if S is a bind, it might be reduced away and already
be evaluated in N′. However these are really the only two obstacles
in that N′ must be equivalent to some S′[M′] except that each might
have some binds that the other does not. Fortunately this will be good
enough to prove our simulation relation. We define bind reduction to be
the subset of the reduction relation that consists only of Fβ reductions:

Definition 199. Define the relation M 7→b M′ inductively by the single
rule:

S[x ← ret V; N] 7→b S[N[V/x]]

Define 7→∗b to be the transitive closure of 7→b.
Define ∼=b to be the induced equivalence relation

M ∼=b M′ = ∃N. M 7→∗b N ∧M′ 7→∗b N



298 graduality and parametricity : together again for the first time

[·] CT
s •

E CT
s S′ N  CT N′

let x = E; N  CT
s x ← S′; N′

E CT
s S′ M CT M′

(E, M) CT
s x ← S′; y← M′; ret (x, y)

V  CT ret V ′ E CT
s S′

(V, E) CT
s y← S′; ret (V ′, y)

E CT
s S′ M CT M′

E M CT
s f ← S′; x ← M′; (force f ) x

V  CT ret V ′ E CT
s S′

V E CT
s x ← S′; (force V ′) x

E CT
s E′ M CT M′ N  CT N′

if E then M else N  CT
s x ← S′; if x then M′ else N′

E CT
s E′ M CT M′

let (x, y) = E; M CT
s p← S′; let (x, y) = p; M′

E CT
s S′ N  CT N′

unpack (X, x) = E; N  CT
s



r ← S′;

unpack (X, f ) = r;

newcaseX cX;

x ← (force f ) cX;

N′


E CT

s S′ N  CT N′

let x = E{X ∼= B}; N  CT
s f ← S′; newcaseJBK cX; x ← (force f ) JBK cX; N′

E CT
s S′

sealXE CT
s S

E CT
s S′

unsealXE CT
s S′

E CT
s S′

〈Av〉l E CT
s JAvKl [S′]

E CT
s S′

is(G)? E CT
s

(
r ← S′;

match case(G) with r{inj y.ret true | ret false}

)

Figure 10.21: PolyCν translation relation, evaluation contexts



10.5 typed interpretation of the cast calculus 299

To justify that ∼=b really is an equivalence relation, we prove that
bind reduction is normalizing and therefore confluent.

Lemma 200 (bind reduction confluence). Let Σ; · ` M1 : A, Σ; · ` M2 :
A, and Σ; · ` M3 : A. If M1 7→b

∗ M2, M1 7→b
∗ M3, and M3 does not take

a bind reduction, then M2 7→b
∗ M3.

Proof. By induction on M1 7→b
∗ M2. If M1 = M2, then we conclude

since M1 7→b
∗ M3. Otherwise, by the definition of 7→b

∗, we have
M1 7→b N1 7→b

∗ M2. Since M1 takes a bind reduction, M1 6= M3 and
so we must have M1 7→b N2 7→b

∗ M3. Furthermore, by Lemma 189

(deterministic semantics), we have N1 = N2. We then conclude by the
inductive hypothesis for N2, M2, M3.

And normalizing,

Lemma 201 (bind reduction normalization). Let Σ; · ` M1 : A. There
exists a unique M2 such that M1 7→b

∗ M2 and M2 does not take a bind
reduction.

Proof. By induction on the number of binds in M1 not under thunks.
If M1 = S[x ← ret V; N1] then M1 7→b N1[V/x] and we conclude by
the inductive hypothesis for N1[V/x]. Otherwise, M1 must not take a
bind reduction, so M2 = M1 and we conclude by reflexivity.

Lemma 202. If M1
∼=b M2, and M1 7→+ N where at least one of the steps

is not a bind reduction, then M2 7→+ N.

Proof. First, there is some Mc with M1 7→∗b Mc and M2 7→∗b Mc.
Since reduction is deterministic, the sequence must factorize as

M1 7→∗b Mc 7→∗b M′1 7→nb 7→∗ N. So M2 7→∗b Mc 7→+ N

Lemma 203 (bind equivalence transitivity). If M1
∼=b M2 and M2 ∼=b

M3 then M1
∼=b M3.

Proof. M1 and M2 both bind-step to N1 and M2 and M3 both bind-step
to N2. By confluence there is some N3 that N1, N2 both step to, and so
M1
∼=b M3.

Then we can show that, reasoning backwards, any translation of a
term is “bind-equivalent” to a homomorphic translation. First, any
translation of a value bind-reduces to a value translation.

Lemma 204. If V  CT M′ then there exists V ′ with V  CT
v V ′ such that

M′ ∼=b ret V ′

Proof. By induction on V. All cases are immediate since M′ = ret V ′

except the following:

• If V = sealαV or V = 〈tagG(G)〉

�

V2, then it follows by induc-
tive hypothesis.



300 graduality and parametricity : together again for the first time

• (V1, V2)  CT x1 ← N′1; x2 ← N′2; ret (x1, x2) where V1  CT

N′1 and V2  CT N′2: By the inductive hypothesis for each of
these sub-derivations, we have N′i 7→b

∗ ret V ′i and Vi  CT

ret V ′i . Then, by definition, we have M′ 7→b
∗ ret (V1, V2) and

(V1, V2) CT ret (V1, V2) as we were required to show.

Next, we need a similar lemma for evaluation contexts, that says that
if we translate a term in an evaluation context, then the result is bind-
equivalent to something that can be decomposed into a homomorphic
translation. Unlike the value case, we need to allow the general bind-
equality here. This requires a simple lemma that says bind-equivalence
is a congruence with respect to stack plugging.

Lemma 205 (plug is a congruence). Let Σ; · ` M1 : A and Σ; · | A ` S :
B. For any closing γ, if M1[γ] ∼=b M2[γ], then S[M1][γ] ∼=b S[M2][γ].

Proof. Let N be the witness to M1[γ] ∼=b M2[γ]. Then S[M1][γ] 7→b
∗

S[N][γ] and S[M2][γ] 7→b
∗ S[N][γ], so S[N][γ] witnesses S[M2][γ] ∼=b

S[M2][γ].

Lemma 206. If E[N] CT M′, then there exists S′, N′ with E CT
s S′ and

N  CT N′ such that M′ ∼=b S′[N′].

Proof. By induction on the derivation of E[M1] CT M′. We prove the
critical cases below:

•
M CT x ← ret V ′1; N

M CT N[V ′1/x]

From the inductive hypothesis, we have some S, M′1 such that
S[M′1][γ] ∼=b (x ← ret V ′1; N)[γ], M1  CT M′1, and E  CT S.
Since bind reduction preserves bind equivalence, we have (x ←
ret V ′1; N)[γ] ∼=b N[V ′1/x] and so we conclude by transitivity
(Lemma 203).

•
M3  CT M′3 M2  CT M′2

(M3, M2) CT x3 ← M′3; x2 ← M′2; ret (x3, x2)

We have two cases based on whether the context hole lies on the
left or right side of the pair.

1. Consider the case where E = (E3, M2). Then we have some
S3, M′1 such that S3[M′1][γ] ∼=b M′3[γ], M1  CT M′1, and
E3  CT S3. Let Sp = x3 ← •; x2 ← M′2; ret (x3, x2) and let
S = Sp[S3]. Then E CT S by definition since E3  CT S3. It
remains to show S[M′1][γ] ∼=b M′[γ]. We have M′ = Sp[M′3],
so we conclude by Lemma 205 (plug is a congruence) since
S3[M′1][γ] ∼=b M′3[γ].



10.5 typed interpretation of the cast calculus 301

2. Consider the case where E = (V3, E2). Then by Lemma 204,
M′3[γ] 7→b

∗ ret V ′3[γ] for some V ′3 such that M3  CT ret V ′3
and we have some S2, M′1 such that S2[M′1][γ] ∼=b M′2[γ],
M1  CT M′1, and E2  CT S2. Let Sp = x2 ← •; ret (V ′3, x2)

and let S = Sp[S2]. Then E  CT S by definition, since
E2  CT S2 and M3  CT ret V ′3, so it remains to show
S[M′1][γ] ∼=b M′[γ]. Note that M′[γ] 7→b

∗ Sp[M′2], so we
conclude by Lemmas 203 (transitivity) and 205 (plug is a
congruence).

•
M3  CT M′3 M2  CT M′2

M3 M2  CT f ← M′3; a← M′2; (force f ) a

We have two cases based on whether the context hole lies on the
left or right side of the application.

1. Consider the case where E = E3 M2. Then we have some
S3, M′1 such that S3[M′1][γ] ∼=b M′3[γ], M1  CT M′1, and
E3  CT S3. Let Sa = f ← •; a ← M′2; (force f ) a and let
S = Sa[S3]. Then E CT S by definition since E3  CT S3. It
remains to show S[M′1][γ] ∼=b M′[γ]. We have M′ = Sa[M′3],
so we conclude by Lemma 205 (plug is a congruence) since
S3[M′1][γ] ∼=b M′3[γ].

2. Consider the case where E = V3 E2. Then by Lemma 204,
M′3[γ] 7→b

∗ ret V ′3[γ] for some V ′3 such that M3  CT ret V ′3
and we have some S2, M′1 such that S2[M′1][γ] ∼=b M′2[γ],
M1  CT M′1, and E2  CT S2. Let Sa = a← M′2; (force V ′3) a
and let S = Sa[S2]. Then E  CT S by definition since
E2  CT S2 and M3  CT ret V ′3, so it remains to show
S[M′1][γ] ∼=b M′[γ]. Note that M′[γ] 7→b Sa[M′2], so we
conclude by Lemmas 203 (transitivity) and 205 (plug is a
congruence).

All other cases are analogous to the first part of the pair and function
application cases.

Next, clearly the translation multi-function is closed under 7→b
reductions.

Lemma 207 (Bind reduction preserves translation). If M CT M′1 and
M′1 7→b M′2, then M CT M′2.

Next, we need a simple lemma that tells us that we can reason about
reduction of a term by reasoning about a term that is bind-equivalent.

Lemma 208. If M1
∼=b M2, and M1 7→+ N where at least one of the steps

is not a bind reduction, then M2 7→+ N.

Proof. First, there is some Mc with M1 7→∗b Mc and M2 7→∗b Mc.
Since reduction is deterministic, the sequence must factorize as

M1 7→∗b Mc 7→∗b M′1 7→nb 7→∗ N. So M2 7→∗b Mc 7→+ N



302 graduality and parametricity : together again for the first time

To simplify backwards reasoning, note that since the only non-
determinism is in reduction of bind-redexes, every translation is bind-
equivalent to one that starts with a translation, rather than reduction
rule.

Lemma 209 (canonical forms of the translation relation). If Σ; · `
M  CT M′ : B, then, there exists M′c such that Σ; · ` M  CT M′c where
the first rule of M CT M′c is not a bind reduction and M′c 7→∗b M′

We would like all PolyCν terms to make progress whenever their
corresponding CBPV translation evaluates. However, this is not always
the case since some PolyCν terms step to terms with identical transla-
tions. However, the number of such steps is limited by the syntactic
size of the term, defined below. The difficulty in defining term size is
that one of the potentially invisible reductions is bind reductions, so
we need to ensure that let x = V; N is a larger term by our metric
than N[V/x] even though syntactically N may contain many uses of
x. To accommodate this, we define the size of a let to be one more
than the size of the continuation with the discriminee substituted in
|N[M/x]|. However this definition is not structurally recursive, so to
do this we instead define size for open terms to be parameterized by a
size for each of their free variables.

Definition 210 (Type/Term size).

|let x = M; N|γ = 1 + |N|(γ, x 7→ |M|γ)
|λx.M|γ = 0

|C( ~Av, ~M)|γ = 1 + ∑M∈ ~M |M|γ + ∑Av∈ ~Av |A
v| otherwise

|tagG(Av)| = 2 + |Av|

For closed terms, we then define |M| = |M|∅

Note that term size interacts nicely with substitution in that

Lemma 211. |M[V/x]|γ = |M|(γ, x 7→ |V|)

Proof. By induction on M.

Our simulation theorem divides into two cases, either a source step
is matched by a target step, or it corresponds to 0 steps in the target,
but our size metric decreases. Since our size metric cannot decrease
forever, we will be able to show that diverging source terms translate
to diverging target terms.

Theorem 212 (Simulation). For any well-typed M1  CT M′1, if M1 7→
M2, then there exists M′2 such that M2  CT M′2 and M′1[γp] 7→∗ M′2[γp]

and either

• M′1[γp] 7→+ M′2[γp]

• |M2| < |M1|



10.5 typed interpretation of the cast calculus 303

Proof. In each case we have M1 = E[Mr] where Mr is either an error
or a redex. By Lemma 206 (translation context decomposition) and
Lemma 209, we have M1  CT S′[M′r] ∼=b M′1 where E  CT

s S′ and
Mr  CT M′r starting with a congruence rule.

• Error:

E[fB] 7→ ftype(Σ;·`E[fB]) where E 6= []

M′r = f and S[f][γp] 7→ f. So the result follows because f CT

f

• Pack:

E[packν(X ∼= A1, N1)] 7→ E[packν(X ∼= A1, [], N1)]

Note that packν(X ∼= A1, N1) CT M′3 iff packν(X ∼= A1, [], N1) CT

M′3, so by Lemma 198 (translation context plug), we may choose
M′2 = M′r. Since there is no target step, we must show that
|M1| > |M2|. This holds since |packν(X ∼= A1, N1)| = 2+ |N1| >
1 + |N1| = |packν(X ∼= A1, [], N1)|.

• Unpack:

Σ. E[unpack (X, x) = packν(X ∼= A1, [Av l ...], N1); N2]

7→ Σ, σ : Case A1. E[let x = 〈Av[σ/X]〉l ... N1[σ/X]; N2[σ/X]]

Let A′ = JΣ; · ` ∃νX.BK and A′1 = JΣ; · ` A1K. Then there is a
term

M′r[γp] = r ← ret pack(A′1, thunk λ(cX : Case A′1).N
′
cst[γp]) as A′;

unpack (X, f ) = r;

newcaseX cX;

x ← (force f ) cX;



304 graduality and parametricity : together again for the first time

with N′cst = JAvKl [force (thunk (λcX : Case A′.(... N′1 ...))) cX]

and Ni  CT N′i such that M′1 ∼=b S′[M′r] such that E  CT
s S′.

Reducing:

unpack (X, f ) = pack(A′1, thunk λ(cX : Case A′1).N
′
cst[γp]) as A′;

newcaseX cX;

x ← (force f ) cX;

N′2[γp]

7→ JΣK. newcaseA′1
cX;

x ← (force thunk λ(cX : Case A′1).N
′
cst[γp]) cX;

N′2[γp][A′1/X][thunk λ(cX : Case A′1).N
′
cst[γp]/ f ]

= JΣK. newcaseA′1
cX;

x ← (force thunk λ(cX : Case A′1).N
′
cst[γp]) cX;

N′2[γp][A′1/X]

7→∗ JΣK, σ : A′1. x ← N′cst[γp][σ/cX];

N′2[γp][A′1/X][σ/cX]

7→∗ JΣK, σ : A′1. x ← JAvKl [... N′1 ...][γp][σ/cX];

N′2[γp][A′1/X][σ/cX]

Note that, since Σ; X ∼= A′1 ` N1  CT N′1, we have Σ; X ∼= A′1 `
〈Av[σ/X]〉 l ... N1  CT JAvKl [... N′1 ...] by the definition of
the translation relation for casts. Furthermore, by Lemma 197,
since σ : A1 ∈ Σ, we have 〈Av[σ/X]〉l ... N1[σ/X]  CT JAvKl
[... N′1 ...][σ/cX] and by Lemma 196, since σ : A1 ∈ Σ and Σ; X `
N2  CT N′2 : A2, we have N2[σ/X] CT N′2[A

′
1/X][σ/cX]. Thus,

we have

let x = 〈Av[σ/X]〉l ... N1[σ/X]; N2[σ/X]

 CT x ← JAvKl [... N′1 ...][σ/cX]; N′2[A
′
1/X][σ/cX]

so we conclude by Lemma 198 (translation context plug).

• Universal Instantiation:

Σ .E[let x = ({Λν ∼= .X}; Av lM2)YBN] 7→ E[let N[σ/Y] = 〈Av[σ/X]〉lM[σ/X]; ]

Let B′ = JΣ; · ` BK. Let Vf = ΛνX.Av l. We have

E[Mr] CT S′[( f ← M′f ; newcaseB′ cX; x ← (force f ) [B′] cx; N′)][γp] ∼=b M′1[γp]

where Vf  CT M′f , E  CT
s S′ and N  CT N′. Next, we know

Vf  CT ret V ′f and M′f 7→∗b V ′f , so

Σ . M′1[γp] ∼=b 7→+ Σ, σ : B′ . x ← (force V ′f [γp]) [B′] cx; N′[γp]



10.5 typed interpretation of the cast calculus 305

By plugging lemma, and the definition of the translation it is
sufficient to show that

(force V ′f [γp]) [B′] cx 7→∗ JAv lKM′2

for some M2  CT M′2. This follows by induction on the list
JAv lK.

• function application

E[(λx : A.N1) V] 7→ E[N1[V/x]]

We have S′[( f ← ret thunk λx : JΣ; · ` AK.N′1; a← N′2; force f a)][γp] ∼=b
M′1 where Ni  CT N′i , E  CT

s S′. By Lemma 204 (value trans-
lation), we have some V ′ such that N′2[γp] 7→b

∗ ret V ′[γp]

and V  CT ret V ′. Reducing and using Lemma 208, we see
M′1[γp] 7→+ S′[N′1[V/x]][γp].

And the conclusion follows by substitution and plugging lem-
mas.

• If true:

E[if true then N1 else N2] 7→ E[N1]

We have S[(r ← ret true; if r then N′1 else N′2)][γp] ∼=b M′1[γp]

where Ni  CT N′i , E CT
s S′. Then by Lemma 208, and reducing

we see M′1[γp] 7→+ S′[N′1][γp] and the result follows by the
context plugging lemma

• If false: analogous to previous.

• Pair elimination:

let (x, y) = (V1, V2); N 7→ N[V1/x][V2/y]

We have M′1[γp] ∼=b (r ← M′′; let (x, y) = r; N′)[γp] where
(V1, V2) CT M′′ and N  CT N′, E CT

s S′. Thus, by Lemma 204

(value translation), we further have M′′[γp] 7→b
∗ ret V ′[γp] and

(V1, V2) CT ret V ′ for some V ′. Note that by the type of V ′, we
have V ′ = (V ′1, V ′2) for some V ′1, V ′2.

We then have by Lemma 208 and the operational semantics
that M′1[γp] 7→+ S[N′[V ′1/x][V ′2/y]][γp] and the result follows by
substitution and plugging lemmas.

• Let:

let x = V; N2 7→ N2[V/x]

We have M′1[γp] ∼=b S′[(x ← N′1; N′2)][γp] where V  CT N′1 and
N2  CT N′2 and E  CT

s S′. Then, by Lemma 204 (value trans-
lation reduction), we have N′1[γp] 7→b

∗ ret V ′[γp] for some V ′

such that V  CT ret V ′. Thus, we have the following reduction:

S[x ← N′1; N′2][γp] 7→b
∗ S[N′2[V

′/x]][γp]



306 graduality and parametricity : together again for the first time

Note that now we know by substitution and plugging lem-
mas that E[N2[V/x]]  CT S[N′2[V

′/x]], but we only know that
M′[γp] ∼=b S[N′2[V

′/x]].

By Lemma 201 (bind normalization) there exists a unique M′4
such that

S′[x ← N′1; N′2][γp] 7→b
∗ M′4[γp]

and M′4[γp] does not take a bind reduction. Then, by Lemma 200

(bind reduction confluence), we have M′1[γp] 7→b
∗ M′4[γp] and

S[N′2[V
′/x]][γp] 7→b

∗ M′4[γp].

Then, by Lemma 207 (bind reduction preserves translation), we
have E[N2[V/x]] CT M′4.

It finally suffices to show that |M1| > |M2|, which we have since
by definition |let x = V; N2| = 1 + |N2[V/x]| > |N2[V/x]|.

• Unseal:

E[unsealσsealσV] 7→ E[V]

By definition of the translation, E[V]  CT M′1 as well so it
suffices to show that |M1| > |M2|. This holds since by definition
|M3| = 1 + 1 + |V|.

• Identity cast:

E[〈Av〉l V] 7→ E[V] where A ∈ {Bool, α, ?}

The reasoning for this case is analogous to the prior case.

• Pair cast:

E[〈Av1 × Av2 〉l (V1, V2)] 7→ E[(〈Av1 〉l V1, 〈Av2 〉l V2)]

We have M′1[γp] ∼=b S′[JAv1 × Av2 Kl [x1 ← N′1; x2 ← N′2; ret (x1, x2)]][γp]

where Vi  CT N′i , E CT
s S′. Then, by Lemma 204 (value transla-

tion reduction), we have N′i [γp] 7→b
∗ ret V ′i [γp] for some V ′1, V ′2

such that Vi  CT ret V ′i . Thus, reducing and using Lemma 208,
we have

M′1[γp]

7→+ S′[x′1 ← JAv1 Kl [ret x1][γp];

x′2 ← JAv2 Kl [ret x2][γp];

ret (x′1, x′2)]

And the result follows by context plugging and definition of the
simulation relation.



10.5 typed interpretation of the cast calculus 307

• Function cast:

E[(〈Av1 → Av2 〉l V1) V2] 7→ E[〈Av2 〉l (V1 〈Av1 〉l
− V2)]

We have M′1[γp] ∼=b S[( f ← JAv1 → Av2 Kl [N′1]; a← N′2; force f a)][γp]

where Vi  CT N′i , E CT
s S′. Then, by Lemma 204 (value transla-

tion reduction), we have N′i [γp] 7→b
∗ ret V ′i [γp] for some V ′1, V ′2

such that Vi  CT ret V ′i . Then by Lemma 208, and reducing we
get

M′1[γp]

7→+ (a← JAv1 Kl [ret V ′2]; JAv2 Kl [force V ′1 a])[γp]

So the result follows by context plugging and the definition of
the translation relation.

• tag downcast success:

E[〈tagG(Av)〉 � 〈tagG(G)〉
�

V] 7→ E[〈Av〉 � V]

We have M′1[γp] ∼=b S′[JtagG(Av)K � [r ← N′; ret injcase(G) r][γp]]

where V  CT N′, E CT
s S′. Then, by Lemma 204 (value trans-

lation), we have some V ′ such that N′[γp] 7→b
∗ ret V ′[γp] and

V  CT ret V ′. Thus, reducing and using Lemma 208,

JMK � ′1[γp]

7→+ S[JAvK � [ret V ′]][γp]

and the result follows by substitution, plugging lemmas and
definition of the translation relation.

• tag downcast error:

E[〈tagG(Av)〉 � 〈tagH(H)〉

�

V] 7→ E[fB] where G 6= H

We have M′1 ∼=b S′[JtagG(Av)K � [r ← N′; ret injcase(H) r][γp]]

where V  CT N′, E CT
s S′. Then, by Lemma 204 (value trans-

lation), we have some V ′ such that N′[γp] 7→b
∗ ret V ′[γp] and

V  CT ret V ′. Thus, by Lemma 208 and reducing:

M′1[γp]

7→+ S[f][γp]

And the result follows by plugging and definition of the transla-
tion relation.

• Existential upcast:

E[〈∃νX.Av1 〉

�

packν(X ∼= A, [Av2 l ...], N1)] 7→ E[packν(X ∼= A, [Av1 l, Av2 l ...], N1)]



308 graduality and parametricity : together again for the first time

For some N′1 such that N1  CT N′1, we have

M′1[γp] ∼=b

S′[J∃νX.Av1 Kl [ret pack(A′, thunk λcX : Case A′.N′cst) as JΣ; · ` ∃νX.Av1rK]][γp]

where Ncst = JAv2 Kl [force (thunk (λcX : Case A′.(... N′1 ...))) cX]

and A′ = JΣ; · ` AK and E CT
s S′. By Lemma 208, reducing we

get:

S′[M′1][γp]

7→+ ret pack(A′, thunk λcX : Case A′.

JAv1 Kl [force (thunk λcX : Case A′.N′cst) cX]) as J∃νX.Av1rK[γp]

And the result follows by substitution/plugging lemmas and
definition of the translation.

• Universal cast:

E[〈∀νX.Av〉l (Λν{X.([Bv l], M)})] 7→ E[Λν{X.([Av l, Bv l], M)}]

First, let V = Λν{X.([Bv l], M)}. By Lemma 208, and reducing,
we get

M′1[γp] ∼=b S′[x ← N′; ret thunk (ΛX.λcX : Case X.JAvKl [force x [X] cX])]

where V  CT N′, E  CT
s S′. By the value reduction lemma,

N′ 7→∗b ret V ′ for some V  CT ret V ′.

Reducing, we get

S′[x ← N′; ret thunk (ΛX.λcX : Case X.JAvKl [force x [X] cX])]

7→∗b S′[ret thunk (ΛX.λcX : Case X.JAvKl [force V ′ [X] cX])]

Call this term N′2 and note that E[Λν{X.([Av l, Bv l], M)}] CT

N′2. Then by bind confluence, M′1, N′2 7→∗b M′2 and by closure
under bind reduction, we need only show that the size of the
source term is reduced. This holds because

|E[〈∀νX.Av〉l (Λν{X.([Bv l], M)})]| = 2+ |E[(Λν{X.([∀νX.Av l, Bv l], M)})]|

• Tag check true:

E[is(G)? 〈tagG(G)〉

�

V] 7→ E[true]

We have

M′1[γp]
∼=b S′[(r ← (x ← N′; ret injcase(G) x);

match case(G) with r{inj y.ret true | ret false})][γp]



10.5 typed interpretation of the cast calculus 309

where V  CT N′. Then, by Lemma 204 (value translation), we
have some V ′ such that N′[γp] 7→b

∗ ret V ′[γp] and V  CT

ret V ′. So by Lemma 208, have the following reduction:

M′1[γp] 7→+ ret S′[true]

Since true CT ret true, we conclude by Lemma 198 (transla-
tion context plug).

• Tag check false:

E[is(G)? 〈tagH(H)〉

�

V] 7→ E[false] where G 6= H

This case is analogous to the former except that since G 6= H,
the translation produces false and since false CT false, we
conclude.

Now that we have established the simulation theorem, we can
prove our desired adequacy theorems that say that we can tell if a
PolyCν term terminates, errors or diverges by looking at its translation
to CBPV. They follow by our simulation theorem and progress for
PolyCν.

Corollary 213. If Σ; · ` M : A and M CT M′, then

• If M 7→∗ V, then M′[γp] 7→∗ ret V ′[γp] with V  CT ret V ′.

• If M 7→∗ f, then M′[γp] 7→∗ f

Proof. • By simulation, there is some N′ with V  CT N′ and then
by Lemma 204.

• By simulation there is some N′ with M′[γp] 7→∗ N′[γp] and
f CT N′. By definition, N′ = f.

Corollary 214. If Σ; · ` M : A and M CT M′, and Σp, JΣK . M′[γp] ⇑,
then Σ . M ⇑.

Proof. Assume to the contrary that M terminates, then by Lemma 190,
M evaluates to a value or error, in which case the previous corollary
proves M′[γp] terminates, which is a contradiction.

Corollary 215. If Σ; · ` M : A and M  CT M′, and Σ . M ⇑, then
Σp, JΣK . M′[γp] ⇑.

Proof. Coinductively it is sufficient to show that if M  CT M′ and
M ⇑ then M 7→ N, M′[γp] 7→+ N′[γp] and N  CT N′.

We proceed by induction on |M|. Since M ⇑, M 7→ N and N ⇑. By
the simulation lemma, either M′[γp] 7→∗ N′[γp] where N  CT N′ and
one of two cases holds:



310 graduality and parametricity : together again for the first time

• If M′[γp] 7→+ N′[γp] we’re done.

• If |N| < |M| the result follows by inductive hypothesis.

Theorem 216. If Σ; · ` M : A and M CT M′,

• If M′[γp] 7→∗ ret V ′, then M 7→∗ V for some V.

• If M′[γp] 7→∗ f, then M 7→∗ f.

Proof. Assume to the contrary that M′ terminates but M diverges. But
then by the previous corollary M′ diverges, which is a contradiction.
Therefore M either errors or runs to a value, and it follows by deter-
minacy of reduction and the forward reasoning that M must match
M′s behavior.

In §10.6, we establish graduality and parametricity theorems for
PolyGν/PolyCν by analysis of the semantics of terms translated into
CBPVOSum. But since we take the operational semantics of PolyCν as
definitional, we need to bridge the gap between the operational se-
mantics in CBPVOSum and PolyCν by proving the following adequacy
theorem that says that the final behavior of terms in PolyCν is the
same as the behavior of their translations:

Theorem 217 (Adequacy). If · ` M : A; ·, then

• M ⇑ if and only if JMK[γp] ⇑.

• M 7→∗ f if and only if JMK[γp] 7→∗ f.

• M 7→∗ ret V if and only if JMK[γp] 7→∗ ret V ′ for some V ′.

Proof. By the previous corollaries, since M CT JMK.

10.6 graduality and parametricity

In this section we prove the central metatheoretic results of the paper:
that our surface language satisfies both graduality and parametricity
theorems. Each of these is considered a technical challenge to prove:
parametricity is typically proven by a logical relation and graduality
is proven either by a simulation argument [75] or a logical relation
[56, 60], so in the worst case this would require two highly technical
developments. However, we show that this is not necessary: the logical
relations proof for graduality is general enough that the parametricity
theorem is a corollary of the reflexivity of the logical relation. This sub-
stantiates the analogy between parametricity and graduality originally
proposed in [56].

The key to sharing this work is that we give a novel relational
interpretation of type precision derivations. That is, our logical relation



10.6 graduality and parametricity 311

is indexed not by types, but by type precision derivations. For any
derivation Av : Al v Ar, we define a relation VJAvK between values
of Al and Ar. By taking the reflexivity case A : A v A, we recover
the parametricity logical relation. Previous logical relations proofs of
graduality defined a logical relation indexed by types, and used casts
to define a second relation based on type precision judgments, but
the direct relational approach simplifies the proofs and immediately
applies to parametricity as well.

10.6.1 Term Precision

To state the graduality theorem, we begin by formalizing the syntactic
term precision relation. The intuition behind a precision relation M v
M′ is that M′ is a (somewhat) dynamically typed term and we have
changed some of its type annotations to be more precise, producing
M. This is one of the main intended use cases for a gradual language:
hardening the types of programs over time. Restated in a less directed
way, a term M is (syntactically) more precise than M′ when the types
and annotations in M are more precise than M′ and otherwise the
terms have the same structure. We formalize this as a judgment Γv `
Ml v Mr : Av, with the following somewhat intricate side conditions:

• Γv : Γl v Γr is a well-formed type precisioncontext,

• Γv ` Av : Al v Ar is a well-formed type precision derivation,

• Ml and Mr is are well-typed with typings Γl ` Ml : Al and
Γr ` Mr : Ar

A precision context Γv is like a precision derivation between two con-
texts: everywhere a type would be in an ordinary context, a precision
derivation is used instead. Well formedness of precision contexts, and
the extension of well-formedness of type precision derivations to type
precision contexts are straightforward, and presented in Figure 10.22.

We show term precision rules for the surface language in Fig-
ure 10.24. The rules are all completely structural: just check that the
two terms have the same term constructor and all of the corresponding
arguments of the rule are v. As exhibited by the ∀ν elimination rule,
the metafunctions dom, cod, un∀ν, un∃ν are extended in the obvious
way to work on precision derivations.

Figure 10.24 shows the full definition of term precision for PolyCν.
The main difference is that, following [60], we include four rules
involving casts: two for downcasts and two for upcasts. We can sum-
marize all four by saying that if Ml v Mr, then adding a cast to either
Ml or Mr still maintains that the left side is more precise than the
right, as long as the type on the left is more precise than the right.
Semantically, these are the most important term precision rules, as
they bridge the worlds of type and term precision.



312 graduality and parametricity : together again for the first time

· : · v ·
Γv : Γl v Γr Γv ` Av : Al v Ar

(Γv, x : Av) : Γl , x : Al v Γr, x : Ar

Γv : Γl v Γr Γv ` Av : Al v Ar

(Γv, X ∼= Av) : Γl , X ∼= Al v Γr, X ∼= Ar

Γv : Γl v Γr

(Γv, X) : Γl , X v Γr, X

Γv ` ? : ? v ? Γv ` Bool : Bool v Bool
X ∈ Γv

Γv ` X : X v X

Γv ` Av : A v G

Γv ` tagG(Av) : A v ?

Γv, X ` Av : Al v Ar

Γv ` ∀νX.Av : ∀νX.Al v ∀νX.Ar

Γv, X ` Av : Al v Ar

Γv ` ∃νX.Av : ∃νX.Al v ∃νX.Ar

Γv ` Av : Al v Ar Γv ` Bv : Bl v Br

Γv ` Av → Bv : Al → Bl v Ar → Br

Γv ` Av : Al v Ar Γv ` Bv : Bl v Br

Γv ` Av × Bv : Al × Bl v Ar × Br

Figure 10.22: Type Precision Contexts, Type Precision Derivations in Context

cod(Av → Bv) = Bv

cod(?) = ?

cod(tagG(Av → Bv))) = Bv

πi(Av0 × Av1 ) = Avi
πi(?) = ?

πi(tag?×?(Av0 × Av1 )) = Avi

un∀ν(∀νX.Av) = Av

un∀ν(?) = ?

un∀ν(tag∀νX.?(∀νX.Av)) = Av

un∃ν(∃νX.Av) = Av

un∃ν(?) = ?

un∃ν(tag∃νX.?(∃νX.Av)) = Av

Figure 10.23: Metafunctions extended to type precision derivations



10.6 graduality and parametricity 313

Γv ` Ml v Mr : Av Γv ` Bv : Bl v Br

Γv ` (Ml :: Bl) v (Mr :: Br) : Bv
x : Av ∈ Γv

Γv ` x v x : Av

Γv ` Ml v Mr : Av Γv, x : Av ` Nl v Nr : Bv

Γv ` let x = Ml ; Nl v let x = Mr; Nr : B

Γv ` Ml v Mr : Av X ∼= Bv ∈ Γv

Γv ` sealX Ml v sealX Mr : X

Γv ` Ml v Mr : Av X ∼= Bv ∈ Γv

Γv ` unsealX Ml v unsealX Mr : Bv

Γv ` Ml v Mr : Av Γv ` G

Γv ` is(G)? Ml v is(G)? Mr : Bool
Γv ` true v true : Bool

Γv ` false v false : Bool

Γv ` Ml v Mr : Av

Γv ` Nlt v Nrt : Bvt Γv ` Nl f v Nr f : Bvf
Γv ` if Ml then Nlt else Nl f v if Mr then Nrt else Nr f : Bvt t Bvf

Γv ` Ml1 v Mr1 : Av1 Γv ` Ml2 v Mr2 : Av2
Γv ` (Ml1, Ml2) v (Mr1, Mr2) : Av1 × Av2

Γv ` Ml v Mr : Av Γv, x : π0(Av), y : π1(Av1 ) ` Nl v Nr : Bv

Γv ` let (x, y) = Ml ; Nl v let (x, y) = Mr; Nr : Bv

Γv, x : Av ` Ml v Mr : Bv Γv ` Av : Al v Ar

Γv ` λx : Al .Ml v λx : Ar.Mr : Av → Bv

Γv ` Ml v Mr : Av Γv ` Nl v Nr : Bv

Γv ` Ml Nl v Mr Nr : cod(Av)

Γv, X ∼= Bv ` Ml v Mr : Av Γv ` Bv : Bl v Br

Γv ` packν(X ∼= Bl , Ml) v packν(X ∼= Br, Mr) : ∃νX.Av

Γv ` Ml v Mr : Av Γv, X, x : un∃ν(Av) ` Nl v Nr : Bv

Γv ` unpack (X, x) = Ml ; Nl v unpack (X, x) = Mr; Nr : Bv

Γv, X ` Ml v Mr : Av

Γv ` ΛνX.Ml v ΛνX.Mr : ∀νX.Av

Γv ` Ml v Mr : Av Bv : Bl v Br

Γv, X ∼= Bv, x : un∀ν
X(Av) ` Nl v Nr : Bv′

Γv ` let x = Ml{X ∼= Bl}; Nl v let x = Mr{X ∼= Br}; Nr : Bv′

Figure 10.24: PolyGν Term Precision



314 graduality and parametricity : together again for the first time

Γv ` Ml v Mr : ACv Γv : Γl v Γr
Γv ` ACv : A v C Γl ` ABv : A v B Γv ` BCv : B v C

Γv ` 〈ABv〉

�

Ml v Mr : BCv

Γv ` Ml v Mr : BCv Γv : Γl v Γr
Γv ` ACv : A v C Γl ` ABv : A v B Γv ` BCv : B v C

Γv ` 〈ABv〉 � Ml v Mr : ACv

Γv ` Ml v Mr : ABv Γv : Γl v Γr
Γv ` ACv : A v C Γr ` BCv : B v C Γv, Γv′ ` ABv : A v B

Γv ` Ml v 〈BCv〉

�

Mr : ACv

Γv ` Ml v Mr : ACv Γv : Γl v Γr
Γv, Γv′ ` ACv : A v C Γr ` BCv : B v C Γv, Γv′ ` ABv : A v B

Γv ` Ml v 〈BCv〉 � Mr : ABv

Figure 10.25: PolyCν Term Precision Part 1

Then the key lemma is that the elaboration process from PolyGν to
PolyCν preserves term precision:

Lemma 218. If Γv ` Ml v Mr : Av in the surface language, then
Γv ` M+

l v M+
r : Av

To establish this we need to prove a few supporting lemmas. First,
we need some basic facts about type precision derivations.

First, there is at most one derivation of any judgment A v A′

Lemma 219. If Γv ` Av : A v A′ and ΓvBv : A v A′ then Av = Bv

Proof. By induction on derivations. If A′ 6= ?, then only one rule
applies and the proof follows by inductive hypotheses. If Av = ? :
? v ?, the only other rule that could apply is tagG(Av), which cannot
apply because it is easy to see that ? v G does not hold for any G.
Finally, we need to show that if Av = tagG(Av) and Bv = tagG′(Av)
then G = G′ because it is easy to see if A v G and A v G′ then
G = G′.

Next, reflexivity.

Lemma 220. If Γ ` A is a well-formed type then Γ ` A : A v A.

Proof. By induction over A. Every type constructor is punned with its
type precision constructor.

Then, transitivity.

Lemma 221. If Γv ` ABv : A v B and Γv ` BCv : B v C then we can
construct a proof Γv ` ACv : A v C.

Proof. By induction on BCv.



10.6 graduality and parametricity 315

x : Av ∈ Γv

Γv ` x v x : Av

Γv ` Ml v Mr : Av Γv, x : Av ` Nl v Nr : Bv

Γv ` let x = Ml ; Nl v let x = Mr; Nr : Bv

(X ∼= Av) ∈ Γv Γv ` Ml v Mr : Av

Γv ` sealX Ml v sealX Mr : X

(X ∼= Av) ∈ Γv Γv ` Ml v Mr : X

Γv ` unsealX Ml v unsealX Mr : Av

Γv ` Ml v Mr : ? Γv ` G

Γv ` is(G)? Ml v is(G)? Mr : Bool
Γv ` true v true : Bool

Γv ` false v false : Bool

Γv ` Ml v Mr : Bool
Γv ` Nlt v Nrt : Bv Γv ` Nl f v Nr f : Bv

Γv ` if Ml then Nlt else Nl f v if Mr then Nrt else Nr f : Bv

Γv ` Ml1 v Mr1 : Av1 Γv ` Ml2 v Mr2 : Av2
Γv ` (Ml1, Ml2) v (Mr1, Mr2) : Av1 × Av2

Γv ` Ml v Mr : Av1 × Av2 Γv, x : Av1 , y : Av2 ` Nl v Nr : Bv

Γv ` let (x, y) = Ml ; Nl v let (x, y) = Mr; Nr : Bv

Γv, x : Av ` Ml v Mr : Bv Γv ` Av : Al v Ar

Γv ` λx : Al .Ml v λx : Al .Ml : Av → Bv

Γv ` Ml v Mr : Av → Bv Γv ` Nl v Nr : Av

Γv ` Ml Nl v Mr Nr : Bv

Γv, X ∼= Bv ` Ml v Mr : Av

Γv ` packν(X ∼= Bl , Ml) v packν(X ∼= Br, Mr) : ∃νX.Av

Γv ` Ml v Mr : ∃νX.Av Γv ` Bv

Γv, X, x : Av ` Nl v Nr : Bv

Γv ` unpack (X, x) = Ml ; Nl v unpack (X, x) = Mr; Nr : Bv

Γv, X ` Ml v Mr : Av

Γv ` ΛνX.Ml v ΛνX.Mr : ∀νX.Av

Γv ` Ml v Mr : ∀νX.Av Γv ` Bv : Bl v Br

Γv, X ∼= Bv, x : Av ` Nl v Nr : Bv′

Γv ` let x = Ml{X ∼= Bl}; Nl v let x = Ml{X ∼= Bl}; Nl : Bv′

Figure 10.26: PolyCν Term Precision Part 2



316 graduality and parametricity : together again for the first time

1. If BCv = ? : ? v ?, then the proof is just ABv

2. If BCv = tagG(BGv), then BGv : B v G so by inductive hypoth-
esis, there is a proof AGv : A v G and the proof we need is
tagG(AGv).

3. If BCv = BCv1 × BCv2 , then it must also be the case that ABv =

ABv1 ×ABv2 , and then our result is ACv1 ×ACv2 where ACv1 , ACv2
come from the inductive hypothesis.

4. All other cases are analogous to the product.

And we prove the gradual meet, when it exists is in fact the greatest
lower bound in the precision ordering v.

Lemma 222. For every Γ ` A, B, Γ ` A u B and there are precision
derivations

1. Γ ` Auv : A u B v A

2. Γ ` Buv : A u B v B

Such that for any Γ ` C with Γ ` CAv : C v A and Γ ` CBv : C v B,
there exists a derivation

Γ ` Cuv : C v A u B

Then the only complex case of the proof is to show that the casts
are monotone, since all other cases will be primitive rules.

Lemma 223 (Casts are Monotone). If Av : Al v Ar and ABvl : Al v Bl
and ABvr : Ar v Br and Bv : Bl v Br, then

1. If Γv ` Ml v Mr : Av; Γv, then Γv ` 〈ABvl 〉

�

Ml v 〈ABvr 〉

�

Mr :
Bv; Γvo

2. If Γv ` Nl v Nr : Bv; Γvo , then Γv ` 〈c〉 � insertsthatABvl Nl v
〈ABvr 〉 � Nr : Av; Γvo

Proof. 1. By the following derivation

Γv ` Ml v Mr : Av; Γvo
Γv ` Ml v 〈ABvr 〉

�

Mr : ABvlr ; Γvo
Γv ` 〈ABvl 〉

�

Ml v 〈ABvr 〉

�

Mr : Bv; Γvo

Where ABvlr : Al v Br, which exists by transitivity Lemma 221.

2. By the following derivation

Γv ` Nl v Nr : Bv; Γvo
Γv ` 〈ABvl 〉 � Nl v Nr : ABvlr ; Γvo

Γv ` 〈ABvl 〉 � Nl v 〈ABvr 〉 � Nr : Av; Γvo

Where ABvlr : Al v Br, which exists by transitivity Lemma 221.



10.6 graduality and parametricity 317

And finally we can prove the monotonicity of the elaboration.

proof of lemma 218

Proof. By induction on term precision derivations.

1. Cast. By applying Lemma 223 twice.

2. Var: Immediate

3. Let: immediate

4. seal: by the argument for the ascription case.

5. unseal: There are three cases for Av: X, ? and tagX(X). The first
case is immediate. If Av = ?, we need to show

unsealX〈tagX(X)〉 � M+
l v unsealX〈tagX(X)〉 � M+

r

Which follows by unsealX congruence and Lemma 223. For the
final case we need to show

unsealX M+
l v unsealX〈tagX(X)〉 � M+

r

which follows by congruence for unsealX and the downcast-
right rule.

6. tag-check is(G)? Ml v is(G)? Mr: follows by congruence and
Lemma 223.

7. tru: Immediate

8. fls: Immediate

9. if: By if congruence, we need to show the condition and the two
branches of the if are ordered.

• For the condition there are three subcases Ml v Mr : Av:
either Bool, ? or tagBool(Bool). The ordering follows by the
same argument as the unsealX case.

• The two branches follow by the same argument. We de-
scribe the true branch. We have by inductive hypothesis
that N+

tl v N+
tr and we need to show

〈Bvtl 〉 � hide Γtl ⊆ Γtl ∩ Γ f l ; N+
tl v 〈B

v
tr 〉 � hide Γtr ⊆ Γtr ∩ Γ f r; N+

tr

Which follows by lemmas 223.

10. Pair intro: Immediate by inductive hypothesis.

11. Pair elim: By similar argument to unsealX

12. Function application: similar argument to unsealX



318 graduality and parametricity : together again for the first time

13. ∃ν introduction: by congruence

14. ∀ν elimination: by similar argument to unsealX.

15. ∀ν introduciton: by congruence.

16. ∀ν elimination: by similar argument to unsealX case.

10.6.2 Graduality Theorem

The graduality theorem states that if a term M is syntactically more
precise than a term M′, then M semantically refines the behavior of
M′: it may error, but otherwise it has the same behavior as M′: if it
diverges so does M′ and if it terminates at V, M′ terminates with some
V ′ as well. If we think of M as the result of hardening the types of
M′, then this shows that hardening types semantically only increases
the burden of runtime type checking and doesn’t otherwise interfere
with program behavior. We call this operational graduality, as we will
consider some related notions later.

Theorem 224 (Operational Graduality). If · ` Ml v Mr : Av, then
either M+

l ⇓ f or both terms diverge M+
l , M+

r ⇑ or both terms terminate
successfully M+

l ⇓ Vl and M+
r ⇓ Vr.

10.6.3 Logical Relation

The basic idea of the logical relations proof to proving graduality is to
interpret a term precision judgment Γv ` Ml v Mr : Av in a relational
manner. That is, to every type precision derivation Av : Al v Ar, we
associate a relation VJAvK between closed values of types Al and Ar.
Then we define a semantic version of the term precision judgment
Γv � Ml v Mr ∈ Av which says that given inputs satisfying the
relations in Γv, then either Ml will error, both sides diverge, or Ml
and Mr will terminate with values in the relation VJAvK. We define
this relation over CBPVOSum translations of PolyCν terms, rather than
PolyCν terms because the operational semantics is simpler.

More precisely, we use the now well established technique of Kripke,
step-indexed logical relations [3]. Because the language includes allo-
cation of fresh type names at runtime, the set of values that should
be in the relation grows as the store increases. This is modeled Kripke
structure, which indexes the relation by a “possible world” that at-
taches invariants to the allocated cases. Because our language includes
diverging programs (due to the open sum type), we need to use a
step-indexed relation that decrements when pattern matching on OSum,
and “times out” when the step index hits 0. Finally, following [56, 60],
to model graduality we need to associate two relations to each type



10.6 graduality and parametricity 319

precision derivation: one which times out when the left hand hand
term runs out of steps, but allows the right hand side to take any
number of steps and vice-versa one that times out when the right runs
out of steps.

Figure 10.27 includes preliminary definitions we need for the logical
relation. First, Atomn[Al , Ar] and CAtomn[Al , Ar] define the world-
term-term triples that the relations are defined over. A relation R ∈
Reln[Al , Ar] at stage n consists of triples of a world, and a value of
type Al and a value of type Ar (ignore the n for now) such that it is
monotone in the world. The world w ∈Worldn contains the number
of steps remaining w.j, the current state of each side w.Σl , w.Σr, and
finally an interpretation of how the cases in the two stores are related
w.η. An interpretation η ∈ Interpn[Σl , Σr] consists of a cardinality
η.size which says how many cases are related and a function η. f
which says which cases are related, i.e., for each i ∈ η.size it gives a
pair of cases, one valid in the left hand store and one in the right.
Finally, η.ρ gives a relation between the types of these two cases. The
final side-condition says this association is a partial bijection: a case on
one side is associated to at most one case on the other side. Staging the
relations and worlds is necessary due to a circularity here: a relation
is (contravariantly) dependent on the current world, which contains
relations. A relation in Reln is indexed by a Worldn, but a Worldn

contains relations in Relw.j, and w.j < n. In particular, World0 = ∅, so
the definition is well-founded.

The next portion of the figure contains the definition of world ex-
tension w′ w w2, representing the idea that w′ is a possible “future”
of w: the step index j is smaller and the states of the two sides have
increased the number of allocated cases, but the old invariants are
still there. We define strict extension w′ A w to mean extension where
the step has gotten strictly smaller. This allows us to define the later
relation .R which is used to break circular definitions in the logical
relation. Next, we define our notion of non-indexed relation Relω,
which is what we quantify over in the interpretation of ∀ν, ∃ν. Then
we define the restriction of interpretations and relations to a stage n.
An infinitary relation can be “clamped” to any stage n using bRcn.
Finally, we define when two cases are related in an interpretation as
η � (σl , σr, R).

Definition 225. We say γ, δ are valid instantiations of Γv in CBPV,
written (γ, δ) � Γv. when

• For each i ∈ {l, r}, there exists Σi such that for each (x : Av) ∈
Γv, Σi | · ` γi(x) : JAiK when Γv ` Av : Al v Ar and for each
X ∈ Γv, · ` δi(X) and Σi | · ` γi(cX) : Case δi(X).

• For each X ∈ Γv, δR(X) ∈ Relω[δl(X), δr(X)].

2 there is a clash of notation between precision v and world extension w but it should
be clear which is meant at any time.



320 graduality and parametricity : together again for the first time

Atomn[Al , Ar] = {(w, Vl , Vr) |w ∈Worldn ∧ (w.Σl | · ` Vl : Al) ∧ (w.Σr | · ` Vr : Ar)}
CAtomn[Al , Ar] = {(w, Vl , Vr) |w ∈Worldn ∧ w.Σl | · ` Ml : FAl ∧ w.Σr | · ` Mr : FAr}

Reln[Al , Ar] = {R ⊆ Atomn[Al , Ar] | ∀(w, Vl , Vr) ∈ R, w′ w w.(w′, Vl , Vr) ∈ R}
Worldn = {(j, Σl , Σr, η) | j < n ∧ η ∈ Interpj[Σl , Σr]}

Interpn[Σl , Σr] = {(size, f , ρ) | size ∈N∧ f ∈ [size]→ ([Σl .size]× [Σ2.size])

∧ρ : (i < size)→ Reln[Σl( f (i)); Σr( f (i))]

∧∀i < j < size. f (i)l 6= f (j)l ∧ f (i)r 6= f (j)r}
w′ A w. = (w′ w w) ∧ w′.j > w.j

w′ w w = w′.j ≤ w.j ∧ w′.Σl w w.Σl ∧ w′.Σr w w.Σr ∧ w′.η w bw.ηcw′ .j
Σ′ w Σ = Σ′.size ≥ Σ.size ∧ ∀i < Σ.size. Σ′(i) = Σ(i)

η′ w η = η′.size ≥ η ∧ ∀i < η.size. η′. f (i) = η. f (i) ∧ η′.ρ(i) = η.ρ(i)

.R = {(w, Vl , Vr) | ∀w′ A w.(w′, Vl , Vr) ∈ R}
Relω [Al , Ar] = {R ⊆ ⋃n∈N Atomn[Al , Ar] | ∀n ∈N. bRcn ∈ Reln[Al , Ar]}

bηcn = (η.size, η. f , λi.bρ(i)cn)
bRcn = {(w, Vl , Vr) |w.j < n ∧ (w, Vl , Vr) ∈ R}

η � (σl , σr, R) = ∃i < η.size. η. f (i) = (σl , σr) ∧ η.ρ(i) = R}

Figure 10.27: Logical Relation Auxiliary Definitions

Definition 226. We define the extension of an interpretation η with a
new association between seals as

η� (σl , σr, R) = (η.size + 1, ( f , η.size 7→ (σl , σr)), (ρ, η.size 7→ R))

The top of Figure 10.28 contains the definition of the logical relation
on values and computations. First, we write ∼ as a metavariable that
ranges over two symbols: ≺ which indicates that we are counting
steps on the left side, and � which indicates we are counting steps
on the right side. We then define the value relation V∼n JAvKγδ ∈
Reln[δl(Al), δr(Ar)]. Here γ maps the free term variables to pairs of
values and δ maps free type variables to triples of two types and a
relation between them. First, the definition for type variables looks up
the relation in the relational substitution δ. Next, two values in ? are
related when they are both injections into OSum, and the “payloads”
of the injections are later related in the relation R which the world
associates to the corresponding cases. The . is used because we count
pattern matching on OSum as a step. This also crucially lines up
with the fact that pattern matching on the open sum type is the only
reduction that consumes a step in our operational semantics. Note that
this is a generalization of the logical relation definition for a recursive
sum type, where each injection corresponds to a case of the sum. Here
since the sum type is open, we must look in the world to see what
cases are allocated. Next, the tagG(Av) case relates values on the left
at some type Al and values on the right of type ?. The definition states
that the dynamically typed value must be an injection using the tag
given by G, and that the payload of that injection must be related to



10.6 graduality and parametricity 321

Vl with the relation given by Av. This case splits into two because we
are pattern matching on a value of the open sum type, and so in the
� case we must decrement because we are consuming a step on the
right, whereas in the ≺ case we do not decrement because we are only
counting steps on the left. In the ∀νX.Bv case, two values are related
when in any future world, and any relation R ∈ Relω[Al , Ar], and
any pair of cases σl , σr that have bRcw′.j as their associated relation,
if the values are instantiated with Al , σl and Ar, σr respectively, then
they behave as related computations. The intuition is that values of
type ∀νX.B are parameterized by a type A and a tag for that type σ,
but the relational interpretation of the two must be the same. This is
the key to proving the sealX and unsealX cases of graduality. The
fresh existential is dual in the choice of relation, but the same in its
treatment of the case σ.

Next, we define the relation on expressions. The two expression
relations, E≺JAvK and E�JAvK capture the semantic idea behind grad-
uality: either the left expression raises an error, or the two programs
have the same behavior: diverge or return related values in V∼JAvK.
However, to account for step-indexing, each is an approximation to
this notion where E≺JAvK times out if the left side consumes all of
the available steps w.j (where (Σ, M) 7→j is shorthand for saying it
steps to something in j steps), and E�JAvK times out if the right side
consumes all of the available steps. relation is that when We define
the infinitary version of the relations V∼JAvK and E∼JAvK a the union
of all of the level n approximations.

Next, we give the relational interpretation of environments. The
interpretation of the empty environment are empty substitutions with
a valid world w. Extending with a value variable x : Av means
extending γ with a pair of values related by V∼JAvK. For an abstract
type variable X, first δ is extended with a pair of types and a relation
between them. Then, γ must also be extended with a pair of cases
encoding how these types are injected into the dynamic type. Crucially,
just as with the ∀ν, ∃ν value relations, these cases must be associated
by w to the w.j approximation of the same relation with which we
extend δ. The interpretation of the known type variables X ∼= Av has
the same basic structure, the key difference is that rather than using
an arbitrary, δ is extended with the value relation V∼JAvK.

With all of that preparation finished, we finally define the semantic
interpretation of the graduality judgment Γv � Ml v Mr ∈ Av in
the bottom of Figure 10.28. First, it says that both Ml v≺ Mr and
Ml v� Mr hold, where we define v∼ to mean that for any valid
instantiation of the environments (including the preamble Γp), we get
related computations. We can then define the “logical” Graduality
theorem, that syntactic term precision implies semantic term precision,
briefly, ` implies �.



322 graduality and parametricity : together again for the first time

V∼n JXKγδ = bδ(X)cn
V∼n J?Kγδ = {(w, injσl

Vl , injσr Vr) ∈ Atomn[?]δ |w.η � (σl , σr, R) ∧ (w, Vl , Vr) ∈ .R}
V≺n JtagG(Av)Kγδ = {(w, Vl , injγr(case(G)) Vr) ∈ Atomn[tagG(Av)]δ | (w, Vl , Vr) ∈ V≺n JAvKγδ}
V�n JtagG(Av)Kγδ = {(w, Vl , injγr(case(G)) Vr) ∈ Atomn[tagG(Av)]δ | (w, Vl , Vr) ∈ (.V�JAvKγδ)}

V∼n JBoolKγδ = {(w, true, true) ∈ Atomn[Bool]δ} ∪ {(w, false, false) ∈ Atomn[Bool]δ}
V∼n JAv1 × Av2 Kγδ = {((Vl1, Vl2), (Vr1, Vr2)) ∈ Atomn[Av1 × Av2 ]δ

| (w, Vl1, Vr1) ∈ V∼n JAv1 Kγδ ∧ (w, Vl2, Vr2) ∈ V∼n JAv2 Kγδ}
V∼n JAv → BvKγδ = {(w, Vl , Vr) ∈ Atomn[Av → Bv]δ | ∀w′ w w.(w′, V′l , V′r ) ∈ V∼n JAvKγδ.

(w′, force Vl V′l , force Vr V′r ) ∈ E∼n JBvKγδ}
V∼n J∀νX.BvKγδ = {(w, Vl , Vr) ∈ Atomn[∀νX.Av]δ |

∀R ∈ Relω [Al , Ar].∀w′ w w.∀σl , σr.w′.η � (σl , σr, bRcw′ .j) =⇒
(w′, force Vl [Al ] σl , force Vr [Ar] σr) ∈ E∼n JBvKγ′δ′

(where γ′ = γ, cX 7→ (σl , σr), and δ′ = δ, X 7→ (Al , Ar, R))}
V∼n J∃νX.BvKγδ = {(w, pack (Al , Vl), pack (Ar, Vr)) ∈ Atomn[∃νX.Bv]δ |

∃R ∈ Relω [Al , Ar].∀w′ w w.∀σl , σr.w′.η � (σl , σr, bRcw′ .j) =⇒
(force Vl σl , force Vr σr) ∈ E∼n JBvKγ′δ′

(where γ′ = γ, cX 7→ (σl , σr), and δ′ = δ, X 7→ (Al , Ar, R))}
E≺n JAvKγδ = {(w, Ml , Mr) ∈ CAtomn[Av]δ | (w.Σl , Ml) 7→w.j ∨((w.Σl , Ml) 7→<w.j (Σ′l ,f))

∨(∃w′ w w.(w′, Vl , Vr) ∈ V≺n JAvKγδ.

(w.Σl , Ml) 7→w′ .j−w.j (w′.Σl , ret Vl) ∧ (w.Σr, Mr) 7→∗ (w′.Σr, ret Vr))}
E�n JAvKγδ = {(w, Ml , Mr) ∈ CAtomn[Av]δ | (w.Σr, Mr) 7→w.j ∨((w.Σl , Ml) 7→∗ (Σ′l ,f))

∨∃w′ w w.(w′, Vl , Vr) ∈ V≺n JAvKγδ.

(w.Σl , Ml) 7→∗ (w′.Σl , ret Vl) ∧ (w.Σr, Mr) 7→w′ .j−w.j (w′.Σr, ret Vr)}

V∼JAvKγδ =
⋃

n∈N

V∼n JAvKγδ E∼JAvKγδ =
⋃

n∈N

E∼n JAvKγδ

G∼J·K = {(w, ∅, ∅) | ∃n.w ∈Worldn}
G∼JΓv, x : AvK = {(w, (γ, x 7→ (Vl , Vr)), δ) | (w, γ, δ) ∈ G∼JΓvK∧ (w, Vl , Vr) ∈ V∼JAvKγδ}

G∼JΓv, XK = {(w, (γ, cX 7→ (σl , σr)), δ, X 7→ (Al , Ar, R)) | (w, γ, δ) ∈ G∼JΓvK

∧R ∈ Relω [Al , Ar] ∧ (σl , σr, bRcw.j) ∈ w}
G∼JΓv, X ∼= AvK = {(w, (γ, cX 7→ (σl , σr)), δ, X 7→ (Al , Ar,V∼JAvKγδ)) | (w, γ, δ) ∈ G∼JΓvK

w � (σl , σr,V∼w.jJAvKγδ)}

Γv � Ml v Mr ∈ Av = Γv � Ml v≺ Mr ∈ Av ∧ Γv � Ml v� Mr ∈ Av

Γv � Ml v∼ Mr ∈ Av = ∀(w, γ, δ) ∈ G∼JΓp, ΓvK.

(w, JMlK[γl ][δl ], JMrK[γl ][δl ]) ∈ E∼JAvKγδ

Figure 10.28: Graduality/Parametricity Logical Relation



10.6 graduality and parametricity 323

Theorem 227 (Logical Graduality). If Γv ` Ml v Mr : Av, then
Γv � Ml v Mr ∈ Av

The proof is by induction on the term precision derivation. Each
case is proven as a separate lemma. The cases of ∀ν, ∃ν, sealing and
unsealing follow because the treatment of type variables between the
value and environment relations is the same. The cast cases are the
most involved, following by two lemmas proven by induction over
precision derivations: one for when the cast is on the left, and the
other when the cast is on the right.

Finally, we prove the operational graduality theorem as a corollary
of the logical graduality Theorem 227 and the adequacy Theorem 217.
By constructing a suitable starting world wpre that allocates the glob-
ally known tags, we ensure the operational graduality property holds
for the code translated to CBPVOSum, and then the simulation theo-
rem implies the analogous property holds for the PolyCν operational
semantics.

10.6.3.1 Logical Lemmas

Logical Lemmas

Lemma 228. If R ∈ Relω[Al , Ar], then bRcn ∈ Reln[Al , Ar]

Proof. Direct by definition.

Lemma 229. bV∼JAvKγδcn = V∼n JAvKγδ

Proof. Direct by definition.

Lemma 230. If R ∈ Reln[Al , Ar], then .R ∈ Reln[Al , Ar]

Proof. If (w, Vl , Vr) ∈ (.R) and w′ w w, then to show (w′, Vl , Vr) ∈ .R,
we need to show that for any w′′ A w′, that (w′′, Vl , Vr) ∈ R, but this
follows because (w, Vl , Vr) ∈ .R and w′′ A w′ w w.

Lemma 231. Let Γv be a well-formed context, with Γv ` Av : Al v Ar. If
(γ, δ) � Γv, then V∼n JAvKγδ ∈ Reln[Al , Ar].

Proof. By induction on Av.

1. X: by Lemma 228.

2. ?: If (w, injσl
Vl , injσr Vr) ∈ V∼n J?Kγδ and w′ w w, then there

exists R ∈ Reln[Al , Ar] with w.η � (σl , σr, R) and (w, Vl , Vr) ∈
.R. By definition of w, we have that w′ � (σl , σr, bRcw′.j) so it
is sufficient to show (w, Vl , Vr) ∈ .bRcw′.j, which follows by
Lemma 230 that later preserves monotonicity.

3. tagG(Av): by inductive hypothesis, using Lemma 230 in the �
case.



324 graduality and parametricity : together again for the first time

4. Bool: immediate

5. ×: immediate by inductive hypothesis.

6. →: If (w, Vl , Vr) ∈ V∼n JAv → BvKγδ and w′ w w. Then given
w′′ w w′ and (w′′, V ′l , V ′r ) ∈ V∼n JAvKγδ, we need to show

(w′′, force Vl V ′l , force Vr V ′r )E∼n JBvKγδ,

which this holds by relatedness of Vl , Vr because w′′ w w by
transitivity of world extension.

7. ∀ν, ∃ν: similar to the→ case.

Lemma 232. If (w, γ, δ) ∈ G∼JΓvK and w′ w w, then (w′, γ, δ) ∈
G∼JΓvK.

Proof. By induction on Γv, uses monotonicity of V∼JAvK

Corollary 233. V∼JAvKγδ ∈ Relω[Al , Ar]

Lemma 234 (Anti-Reduction). 1. If w′ w w and (w.Σl , Ml) 7→w.j−w′.j

(w′.Σl , M′l) and (w.Σr, Mr) 7→∗ (w′.Σr, M′r) and (w′, M′l , M′r) ∈
E≺JAvKγδ, then (w, Ml , Mr) ∈ E≺JAvKγδ.

2. If w′ w w and (w.Σl , Ml) 7→w.j−w′.j (w′.Σl , M′l) and (w.Σr, Mr) 7→∗
(w′.Σr, M′r) and (w′, M′l , M′r) ∈ E�JAvKγδ, then (w, Ml , Mr) ∈
E�JAvKγδ.

Proof. We do the ≺ case, the other is symmetric. By case analysis on
(w′, M′l , M′r) ∈ E≺JAvKγδ.

1. If w′.Σl , M′l 7→w′.j+1, then (w.Σl , Ml) 7→w.j−w′.j+w′.j+1 and w.j− w′.j + w′.j + 1 =

w.j + 1.

2. If w′.Σl , M′l 7→j Σ′l ,f, with j ≤ w.j, then w.Σl , Ml 7→w.j−w′.j+j

Σ′l ,f and w.j− w′.j + j ≤ w.j since j− w′.j ≤ 0.

3. Finally, if there is some w′′ w w′ and (w′′, Vl , Vr) ∈ V≺JAvKγδ

with w′.Σl , M′l 7→w′ j.−w′′.j w′′.Σl , ret Vl and w′.Σr, M′r 7→∗ w′′, Σr, ret Vr,
then w.Σl , Ml 7→w.j−w′.j+w′.j−w′′.j w′′.Σl , ret V ′′l and w.Σr, Mr 7→∗
w′′, Σr, ret Vr and w.j− w′.j + w′.j− w′′.j = w.j − w′′.j so the
result holds.

Lemma 235 (Pure Anti-Reduction). If (w, M′l , M′r) ∈ E∼JAvKγδ and
(w.Σl , Ml) 7→0 (w.Σl , M′l) and (w.Σr, Mr) 7→0 (w.Σr, M′r), then (w, Ml , Mr) ∈
E∼JAvKγδ.

Proof. Immediate corollary of anti-reduction Lemma 234



10.6 graduality and parametricity 325

Lemma 236 (Pure Forward Reduction). If (w, M′l , M′r) ∈ E∼JAvKγδ

and (w.Σl , Ml) 7→0 (w.Σl , M′l) and (w.Σr, Mr) 7→0 (w.Σr, M′r), then
(w, Ml , Mr) ∈ E∼JAvKγδ.

Proof. By determinism of evaluation.

Lemma 237 (Monadic bind). If (w, Ml , Mr) ∈ E∼JAvKγδ and for all
w′ w w, and (w′, Vl , Vr) ∈ V∼JAvKγδ, (w′, Sl [ret Vl ], Sr[ret Vr]) ∈
E∼JBvKγδ, then (w, Sl [Ml ], Sr[Mr]) ∈ E∼JBvKγδ.

Proof. We show the proof for E≺JAvK, the � case is symmetric. By
case analysis on (w, Ml , Mr) ∈ E∼JAvKγδ.

1. If w.Σl , Ml 7→w.j+1, then w.Σl , S[Ml ] 7→w.j+1.

2. If w.Σl , Ml 7→j w.Σ′l ,f, then w.Σl , S[Ml ] 7→j w.Σ′l ,f.

3. Otherwise there exists w′ and (w′, Vl , Vr) ∈ V≺JAvKγδ with
w.Σl , Ml 7→w.j−w′.j w′.Σl , ret Vl and w.Σr, Mr 7→∗ w′.Σr, ret Vr.
Then w.Σl , Sl [Ml ] 7→w.j−w′.j w′.Σl , S[ret Vl ] and w.Σr, Sr[Mr] 7→∗
w′.Σr, Sr[ret Vr], and the result follows by the assumption.

Pure evaluation is monotone.

Lemma 238. If Σ, M 7→∗ Σ, N, then for any Σ′ w Σ, Σ′, M 7→∗ Σ′, N.

Clamping

Lemma 239. If (w, Vl , Vr) ∈ R and w.j ≤ n, then (w, Vl , Vr) ∈ bRcn.

Proof. Direct from definition.

Tag-to-type

Lemma 240. V∼n JGKγδ = bδR(case(G))cn

Proof. Direct from definition

Lemma 241 (Weakening). If Γv ` Av and Γv ⊆ Γv′ and (w, γ, δ) ∈
G∼JΓvK and (w, γ′, δ′) ∈ G∼JΓv′K, where γ ⊆ γ′ and δ ⊆ δ′, then all of
the following are true:

V∼JAvKγδ = V∼JAvKγ′δ′

E∼JAvKγδ = E∼JAvKγ′δ′

Proof. Straightforward, by induction over Γv′.



326 graduality and parametricity : together again for the first time

10.6.3.2 Congruence Cases

To prove the cast left lemma, we need the following lemma that casts
always either error or terminate with a value on well-typed inputs.

Lemma 242 (Casts don’t diverge). If Γ ` Av : Al v Ar, then for any Σ,
and Σ | · ` γ : JΓK,

1. If Σ | · ` V : Al , then either Σ, J〈Av〉 �K[ret Vl ][γ] 7→∗ Σ,f or
Σ, J〈Av〉 �K[ret Vl ][γ] 7→∗ Σ, ret V ′.

2. If Σ | · ` V : Ar, then either Σ, J〈Av〉 �K[ret V][γ] 7→∗ Σ,f or
Σ, J〈Av〉 �K[ret V][γ] 7→∗ Σ, ret V ′.

Proof. By induction on Av.

1. If Av ∈ {?, Bool} the cast is trivial.

2. Case Av = tagG(AGv):

a) The upcast definition expands as follows:

J〈tagG(AGv)〉

�

K[ret V][γ] = x ← J〈AGv〉

�

K[ret V][γ]; ret injσ x

where σ = γ(case(G)). By inductive hypothesis, J〈AGv〉

�

K[ret V][γ]

either errors (in which case the whole term errors), or runs
to a value V ′, in which case

x ← ret V ′; ret injσ x 7→∗ ret injσ V ′

b) The downcast definition expands as follows:

J〈tagG(AGv)〉 �K[ret V][γ] = x ← ret V; match x with σ{inj y.J〈AGv〉 �K[ret y][γ] |f}

Since Σ | ·V : OSum, V = injσ′ V ′ for some σ′ ∈ Σ.

i. If σ′ = σ, then

match injσ V ′ with σ{inj y.J〈AGv〉 �K[ret y][γ] |f} 7→1 J〈AGv〉 �K[ret V ′][γ]

and then it follows by inductive hypothesis with AGv.

ii. If σ′ 6= σ, then

match injσ V ′ with σ{inj y.J〈AGv〉 �K[ret y][γ] |f} 7→1 f

and the result holds.

3. If Av = Av1 × Av2 , we consider the downcast case, the upcast is
entirely symmetric. First,

J〈Av1 × Av2 〉 �K[ret V][γ] = x ← ret V;

let (x1, x2) = x;

y1 ← J〈Av1 〉 �K[ret x1][γ];

y2 ← J〈Av2 〉 �K[ret x2][γ];

ret (y1, y2)



10.6 graduality and parametricity 327

Next, since V is well-typed, V = (V1, V2). Then,

x ← ret V;

let (x1, x2) = x;

y1 ← J〈Av1 〉 �K[ret x1][γ];

y2 ← J〈Av2 〉 �K[ret x2][γ];

ret (y1, y2)

7→0 y1 ← J〈Av1 〉 �K[ret V1][γ];

y2 ← J〈Av2 〉 �K[ret V2][γ];

ret (y1, y2)

Applying the inductive hypothesis to Av1 , either J〈Av1 〉 �K[ret V1][γ]

errors (in which case the whole term errors), or it runs to a value
V ′1. Then we need to show

y2 ← J〈Av2 〉 �K[ret V2][γ];

ret (V ′1, y2)

errors or terminates. Applying the inductive hypothesis to Av2 ,
either J〈Av2 〉 �K[ret V2][γ] errors (in which case the whole term
errors), or it runs to a value V ′2. Then the whole term runs to
ret (V ′1, V ′2).

4. If Av = Avi → Avo , we consider the downcast case (upcast is
symmetric). The downcast definition expands as follows:

J〈Avi → Avo 〉 �K[ret V][γ] = f ← ret V;

ret thunk λx.

J〈Avo 〉 �K[y← J〈Avi 〉

�

K[ret x][γ]; force f y][γ]

Which steps immediately to a value.

5. If Av = ∀νX.Avo , then it follows by similar reasoning to the
function case, that is, it immediately terminates.

6. If Av = ∃νX.Avo , we consider the downcast case (upcast is
symmetric). The definition expands as follows:

J〈∃νX.Avo 〉 �K[ret V][γ] = unpack (X, x) = ret V; ret thunk λcX.J〈Avo 〉 �K[force x cX]

Which steps immediately to a value.

Lemma 243 (Cast Right). For any Γv, if Γv ` ACv : A v C and
Γv ` ABv : A v B, and Γ′ ` BCv : B v C, Then if (w, γ, δ) ∈ G∼JΓvK,

1. If (w, Vl , Vr) ∈ V∼JABvKγδ, then (w, ret Vl , J〈BCv〉

�

K[ret Vr][γr]) ∈
E∼JACvKγδ

2. If (w, Vl , Vr) ∈ V∼JACvKγδ, then (w, ret Vl , J〈BCv〉 �K[ret Vr][γr]) ∈
E∼JABvKγδ



328 graduality and parametricity : together again for the first time

Proof. By induction on BCv.

1. If BCv ∈ {Bool, ?, X}, then the cast is trivial.

2. If BCv = tagG(BGv), then ACv = tagG(AGv).

a) For the upcast case, we are given that (w, Vl , Vr) ∈ V∼JABvKγδ

and we need to prove that

(w, ret Vl , y← J〈BGv〉

�

K[Vr][γr]; ret injG y) ∈ E∼JtagG(AGv)Kγδ

By inductive hypothesis, we know

(w, ret Vl , J〈BGv〉

�

KVr[γr]) ∈ E∼JAGvKγδ

We then use monadic bind (Lemma 237). Suppose w′ w w
and (w′, V ′l , V ′r ) ∈ V∼JAGvKγδ. We need to show that

(w′, ret V ′l , y← ret V ′r ; ret injG y) ∈ E∼JtagG(AGv)Kγδ

By anti reduction, it is sufficient to show

(w′, Vl , injγr(G) Vr) ∈ V∼JtagG(AGv)Kγδ

i. If∼=≺, we need to show (w′, Vl , Vr) ∈ V∼JtagG(AGv)Kγδ,
which follows by inductive hypothesis.

ii. If∼=�, we need to show (w′, Vl , Vr) ∈ .V∼JtagG(AGv)Kγδ,
that is for any w′′ A w′, (w′′, Vl , Vr) ∈ V∼JtagG(AGv)Kγδ

which also follows by inductive hypothesis.

b) For the downcast case, we know (Vl , Vr) ∈ V∼JtagG(AGv)Kwγ.
Let σr = γr(case(G)).

i. In the ≺ case, we know Vr = injσr V ′r and

(w, Vl , V ′r ) ∈ V≺JAGvKγδ

we need to show

(w, ret Vl , match (injσr V ′r ) with σr{inj x.J〈BGv〉 �K[x][γr] |f}) ∈ E≺JABvKγδ

the right hand side reduces to J〈BGv〉 �K[V ′′], so by
anti-reduction it is sufficient to show

(w, ret Vl , J〈BGv〉 �K[V ′r ]) ∈ E≺JABvKγδ

which follows by inductive hypothesis.

ii. In the � case, we know Vr = injσr V ′r and

(w, V, V ′r ) ∈ .(V≺JAGvKγδ)

(note the .). We need to show

(w, ret Vl , match (injσr V ′r ) with σr{inj x.J〈BGv〉 �K[x][γr] |f}) ∈ E�JABvKγδ

the right hand side takes 1 step to J〈BGv〉 �K[V ′r ].



10.6 graduality and parametricity 329

A. If w.j = 0, then we are done.

B. Otherwise, define w′ = (w.j− 1, w.Σl , w.Σr, bw.ηcw.j−1).
Then by anti-reduction, it is sufficient to show

(w′, ret Vl , J〈BGv〉 �K[V ′r ]) ∈ E�JABvKγδ

(w′, ret Vl , J〈BGv〉 �K[V ′r ]) ∈ E�JABvK

By inductive hypothesis, it is sufficient to show

(w′, Vl , V ′r ) ∈ V≺JAGvKγδ

which follows by assumption because w′ A w.

3. If BCv = BCv1 × BCv2 , then by precision inversion also ACv =

ACv1 × ACv2 and ABv = ABv1 × ABv2 . We consider the upcast
case, the downcast case follows by an entirely analogous argu-
ment.

Given (w, Vl , Vr) ∈ V∼JBCv1 × BCv2 Kγδ, we need to show

(w, ret Vl , J〈BCv1 × BCv2 〉
�

K[ret Vl ][γr]) ∈ E∼JACv1 × ACv2 Kγδ

Expanding definitions, and applying anti-reduction , this reduces
to showing

(w, ret Vl , let (y1, y2) = Vr;

z1 ← J〈BCv1 〉 �K[ret y1][γr];

z2 ← J〈BCv2 〉 �K[ret y2][γr];

ret (z1, z2)

) ∈ E∼JACv1 × ACv2 Kγδ

Since (w, Vl , Vr) ∈ V∼JBCv1 × BCv2 Kγδ, we know

Vl = (Vl1, Vl2) Vr = (Vr1, Vr2)

(Vl1, Vr1) ∈ V∼JBCv1 Kγδ (Vl2, Vr2) ∈ V∼JBCv2 Kγδ

So after a reduction we need to show

(w, ret Vl , z1 ← J〈BCv1 〉 �K[ret Vr1][γr];

z2 ← J〈BCv2 〉 �K[ret Vr2][γr];

ret (z1, z2)

) ∈ E∼JACv1 × ACv2 Kγδ

By forward reduction, it is sufficient to prove the following,
(which is amenable to monadic bind):

(w, z← ret Vl1;1
z2 ← ret Vl2;

ret (z1, z2)

, z1 ← J〈BCv1 〉 �K[ret Vr1][γr];

z2 ← J〈BCv2 〉 �K[ret Vr2][γr];

ret (z1, z2)

) ∈ E∼JACv1 × ACv2 Kγδwγ



330 graduality and parametricity : together again for the first time

We then apply monadic bind with the inductive hypothesis
for BCv1 . Given w′ w w and (V ′l1, V ′r1) ∈ V∼JACv1 Kγδ the goal
reduces to

(w′, z2 ← ret Vl2;

ret (V ′l1, z2)

, z2 ← J〈BCv2 〉 �K[ret Vr2][γr];

ret (V ′r1, z2)

) ∈ E∼JACv1 × ACv2 Kγδ

We then apply another monadic bind with the inductive hypoth-
esis for BCv2 . Given w′′ w w′ and (V ′l2, V ′r2) ∈ V∼JACv2 Kw′γ, the
goal reduces to

(w′′, (V ′l1, V ′l2), (V
′
r1, V ′r2)) ∈ V∼JACv1 × ACv2 Kw′′γ

which follows immediately by our assumptions from monadic
bind.

4. If BCv = BCvi → BCvo , then by precision inversion also ACv =

ACvi → ACvo and ABv = ABvi → ABvo . We consider the up-
cast case, the downcast case follows by an entirely analogous
argument.

Given (Vl , Vr) ∈ V∼JBCvi → BCvo Kγδ, we need to show

(w, ret Vl , J〈BCvi → BCvo 〉

�

K[ret Vr][γr]) ∈ E∼JACvi → ACvo Kγδ

Expanding definitions, this reduces to showing

(w, Vl , thunk (λx.y← J〈BCvi 〉 �K[ret x][γr];

z← force Vry;

J〈BCvo 〉

�

K[ret z][γr]

)) ∈ V∼JACvi → ACvo Kγδ

Let w′ w w be a future world and (w′, Vli, Vri) ∈ V∼JACvi Kγδ.
Then our goal reduces to showing

(w′, force VlVli, y← J〈BCvi 〉 �K[ret Vri][γr];

z← force Vry;

J〈BCvo 〉

�

K[ret z][γr]

) ∈ E∼JACvo Kγδ

by forward reduction, it is sufficient to show

(w′, y← Vli;

force Vly

, y← J〈BCvi 〉 �K[ret Vri][γr];

z← force Vry;

J〈BCvo 〉

�

K[ret z][γr]

) ∈ E∼JACvo Kγδ

We then use the inductive hypothesis on BCvi (which applies
because of downward-closure) and monadic bind: assume w′′ w
w′ and (w′′, V ′li, V ′ri) ∈ V∼JACvi Kγδ. We need to show

(w′′, force VlV ′li, z← force VrV ′ri;

J〈BCvo 〉

�

K[ret z][γr]

) ∈ E∼JACvo Kγδ



10.6 graduality and parametricity 331

We apply monadic bind again, noting that the applications are
related by assumption and downward closure. Assume w′′′ w w′′

and (w′′′, Vlo, Vro) ∈ V∼JABvo Kγδ. By anti-reduction , the goal
reduces to showing

(ret Vo, J〈BCvo 〉

�

K[ret V ′o ][γ]) ∈ E∼JACvo Kγδ

which follows by inductive hypothesis for BCvo .

5. If BCv = ∀νX.BCvo , then by precision inversion also ACv =

∀νX.ACvo and ABv = ∀νX.ABvo . We consider the upcast case,
the downcast case follows by an entirely analogous argument.
Given (w, Vl , Vr) ∈ V∼J∀νX.BCvo Kγδ, we need to show

(w, ret Vl , J〈∀νX.BCvo 〉

�

K[ret Vr][γr]) ∈ E∼J∀ν ACvo Kγδ

Expanding definitions and applying anti-reduction, this reduces
to showing

(w, Vl , V ′r ) ∈ V∼J∀ν ACvo Kγδ

where

V ′r = thunk (ΛX.λcX : Case X.J〈BCvo 〉 �K[(force Vr) X cX][γr])

Let w′ w w, R ∈ Rel[Al , Ar], and w.η � (σl , σr, bRcw.j), then we
need to show that

(w′, (force Vl) Al σl , (force V ′r ) Ar σr) ∈ E∼JACvo Kγ′δ′

where γ′ = (γ, cX 7→ (σl , σr)) and δ′ = (δ, X 7→ (Al , Ar, R))
which reduces in 0 steps to showing

(w′, (force Vl) Al σl , J〈BCvo 〉 �K[(force Vr) Ar σ][γ′r]) ∈ E∼JACvo Kγ′δ′

by noting that by definition, γ′r = γr, cX 7→ σr.

Then, we invoke monadic bind using (w′, (force Vl) Al σl , (force Vr) Ar σr) ∈
E∼JBCvo Kγ′δ′. Let w′′ w w′ and (w′′, Vlo, Vro) ∈ V∼JBCvo Kγ′δ′. We
then need to show

(w′′, ret Vlo, J〈BCvo 〉 �K[ret Vro][γ
′
r] ∈ E∼JACvo Kγ′δ′)

which follows by inductive hypothesis.

6. If BCv = ∃νX.BCvo , then by precision inversion also ACv =

∃νX.ACvo and ABv = ∃νX.ABvo . We consider the upcast case,
the downcast case follows by an entirely analogous argument.
Given (w, Vl , Vr) ∈ V∼J∃νX.BCvo Kγδ, we need to show

(w, ret Vl , J〈∃νX.BCvo 〉

�

K[ret Vr][γr]) ∈ E∼J∃ν ACvo Kγδ



332 graduality and parametricity : together again for the first time

Expanding definitions and applying anti-reduction, this reduces
to showing

(w, ret Vl , unpack (X, y) = ret Vr;

ret pack(X, ()thunk (λcX : Case X.J〈BCvo 〉

�

K[(force y) cX][γr])))

∈ E∼J∃ν.ACvo Kγδ

By definition of V∼J∃νX.BCvo Kγδ, we know

Vl = pack(Al , V ′l )

Vr = pack(Ar, V ′r )

and there is an associated relation R ∈ Relω[Al , Ar]. Then the
goal reduces to showing

(pack(Al , V ′l ), pack(Al , ()thunk (λcX.J〈BCvo 〉

�

K[(force V ′r ) cX][γr]))) ∈ V∼J∃νX.ACvo Kγδ

we choose R as the relation for X, and then we need to show (af-
ter applying anti-reduction) that for any w′ w w, w′ � (σl , σr, bRcw′.j)
that

(w′, (force V ′l ) σ, J〈BCvo 〉

�

K[(force V ′r ) σ][γ′r]) ∈ E∼JACvo Kγ′δ′

where γ′ = γ, cX 7→ (σl , σr). and δ′ = δ, X 7→ (Al , Ar, R). We use
the relatedness assumption and monadic bind again. Then we
are given w′′ w w′, and (Vlo, Vro) ∈ V∼JABvo Kγ′δ′ and need to
show

(w′′, ret Vlo, J〈BCvo 〉

�

K[ret Vro]) ∈ E∼JACvo Kγ′δ′

which follows by inductive hypothesis.

Lemma 244 (Cast Left). For any Γv, Γv ` ACv : A v C, Γ ` ABv :
A v B, Γv ` BCv : B v C and (w, γ, δ) ∈ G∼JΓvK,

1. If (w, Vl , Vr) ∈ V∼JBCvKγδ, then (w, J〈ABv〉 �K[ret Vl ][γl ], ret Vr) ∈
E∼JACvKγδ

2. If (Vl , Vr) ∈ V∼JACvKγδ, then (w, J〈ABv〉

�

K[ret Vl ][γl ], ret Vr) ∈
E∼JBCvKγδ

Proof. By nested induction on ABv and ACv, i.e., if ABv becomes
smaller ACv can be anything but if ACv becomes smaller, then ABv

must stay the same.

1. If ACv ∈ {Bool, ACv0 ×ACv1 , ACvi → ACvo , ∀νX.ACvo , ∃νX.ACvo },
then ABv has the same top-level connective, and the proof is
symmetric to the case of Lemma 243, which always makes ABv

and ACv smaller in uses of the inductive hypothesis.



10.6 graduality and parametricity 333

2. If ACv = ?, then also ABv = BCv = ? and the cast is trivial.

3. If ACv = tagG(AGv), there are two cases: either BCv = ? or
BCv = tagG(BGv).

a) If BCv = ?, then ABv = tagG(AGv) = ACv. Define σl =

γl(case(G)), σr = γr(case(G)).

i. In the upcast case, we know (w, Vl , Vr) ∈ V∼JtagG(AGv)Kγδ.
In which case, Vr = injσr V ′r
A. In the ≺ case, we know (w, Vl , V ′r ) ∈ V≺JAGvKγδ,

and we need to show

(w, (x ← J〈AGv〉

�

K[ret Vl ][γl ]; ret injσl
x), ret injσr V ′r ) ∈ E≺J?Kγδ

which by forward reduction is equivalent to show-
ing

(w, (x ← J〈AGv〉

�

K[ret Vl ][γl ]; ret injσl
x), x ← ret V ′r ; ret injσr x) ∈ E≺J?Kγδ

By inductive hypothesis, we know

(w, J〈AGv〉
�

K[ret Vl ][γl ], ret V ′r ) ∈ δR(case(G))

so can we apply monadic bind. Let w′ w w, and
(w′, V ′l , V ′′r ) ∈ V≺JGKγδ. Then we need to show
(after applying anti-reduction)

(w′, injσl
V ′l , injσr V ′′r ) ∈ V≺J?Kγδ

To do this, we need to give a relation R such that
w′ � (σl , σr, R) and (w′, V ′l , V ′′r ) ∈ .R. Since γ(case(G)) =

(σl , σr), we know R = bδR(case(G))cw′.j. And we
need to show that for any w′′ A w′, that (w′′, V ′l , V ′′r ) ∈
bRcw′.j. Which follows by monotonicity because
w′′ w w.

B. The � case is slightly more complicated. This time
we only know we know (w, Vl , V ′r ) ∈ .V�JAGvKγδ

(note the .), and we need to show

(w, (x ← J〈AGv〉

�

K[ret Vl ][γl ]; ret injσl
x), ret injσr V ′r ) ∈ E�J?Kγδ

By Lemma 242, we know J〈AGv〉

�

K[ret Vl ][γl ] ei-
ther runs to error or terminates. If it runs to an error
then our goal holds. Otherwise, let J〈AGv〉

�

K[ret Vl ][γl ] 7→∗
ret V ′l . Applying anti-reduction, we need to show

(w, injσl
V ′l , injσr V ′r ) ∈ V�J?Kγδ

by the same reasoning as above, we need to show

(w, V ′l , V ′r ) ∈ .bδR(case(G))cw.j



334 graduality and parametricity : together again for the first time

Let w′ A w. We need to show

(w′, V ′l , V ′r ) ∈ bδR(case(G))cw.j

By our assumption, we know

(w′, Vl , V ′r ) ∈ V�JAGvKγδ

so by inductive hypothesis, we know

(w′, J〈AGv〉

�

K[ret Vl ][γl ], ret V ′r ) ∈ E�JGKγδ = δR(case(G))

And since we know w′.Σl , J〈AGv〉

�

K[ret Vl ][γl ] 7→∗
w′.Σl , ret V ′l by Lemma 242, this means

(w′, V ′l , V ′r ) ∈ V�JGKγδ = δR(case(G))

so the result follows by Lemma 239.

ii. For the downcast case, we know (w, Vl , Vr) ∈ V∼J?Kγδ

which means there exists σl , σr, R with w.η � (σl , σr, R)
and Vl = injσl

V ′l and Vr = injσr V ′r and

(w, V ′l , V ′r ) ∈ .R

Expanding the definition of the cast and applying anti-
reduction, we need to show

(w, match Vl with σl{inj x.J〈AGv〉 �K[ret x] |f}, ret Vr) ∈ E∼JtagG(AGv)Kγδ

If γl(case(G)) = σl , the left side errors and the result
holds. Otherwise,

match Vl with σl{inj x.J〈AGv〉 �K[ret x] |f} 7→1 J〈AGv〉 �Kret V ′l

A. In the � case, we need to show

(w, J〈AGv〉 �Kret V ′l , ret Vr) ∈ E�JtagG(AGv)Kγδ

Which follows by inductive hypothesis if we can
show

(w, V ′l , Vr) ∈ V�JtagG(G)Kγδ

which reduces to showing

(w, V ′l , V ′r ) ∈ .V�JGKγδ

So let w′ A w. We need to show

(w′, V ′l , V ′r ) ∈ V�JGKγδ

But we know (w′, V ′l , V ′r ) ∈ R where R = bδR(case(G))cw.j
so the result follows by Lemma 240.



10.6 graduality and parametricity 335

B. In the ≺ case, we check w.j

• If w.j = 0, then the left side takes 1 step so the
result holds.

• Otherwise, define w′ = (w.j− 1, w.Σl , w.Σr, bw.ηcw.j−1).
Then it is sufficient to show

(w′, J〈AGv〉 �Kret V ′l , ret Vr) ∈ E≺JtagG(AGv)Kγδ

To apply the inductive hypothesis we need to
show

(w′, V ′l , ret Vr) ∈ V≺JtagG(G)Kγδ

Unrolling definitions, it is sufficient to show

(w′, V ′l , V ′r ) ∈ V≺JGKγδ

But we know already that (w′, V ′l , V ′r ) ∈ R where
R = bδR(case(G))cw.j so the result follows.

b) Finally, if BCv = tagG(BGv), then ACv = tagG(AGv).
We consider the downcast case, the upcast case is entirely
symmetric. Let (w, Vl , Vr) ∈ V∼JtagG(BGv)Kγδ. Then we
know Vr = injσr V ′r where σr = γr(case(G)).

i. If∼=≺, we furthermore know (w, Vl , V ′r ) ∈ V≺JBGvKγδ.
We need to show that

(w, J〈ABv〉 �K[ret Vl ][γl ], ret injσr V ′r ) ∈ E≺JtagG(AGv)Kγδ

by forward reduction it is sufficient to show

(w, J〈ABv〉 �K[ret Vl ][γl ], x ← ret V ′r ; ret injσr x) ∈ E≺JtagG(AGv)Kγδ

We know by inductive hypothesis that

(w, J〈ABv〉 �K[ret Vl ][γl ], ret Vr)

so we can apply monadic bind. Let w′ w w, and (w′, V ′l , V ′′r ) ∈
V≺JAGvKγδ. Then we need to show (after applying
anti-reduction) that

(w′, V ′l , injσr V ′′r ) ∈ V≺JtagG(AGv)Kγδ

Which, unrolling the definition, is

(w′, V ′l , V ′′r ) ∈ V≺JAGvKγδ

which was our assumption.



336 graduality and parametricity : together again for the first time

ii. If ∼=�, we only know (w, Vl , V ′r ) ∈ .V�JBGvKγδ

(note the .).

(w, J〈ABv〉 �K[ret Vl ][γl ], ret injσr V ′r ) ∈ E�JtagG(AGv)Kγδ

By Lemma 242, the left hand side either errors or ter-
minates with a value.

A. If w.Σl , J〈ABv〉 �K[ret Vl ][γl ] 7→∗ w.Σl ,f, then the
result holds.

B. If w.Σl , J〈ABv〉 �K[ret Vl ][γl ] 7→∗ w.Σl , ret V ′l , then
we need to show that

(w, V ′l , injσr V ′r ) ∈ V�JtagG(AGv)Kγδ

Which unrolls to

(w, V ′l , V ′r ) ∈ .V�JAGvKγδ

So let w′ A w. We need to show

(w′, V ′l , V ′r ) ∈ V�JAGvKγδ

By inductive hypothesis, we know

(w′, J〈ABv〉 �K[ret Vl ][γl ], ret V ′r ) ∈ E�JAGvKγδ

and so by determinism of evaluation, we know

(w′, V ′l , V ′r ) ∈ V�JAGvKγδ

so the result holds.

Lemma 245.

Γv1 , x : Av, Γv2 � x v∼ x ∈ Av

Proof. We need to show

(w, ret Vl , ret Vr) ∈ E∼JAvKγδ

where Vi = γi(x). Since both sides are values, it is sufficient to show

(w, γl(x), γr(x)) ∈ V∼JAvKγδ

By definition of G∼JΓv1 , x : Av, Γv2 K, we know γ = γ1, x 7→ (Vl , Vr), γ2

and δ = δ1, δ2 where (w, γ1, δ2) ∈ G∼JΓv1 K and (w, Vl , Vr) ∈ V∼JAvKγ1δ1.
Then the result follows because V∼JAvKγ1δ1 = V∼JAvKγδ by

Lemma 241



10.6 graduality and parametricity 337

Lemma 246 (Compatibility: Upcast Left).

Γv � Ml v Mr ∈ ACv Γv � ACv : A v C Γv : Γl v Γr

Γl � ABv : A v B Γv � BCv : B v C

Γv � 〈ABv〉

�

Ml v Mr ∈ BCv

Proof. We need to show

(w, J〈ABv〉

�

K[JMlK][γl ][δl ], JMrK[γr][δr]) ∈ E∼JBCvKγδ

By assumption, we know

(w, JMlK[γl ][δl ], JMrK[γr][δr]) ∈ E∼JACvKγδ

So we apply monadic bind. Let w′ w w and (w′, Vl , Vr) ∈ V∼JACvKγδ.
We need to show

(w′, J〈ABv〉

�

K[ret Vl ][γl ], ret Vr) ∈ E∼JBCvKγδ

which follows by Lemma 244.

Lemma 247 (Compatibility: Downcast Left).

Γv � Ml v Mr ∈ BCv Γv ` ACv : A v C Γv : Γl v Γr

Γl ` ABv : A v BΓv ` BCv : B v C

Γv � 〈ABv〉 � Ml v Mr ∈ ACv

Proof. By same argument as Lemma 246.

Lemma 248 (Compatibility: Upcast Right).

Γv � Ml v Mr ∈ ABv Γv ` ACv : A v C Γv : Γl v Γr

Γr ` BCv : B v C Γv ` ABv : A v B

Γv � Ml v 〈BCv〉

�

Mr ∈ ACv

Proof. By same argument as Lemma 246, but using Lemma 243.

Lemma 249.

Γv � Ml v Mr ∈ ACv Γv ` ACv : A v C Γv : Γl v Γr

Γr ` BCv : B v C Γv ` ABv : A v B

Γv � Ml v 〈BCv〉 � Mr ∈ ABv

Proof. By same argument as Lemma 246, but using Lemma 243.

Lemma 250. If (w, γ, δ) ∈ G∼JΓv1 , X ∼= Av, Γv2 K of (w, γ, δ) ∈ G∼JΓv1 , X, Γv2 K,
then

V∼JXKγδ = V∼JAvKγδ



338 graduality and parametricity : together again for the first time

Proof. By definition, γ = γ1, cX 7→ (σl , σr), γ2 and δ = δ1, X 7→
(Al , Ar, R), δ2, where (w, γ1, δ1) ∈ G∼JΓv1 K. Then

V∼JXKγδ = δ(X) = V∼JAvKγ1δ1

So it is sufficient to show

V∼JAvKγ1δ1 = V∼JAvKγδ

which follows by Lemma 241.

Lemma 251. Seal

(X ∼= Av) ∈ Γv Γv � Ml v Mr ∈ Av

Γv � sealX Ml v sealX Mr ∈ X

Proof. Assume (Ml [γl ][δl ], Mr[γl ][δl ]) ∈ E∼JAvKγδ. We need to show

(Ml [γl ][δl ], Mr[γl ][δl ]) ∈ E∼JXKγδ

This follows immediately from Lemma 250

Lemma 252.

(X ∼= Av) ∈ Γv, Γv′ Γv � Ml v Mr ∈ X

Γv � unsealX Ml v unsealX Mr ∈ Av

Proof. By same reasoning as the seal case.

Lemma 253.

Γv � Ml v Mr ∈ ? Γv ` G

Γv � is(G)? Ml v is(G)? Mr ∈ Bool

Proof. Define M′l = JMlK[γl ][δl ] and similarly for Mr. Then we need to
show

(w,

r ← M′l ; match r with case(G){inj y.ret true | ret false},
r ← M′r; match r with case(G){inj y.ret true | ret false})
∈ E∼JBoolKγδ

Since we know by assumption that (w, M′l , M′r) ∈ E∼J?Kγδ, we can
apply monadic bind. Suppose w′ w w and (w′, Vl , Vr) ∈ V∼J?Kγδ.
Then we need to show (after applying anti-reduction) that

(w′,

match Vl with case(G){inj y.ret true | ret false},
match Vr with case(G){inj y.ret true | ret false})
∈ E∼JBoolKγδ



10.6 graduality and parametricity 339

By definition of V∼J?Kγδ, we know for some w′.η � (σl , σr, R) that
Vl = injσl

V ′l , Vr = injσl
V ′r and (w′, V ′l , V ′r ) ∈ .R.

By definition of case(G), if σl = case(G) , then so does σr and vice-
versa. If this is the case, both sides reduce to ret true and otherwise
both sides reduce to ret false. Then the result holds by anti-reduction.

Lemma 254.

Γv � true v true ∈ Bool Γv � false v false ∈ Bool

Proof. The result (w, ret true, ret true) ∈ E∼JBoolKγδ follows be-
cause (w, true, true) ∈ V∼JBoolKγδ. Similarly for false.

Lemma 255.

Γv � Ml v Mr ∈ Bool

Γv � Nlt v Nrt ∈ Bv Γv � Nl f v Nr f ∈ Bv

Γv � if Ml then Nlt else Nl f v if Mr then Nrt else Nr f ∈ Bv

Proof. Define M′l = JMlK[γl ][δl ] and similarly for the rest of the sub-
terms. Then we need to show

(w,

x ← M′l ; case x{xt.N′lt | x f .N′l f },
x ← M′r; case x{xt.N′rt | x f .N′r f })
∈ E∼JBvKγδ

By assumption and weakening, (w, M′l , M′r) ∈ E∼JBoolKγδ, and we
apply monadic bind. Suppose w′ w w and (w′, Vl , Vr) ∈ V∼JBoolKγδ.
We need to show

(w,

x ← ret Vl ; case x{xt.N′lt | x f .N′l f },
x ← ret Vr; case x{xt.N′rt | x f .N′r f })
∈ E∼JBvKγδ

By definition either Vl = Vr = true or Vl = Vr = false. Without loss
of generality assume it is true. Then

x ← ret Vl ; case x{xt.N′lt | x f .N′l f } 7→0 N′lt

and similarly for the right side. By anti-reduction (Lemma 234), it is
sufficient to show

(w′, N′lt, N′rt) ∈ E∼JBvKγδ

which follows by hypothesis.



340 graduality and parametricity : together again for the first time

Lemma 256. Product intro

Γv � Ml0 v Mr0 ∈ Av0 Γv � Ml1 v Mr1 ∈ Av1
Γv � (Ml0, Ml1) v (Mr0, Mr1) ∈ Av0 × Av1

Proof. We need to show that

(w, x ← JMl0K[γl ][δl ];

y← JMl1K[γl ][δl ];

ret (x, y)

, x ← JMr0K[γr][δr];

y← JMr1K[γr][δr];

ret (x, y)

) ∈ E∼JAv0 × Av1 Kγδ

By inductive hypothesis and weakening, we know (w, JMl0K[γl ][δl ], JMr0K[γr][δr]) ∈
E∼JAv0 Kγδ. Applying monadic bind we get some w′ w w and (w′, Vl0, Vr0) ∈
V∼JAv0 Kγδ and applying anti-reduction, we need to show

(w′, y← JMl1K[γl ][δl ];

ret (Vl0, y)

, y← JMr1K[γr][δr];

ret (Vr0, y)

) ∈ E∼JAv0 × Av1 Kγδ

By inductive hypothesis, weakening and monotonicity, we know
(w′, JMl1K[γl ][δl ], JMr1K[γr][δr]) ∈ E∼JAv1 Kγδ. Applying monadic bind
we get some w′′ w w′ and (w′′, Vl1, Vr1) ∈ V∼JAv1 Kγδ and applying
anti-reduction we need to show

(w′′, (Vl0, Vl1), (Vr0, Vr1)) ∈ V∼JAv0 × Av1 Kγδ

That is that for each i ∈ {0, 1} that

(w′′, Vli, Vri) ∈ V∼JAvi Kγδ

which follows by assumption and monotonicity.

Lemma 257. Product elim

Γv � Ml v Mr ∈ Av0 × Av1 Γv, x : Av0 , y : Av1 � Nl v Nr ∈ Bv

Γv � let (x, y) = Ml ; Nl v let (x, y) = Mr; Nr ∈ Bv

Proof. We need to show

(w, z← JMlK[γl ][δl ];

let (x, y) = z;

JNlK[γl ][δl ]

, z← JMrK[γr][δr];

let (x, y) = z;

JNrK[γr][δr]

) ∈ E∼JBvKγδ

First, by inductive hypothesis and weakening, we know

(w, JMlK[γl ][δl ], JMrK[γr][δr]) ∈ E∼JAv0 × Av1 Kγδ

Applying monadic bind, we get some w′ w w with (w′, Vl0, Vr0) ∈
V∼JAv0 Kγδ and (w′, Vl1, Vr1) ∈ V∼JAv1 Kγδ, and applying anti-reduction
we need to show

(w′, JNlK[γ′l ][δl ], JNrK[γ′r][δr]) ∈ E∼JBvKγδ



10.6 graduality and parametricity 341

Where we define γ′ = γ, x 7→ (Vl0, Vr0), y 7→ (Vl1, Vr1). By weakening,
it is sufficient to show

(w′, JNlK[γ′l ][δl ], JNrK[γ′r][δr]) ∈ E∼JBvKγ′δ

which follows by inductive hypothesis if we can show

(w′, γ′, δ) ∈ G∼JΓp, Γv, ΓvM, ΓvN , x : Av0 , y : Av1 K

which follows by definition and monotonicity.

Lemma 258. Fun intro

Γv, x : Av � Ml v Mr ∈ Bv

Γv � λx : Al .Ml v λx : Al .Ml ∈ Av → Bv

Proof. It is sufficient to show

(w, thunk (λx : Al [δl ].M′l), thunk (λx : Ar[δr].M′r)) ∈ V∼JAv → BvKγδ

where M′l = JMlK[γl ][δl ] and similarly define M′r. Suppose w′ w w
and (w′, Vl , Vr) ∈ V∼JAvKγδ. We need to show

(w′,

force (thunk (λx : Al [δl ].JMlK[γl ][δl ]))Vl ,

force (thunk (λx : Ar[δr].JMrK[γr][δr]))Vr)

∈ E∼JBvKγδ

By anti-reduction it is sufficient to show

(w′, JMlK[γ′l ][δl ], JMrK[γ′r][δr]) ∈ E∼JBvKγδ

where γ′ = γ, x 7→ (Vl , Vr). By monotonicity, we have (w′, γ′, δ) ∈
G∼JΓp, ΓvK so the result follows by hypothesis.

Lemma 259.

Γv ` Ml v Mr : Av → Bv Γv ` Nl v Nr : Av

Γv ` Ml Nl v Mr Nr : Bv

Proof. Define M′l = JMlK[γl ][δl ], etc. We need to show

(w, f ← M′l ; x ← N′l ; force f x f ← M′r; x ← N′r; force f x) ∈ E∼JBvKγδ

We apply monadic bind with (w, M′l , M′r) ∈ E∼JAv → BvKγδ which
holds by hypothesis and weakening. Suppose w′ w w, with anti-
reduction it is sufficient to show

(w′, x ← N′l ; force Vl x, x ← N′r; force Vr x) ∈ E∼JBvKγδ

where (w′, Vl , Vr) ∈ V∼JAv → BvKγδ. Then we apply monadic bind
with (w′, N′l , N′r) ∈ E∼JAvKγδ which holds by hypothesis, weakening



342 graduality and parametricity : together again for the first time

and monotonicity. Suppose w′′ w w′; with anti-reduction it is sufficient
to show

(w′′, force Vl V ′l , force Vr V ′r ) ∈ E∼JBvKγδ

Which follows by definition of the value relation and transitivity of
w.

Lemma 260. Forall intro

Γv, X � Ml v Mr ∈ Av

Γv � ΛνX.Ml v ΛνX.Mr ∈ ∀νX.Av

Proof. Define M′i = JMiK[γi][δi] It is sufficient to show

(w, thunk (ΛX.λcX : Case X.M′l), thunk (ΛX.λcX : Case X.M′r)) ∈ V∼J∀νX.AvKγδ

Given w′ w w, and R ∈ Reln[Bl , Br] and w′.η � (σl , σr, bRcw′.j), we
need to show

(w′,

force thunk (ΛX.λcX : Case X.M′l) Bl σl

force thunk (ΛX.λcX : Case X.M′r) Br σr)

∈ V∼JAvKγ′δ′

where γ′ = γ, cX 7→ (σl , σr) and δ′ = δ, X 7→ (Bl , Br, R). By anti-
reduction it is sufficient to show

(w′, JMlK[γ′l ][δ
′
l ], JMrK[γ′r][δ

′
r]) ∈ V∼JAvKγ′δ′

which follows by hypothesis if since (w′, γ′, δ′) ∈ G∼JΓp, Γv, XK by
definition and monotonicity.

Lemma 261. Forall Elim

Γv � Ml v Mr ∈ ∀νX.Av Γv ` Bv : Bl v Br

Γv, X ∼= Bv, x : Av � Nl v Nr ∈ Bv′

Γv � let x = Ml{X ∼= Bl}; Nl v let x = Ml{X ∼= Bl}; Nl ∈ Bv′

Proof. Define M′i = JMiK[γi][δi], N′i = JNiK[γi][δi] and Bi = JBiK[δi].
We need to show

(w,

f ← M′l ; newcaseB′l
cX; x ← force f [B′l ] cX; N′l ,

f ← M′r; newcaseB′r cX; x ← force f [B′r] cX; N′r)

∈ E∼JBv′Kγδ



10.6 graduality and parametricity 343

We know by hypothesis that (w, M′l , M′r) ∈ E∼J∀νX.AvKγδ, so we can
apply monadic bind. Suppose w′ w w and (w′, Vl , Vr) ∈ V∼J∀νX.AvKγδ.
Applying anti-reduction, we need to show

(w′,

newcaseB′l
cX; x ← force Vl [B′l ] cX; N′l ,

newcaseB′r cX; x ← force Vr [B′r] cX; N′r)

∈ E∼JBv′Kγδ

Define σi = w′.Σl .size, and w′′ = (w′.j, (w′.Σl , JAlK[δ]), (w′.Σr, JArK[δ]), η�
(σl , σr, bV∼JAvKγδc′w.j)) Then we have

w′.Σi .newcaseB′i
cX; x ← force Vi [B′i ] cX; N′i 7→0 w′′.Σi . x ← force Vi [B′i ] σi; N′i

So by anti-reduction, it is sufficient to show

(w′′, x ← force Vl [B′l ] σl ; N′l , x ← force Vr [B′r] σr; N′r) ∈ E∼JBv′Kγδ

Since (w′, Vl , Vr) ∈ V∼J∀νX.AvKγδ, by definition we know

(w′′, force Vl [B′l ] σl , force Vr [B′r] σr) ∈ E∼JAvKγ′δ′

where γ′ = γ, cx 7→ (σl , σr) and δ′ = δ, X 7→ (B′l , B′r, R). Next, note that
since X is free in Bv′, that by weakening, E∼JBv′Kγ′δ′ = E∼JBv′Kγδ.
Therefore we can apply monadic bind. Suppose w′′′ w w′′ and (w′′′, V ′l , V ′r ) ∈
V∼JAvKγ′δ′, then by anti-reduction, it is sufficient to show

(w′′′, N′l [x 7→ V ′l ], N′r[x 7→ V ′r ]) ∈ E∼JBv′Kγ′δ′

which follows by assumption about Nl , Nr.

Lemma 262.

Γv, X ∼= Bv � Ml v Mr ∈ Av Γv ` Bv : Bl v Br

Γv � packν(X ∼= Bl , Ml) v packν(X ∼= Br, Mr) ∈ ∃νX.Av

Proof. Recall the translation is

Jpackν(X ∼= Bi, Mi)K = ret (pack(JBiK, thunk λcX : Case JBiK.JMiK) as J∃νX.AiK)

where Γv, X ` Av : Al v Ar. So it is sufficient to show

(w,

pack(JBlK[δl ], thunk λcX : Case (JBlK[δl ]).JMlK[γl ][δl ]) as J∃νX.AvK[δl ],

pack(JBrK[δr], thunk λcX : Case (JBrK[δr]).JMrK[γr][δr]) as J∃νX.AvK[δr])

∈ V∼J∃νX.AvKγδ

For the relation, we pick R = V∼JBvKγδ. Let w′ w w and σl , σr be seals
such that w′.η � (σl , σr, bRcw′.j). Then we need to show

(w,

force (thunk λcX : Case (JBlK[δl ]).JMlK[γl ][δl ]) σl ,

force (thunk λcX : Case (JBrK[δr]).JMrK[γr][δr]) σr)

∈ E∼JAvKγ′δ′



344 graduality and parametricity : together again for the first time

where

γ′ = γ, cX 7→ (σl , σr)

δ′ = δ, X 7→ (JBlK[δl ], JBlK[δl ], R)

By anti reduction this reduces to showing

(w′, JMlK[γ′l ][δ
′
l ], JMrK[γ′r][δ

′
r]) ∈ E∼JAvKγ′δ′

which follows by assumption.

Lemma 263.

Γv � Ml v Mr ∈ ∃νX.Av Γv, X, x : Av � Nl v Nr ∈ Bv Γv � Bv

Γv � unpack (X, x) = Ml ; Nl v unpack (X, x) = Mr; Nr ∈ Bv

Proof. Recall the translation:

Junpack (X, x) = Mi; NiK = p← JMiK;

unpack (X, f ) = p;

newcaseX cX;

x ← (force f cX);

JNiK

Let (w, γ, δ) ∈ G∼JΓp, Γv, ΓvM, ΓvNK. By assumption (and weakening),
we know (w, JMlK[γl ][δl ], JMrK[γr][δr]) ∈ E∼J∃νX.AvK. We apply monadic
bind. Let w′ w w and (w′, V∃ν l , V∃νr) ∈ V∼J∃νX.AvK.

Then V∃ν l = pack(AXl , Vf l) and V∃νr = pack(AXr, Vf r) with some
associated relation R ∈ Rel[AXl , AXr]. Then by anti-reduction we need
to show

(w′, newcaseAXl cX;

x ← (force Vf l cX);

JNlK[γl ][δl ]

, newcaseAXr cX;

x ← (force Vf r cX);

JNrK[γl ][δl ]

) ∈ E∼JBvKγδ

Define

w′′ = (w′.j, (w′.Σl , AXl), (w′.Σr, AXr), w′.η� (AXl , AXr, bRcw′.j))
γ′ = γ, cX 7→ (w′.Σl .size, w′.Σr.size)

δ′ = δ, X 7→ (AXl , AXr, R)

Then by anti-reduction it is sufficient to show

(w′′, (x ← (force Vf l σl); JNlK[γ′l ][δ
′
l ]), (x ← (force Vf r σr); JNrK[γ′r][δ

′
r])) ∈ E∼JBvKγ′δ′

By assumption (and monotonicity), (w′′, force Vf l σl , force Vf r σr) ∈
E∼JAvKγ′δ′, so we can apply monadic bind. Let w′′′ w w′′ and



10.6 graduality and parametricity 345

(w′′′, VAl , VAr) ∈ V∼JAvKγ′δ′. Then after anti-reduction we need to
show

(w′′′, JNlK[γ′′l ][δ
′
l ], JNrK[γ′′r ][δ

′
r]) ∈ E∼JBvKγ′δ′

where γ′′ = γ′, x 7→ (VAl , VAr). By weakening this is equivalent to

(w′′′, JNlK[γ′′l ][δ
′
l ], JNrK[γ′′r ][δ

′
r]) ∈ E∼JBvKγ′′δ′

which follows by assumption.

10.6.3.3 Graduality Proof

Lemma 264. If C : (Γ ` · : A) ⇒ (Γ′ ` · : B) and Γ � Ml v Mr ∈ A,
then Γ′ � C[Ml ] v C[Mr] ∈ B.

Proof. By induction on C, using a corresponding compatibility lemma
in each case.

We define contextual error approximation, following [56]:

Definition 265. Let Γ ` M1 : A; ΓM and Γ ` M2 : A; ΓM. Then we say
M1 (contextually) error approximates M2, written Γ � M1 vctx M2 ∈
A; ΓM when for any context C : (Γ ` A; ΓM) ⇒ (· ` B; ·), all of the
following hold:

1. If C[M1] ⇑ then C[M2] ⇑

2. If C[M1] ⇓ V1 then there exists V2 such that C[M2] ⇓ V2.

Definition 266. If Γ ` M1 : A; ΓM and Γ ` M2 : A; ΓM, then M1 and
M2 are contextually equivalent, Γ � M1 ≈ctx M2 ∈ A; ΓM, when for any
context C : (Γ ` A; ΓM) ⇒ (· ` B; ·), both diverge C[M1], C[M2] ⇑,
or error C[M1], C[M2] ⇓ f or terminate successfully C[M1] ⇓ V1,
C[M2] ⇓ V2.

From syntactic type safety, it is clear that mutual error approxima-
tion implies equivalence:

Lemma 267. If Γ � M1 vctx M2 : A; ΓM and Γ � M2 vctx M1 : A; ΓM,
then Γ � M1 ≈ctx M2 : A; ΓM

Proof. The first two cases are direct. For the third case, we know
by type safety that there are only 3 possibilities for a closed term’s
behavior: C[Mi] ⇑, C[Mi] ⇓ Vi or C[Mi] ⇓ f. If C[M1] ⇓ f, then it is
not the case that C[M1] ⇑ or C[M1] ⇓ V1 but by the first two cases
that means that it is not the case that C[M2] ⇑ or C[M1] ⇓ V, so it
must be the case that C[M2] ⇓ f. The opposite direction follows by
symmetry.



346 graduality and parametricity : together again for the first time

To prove the soundness of the logical relation with respect to error
approximation, we first need to construct for each step-index n a world
w∼p (n) to hold the invariants for the cases generated in the preamble of
a whole program, a substitution δ∼p to give the relational interpretation
of γp, and a “binary” version γ2

p of the preamble substitution γp.

Definition 268 (Preamble World, Relational Substitution).

η∼p (n) = ∅� (Bool, Bool,V∼n JBoolK∅∅)� (OSum×OSum, OSum×OSum,V∼n J?× ?K∅∅)

� (U(OSum→ FOSum), U(OSum→ FOSum), bV∼n J?→ ?K∅∅c)
� (∃X.U(Case X → FOSum), ∃X.U(Case X → FOSum),V∼n J∃νX.?K∅∅)

� (U(∀X.Case X → FOSum), ∀X.U(Case X → FOSum),V∼n J∀νX.?K∅∅)

w∼p (n) = (n, Σp, Σp, η∼p (n))

δ∼p = ∅, Bool 7→ (Bool, Bool,V∼JBoolK∅∅),

Times 7→ (OSum×OSum, OSum×OSum,V∼J?× ?K∅∅),

Fun 7→ (U(OSum→ FOSum), U(OSum→ FOSum),V∼J?→ ?K∅∅),

Ex 7→ (∃X.U(Case X → FOSum), ∃X.U(Case X → FOSum),V∼J∃νX.?K∅∅),

All 7→ (U(∀X.Case X → FOSum), ∀X.U(Case X → FOSum),V∼J∀νX.?K∅∅)

γ2
p(x) = (γp(x), γp(x))

The crucial property is that these together satisfy G∼JΓpK:

Lemma 269 (Validity of Preamble World). For every n, (w∼p (n), γ2
p, δ∼p ) ∈

G∼JΓpK.

Proof. Clear by definition.

Lemma 270.

Γ � Ml v M2 ∈ A; ΓM

Γ � Ml vctx M2 ∈ A; ΓM

Proof. Let C be an appropriately typed closing context. By the congru-
ence Lemma 264 we know

· � C[M1] v C[M2] ∈ B; ·

By Lemma 269, we know that

(w∼p (n), JC[M1]K[γp], JC[M2]K[γp] ∈ E∼JBvKγ2
pδ∼p

(noting that JC[Mi]K[γp][δ∼p ] = JC[Mi]K[γp]).

• If C[M1] ⇑, then by the simulation Theorem 212 we know
Σp, JC[M1]K[γp] ⇑. Then, by adequacy for divergence Corol-
lary 214, to show C[M2] ⇑ it is sufficient to show that Σp, JC[M2]K[γp] ⇑.



10.6 graduality and parametricity 347

We will show that for every n, Σp, JC[M2]K[γp] 7→n Σn, Nn for
some Σn, Nn. We know

(w�p (n), JC[M1]K[γp], JC[M2]K[γp]) ∈ E�JBvKγδ

we proceed by the cases of E�JBvKγδ

– If w�p (n).Σr, J[C[M2]][γp]K 7→w�p (n).j we are done because
w�p (n).Σr = Σp and w�p (n).j = n.

– If w�p (n).Σl , J[C[M1]][γp]K 7→∗ Σ′,f we have a contradiction
because Σp, J[C[M1]][γp]K ⇑

– If w�p (n).Σl , J[C[M1]][γp]K 7→∗ Σ′, ret V1, we also have a
contradiction for the same reason.

• If C[M1] ⇓ V1 then by simulation we know Σp, JC[M1]K 7→n

Σ′, ret V ′1 for some n, V1. Furthermore, to show C[M2] ⇓ V2 it
is sufficient by simulation to show Σp, JC[M2]K 7→∗ ret V ′2. We
know

(w≺p (n), JC[M1]K[γp], JC[M2]K[γp]) ∈ E≺JBvKγδ

we proceed by the cases of E≺JBvKγδ.

– If w≺p (n).Σl , JC[M1]K[γp] 7→w≺p (n).j+1 or w≺p (n).Σl , JC[M1]K[γp] 7→j

f this contradicts the fact that Σp, JC[M1]K 7→n Σ′, ret V ′1.

– Otherwise, w≺p (n).Σr, JC[M2]K[γp] 7→∗ Σ′, ret V ′2, so the re-
sult holds because w≺p (n).Σr = Σp.

Finally we prove Lemma 264 that states that semantic term precision
is a congruence.

Proof. By induction over C. In ever non-cast case we use the corre-
sponding compatibility rule. The two casts cases are precisely dual.

• If C = 〈Av〉

�

C′, where Γ, Γ′o ` Av : Al v Ar then we need to
show

Γ′ � 〈Av〉

�

C′[Ml ] v 〈Av〉

�

C′[Mr] ∈ Ar; Γ′o

First we use the upcast-left compatibility rule, meaning we need
to show

Γ′ � C′[Ml ] v 〈Av〉

�

C′[Mr] ∈ Av; Γ′o

Next, we use the upcast-right compatibility rule, meaning we
need to show

Γ′ � C′[Ml ] v C′[Mr] ∈ Al ; Γ′o

which follows by inductive hypothesis.



348 graduality and parametricity : together again for the first time

• If C = 〈Av〉 � C′, where Γ, Γ′o ` Av : Al v Ar then we need to
show

Γ′ � 〈Av〉 � C′[Ml ] v 〈Av〉 � C′[Mr] ∈ Al ; Γ′o

First we use the downcast-right compatibility rule, meaning we
need to show

Γ′ � 〈Av〉 � C′[Ml ] v C′[Mr] ∈ Av; Γ′o

Next, we use the downcast-left compatibility rule, meaning we
need to show

Γ′ � C′[Ml ] v C′[Mr] ∈ Av; Γ′o

which follows by inductive hypothesis.

10.7 parametricity and free theorems

Our relational approach to proving the graduality theorem is not only
elegant, it also makes the theorem more general, and in particular it
subsumes the parametricity theorem that we want for the language,
because we already assign arbitrary relations to abstract type variables.
Then the parametricity theorem is just the reflexivity case of the
graduality theorem.

Theorem 271 (Parametricity). If Γ ` M : A, then Γ � M+ v M+ : A.

To demonstrate that this really is a parametricity theorem, we show
that from this theorem we can prove “free theorems” that are true
in polymorphic languages. These free theorems are naturally stated
in terms of contextual equivalence, the gold standard for operational
equivalence of programs, which we define as both programs diverging,
erroring, or terminating successfully when plugged into an arbitrary
context.

To use our logical relation to prove contextual equivalence, we need
the following lemma, which says that semantic term precision both
ways is sound for PolyGν contextual equivalence.

Lemma 272. If Γ � Ml v M2 ∈ A and Γ � M2 v M1 ∈ A, then
Γ � Ml ≈ctx M2 ∈ A; ΓM.

10.7.1 Standard Free Theorems

We now substantiate that this is a parametricity theorem by proving
a few contextual equivalence results. First we present adaptations of
some standard free theorems from typed languages, summarized in



10.7 parametricity and free theorems 349

M : ∀νX.X → X VA : A VB : B

let f = M{X ∼= A}; unsealX( f sealXVA) ≈ctx let f = M{X ∼= B}; let y = ( f sealXVB); VA

M : ∀νX.∀νY.(X×Y)→ (Y× X) VA : A VB : B

let f = M{X ∼= A};
let g = f {Y ∼= B};
let (y, x) = g (sealXVA) (sealYVB);

(unsealX x, unsealYy)

≈ctx

let f = M{X ∼= B};
let g = f {Y ∼= A};
let (y, x) = g (sealXVB) (sealYVA);

(unsealYy, unsealX x)

NOT = λb : Bool.if b then false else true

WRAPNOT = λx : X.sealX(NOT(unsealX x))

packν(X ∼= Bool, (sealXtrue, (WRAPNOT, λx : X.unsealX x)))
≈ctx packν(X ∼= Bool, (sealXfalse, (WRAPNOT, λx : X.NOT (unsealX x))))

Figure 10.29: Free Theorems without ?

Figure 10.29. The first equivalence shows that the behavior of any term
with the “identity function type” ∀νX.X → X must be independent
of the input it is given. We place a λ on each side to delimit the
scope of the X outward. Without the X (or a similar thunking feature
like ∀ν or ∃ν), the two programs would not have the same (effect)
typing. In a more realistic language, this corresponds to wrapping
each side in a module boundary. The next result shows that a function
∀νX.∀νY.(X×Y)→ (Y× X), if it terminates, must flip the values of
the pair, and furthermore whether it terminates, diverges or errors
does not depend on the input values. Finally, we give an example
using existential types. That shows that an abstract “flipper” which
uses true for on and false for off in its internal state is equivalent
to one using false and true, respectively as long as they return the
same value in their “readout” function.

Theorem 273. Given M : ∀νX.X → X, VA : A, VB : B,

let f = M{X ∼= A}; unsealX( f sealXVA)

≈ctx

let f = M{X ∼= B}; let y = ( f sealXVB); VA

Proof. There are 4 cases: v≺,v�,�w and ≺w but they are all by a
similar argument. Let (w, γ, δ) ∈ G∼JΓp, ΓK. We need to show

(w,

f ← JMK[γl ][δl ]; newcaseJAK cX; f ← force f [JAK] cX;

JunsealX( f sealXVA)K[γl ][δl ],

f ← JMK[γr][δr]; newcaseJBK cX; f ← force f [JBK] cX;

Jlet y = ( f sealXVB); VAK[γr][δr])

∈ E∼JAKγδ



350 graduality and parametricity : together again for the first time

By the fundamental property, (w, JMK[γl ][δr], JMK[γr][δr]). Applying
monadic bind, we get w′ w w with (w′, Vl , Vr) ∈ V∼J∀νX.X → XKγδ.
By anti-reduction the goal reduces to

(w,

newcaseJAK cX; f ← force Vl [JAK] cX; JunsealX( f sealXVA)K[γl ][δl ],

newcaseJBK cX; f ← force Vr [JBK] cX; Jlet y = ( f sealXVB); VAK[γr][δr])

∈ E∼JAKγδ

Next, each side allocates a new case and we need to pick a relation
with which to instantiate it. By Lemmas 204 and 194, we have that
JVAK[γl ][δl ] 7→0 ret VAl and JVBK[γr][δr] 7→0 ret VBr for some VAl and
VBr. We define R to be the “singleton” relation:

R = {(w, VAl , VBr) ∈ Atom[JAK[δl ], JBK[δr]] |w w w′}

Then we define w′′ to be the world extended with bRcw′.j:

w′′ = (w′.j, w′.Σl , JAK[δl ], w′.Σr[δr], w′.η� (σl , σr, bRcw′.j)

where σi = w′.Σi.size.
Then clearly w′′ w w′ and after reducing some administrative re-

dexes, the goal reduces to

(w′′, Sl [force Vl [JAK] σl ], Sr[force Vr[JBK] σr]) ∈ E∼JAKγδ

where

Sl = f ← •;
x ← JVAK[γl ][δl ];

force f x

and

Sr = y←

 f ← •;
x ← JVBK[γr][δr];

force f x

 ; JVAK[γr][δr]

By definition, we have (w′′, Sl [force Vl [JAK] σl ], Sr[force Vr[JBK] σr]) ∈
E∼JX → XKγ′δ′ where γ′ = γ, cX 7→ (σl , σr) and δ′ = δ, X 7→ (JAK, JBK, R).
Then, because by weakening E∼JAKγδ = E∼JAKγ′δ′, we can apply
monadic bind. Let w′′′ w w′′ and (w′′′, Vf , Vf ) ∈ V∼JX → XKγδ. After
anti-reduction we need to show,

(w′′′, force Vl f VlA, y← (force Vr f VrB); VA[γr][δr]) ∈ E∼JAKγ′δ′

Since by definition we have (w′′′, VlA, VrB) ∈ R = V∼JXKγ′δ′, we
get that (w′′′, force Vl f VlA, force Vr f VrB) ∈ E∼JXKγ′δ′. We apply



10.7 parametricity and free theorems 351

monadic bind a final time, getting w′′′′ w w′′′ and needing to show
(using the definition of R) that

(w′′′′, ret VlA, y← ret VrB; VA[γr][δr]) ∈ E∼JAKγ′δ′

which follows by reducing and finally the fundamental property for
VA.

Theorem 274.

M : ∀νX.∀νY.(X×Y)→ (Y× X) VA : A VB : B

let f = M{X ∼= A};
let g = f {Y ∼= B};
let (y, x) = g (sealXVA) (sealYVB);

(unsealXx, unsealYy)

≈ctx

let f = M{X ∼= B};
let g = f {Y ∼= A};
let (y, x) = g (sealXVB) (sealYVA);

(unsealYy, unsealXx)

Proof. We show thev∼ case, the∼w case is symmetric. Let (w0, γ, δ) ∈
G∼JΓp, ΓK. First, by Lemmas 204 and 194, we have that JVAK[γi][δi] 7→0

ret VAi and JVBK[γi][δi] 7→0 ret VBi for some VAi and VBi and that by
the fundamental property (w0, VAl , VAr) ∈ V∼JAKγδ and (w0, VBl , VBr) ∈
V∼JBKγδ.

Next, define

Ai = JAK[δi]

Bi = JBK[δi]

RX = {(w, VAl , VBr) ∈ Atom[Al , Br] |w w w0}
RY = {(w, VBl , VAr) ∈ Atom[Bl , Ar] |w w w0}

We need to show that

(w0,

f ← JMK[γl ][δl ]; newcaseAl cX;

f ← force f [Al ] cX;

f ← ret f ; newcaseBl cY;

g← force f [Bl ] cY;

Jlet (y, x) = g (sealXVA) (sealYVB); (unsealXx, unsealYy)K[γl ][δl ],

f ← JMK[γr][δr]; newcaseBr cX;

f ← force f [Br] cX;

f ← ret f ; newcaseAr cY;

g← force f [Ar] cY;

Jlet (y, x) = g (sealXVB) (sealYVA); (unsealYy, unsealXx)K[γr][δr])

∈ E∼JA× BKγδ



352 graduality and parametricity : together again for the first time

Now, the translation of each term has JMK[γi][δi] in evaluation po-
sition so we can apply monadic bind, giving us some w1 w w0 and
(w1, VMl , VMr) ∈ V∼J∀νX.∀νY.X×Y → Y× XKγδ. Next, define

w2 =

(w1.j,

(w1.Σl , Al , Bl), (w1.Σr, Br, Ar),

(w1.η� (Al , Br, bRXcw1.j)� (Bl , Ar, bRYcw1.j)))

σXi = w1.Σi.size

σYi = w1.Σi.size + 1

γ′ = γ, cX 7→ (σXl , σXr), cY 7→ (σYl , σYr)

δ′ = δ, X 7→ (Al , Br, RX), Y 7→ (Bl , Ar, RY)

Then we can apply monadic bind a few times and get some w3 w w2

with (w3, Vf l , Vf r) ∈ V∼JX×Y → Y× XKγ′δ′ and we need to show
that

(w3,

Jlet (y, x) = g (sealXVA) (sealYVB); (unsealXx, unsealYy)K[γ′′l ][δ
′
l ],

Jlet (y, x) = g (sealXVB) (sealYVA); (unsealYy, unsealXx)K[γ′′r ][δ
′
r])

∈ E∼JA× BKγ′δ′

where γ′′ = γ′, g 7→ (Vf l , Vf r). By anti-reduction the goal reduces to

(w3, p← force Vf l VAl VBl ; let (y, x) =

p; J(unsealXx, unsealYy)K[δ′l ], p← force Vf r VBr VAr; let (y, x) =

p; J(unsealYy, unsealXx)K[δ′r])E∼JA× BKγ′δ′

Then we use monadic bind combined with the fact that based on the
relations RX, RY we know (w3, force Vf l VAl VBl , force Vf r VBr VAr) ∈
E∼JX×YKγ′δ′. We get one last w4 w w3 and the goal finally reduces
to (simplifying using RX, RY)

(w4, ret (VAl , VBl), ret (VAr, VBr)) ∈ E∼JA× BKγ′δ′

which follows by our earlier assumption by weakening.

Lemma 275.

packν(X ∼= Bool, (sealXtrue, (NOT, λx : X.unsealXx)))
≈ctx packν(X ∼= Bool, (sealXfalse, (NOT, λx : X.NOT (unsealXx))))

Proof. We do the v∼ case, the ∼w case is symmetric. Let (w, γ, δ) ∈
G∼JΓpK. The goal reduces to showing(

w,
pack(Bool, (thunk λcX : Case X.J(sealXtrue, (NOT, (λx : X.unsealXx)))K)),

pack(Bool, thunk λcX : Case X.J(sealXfalse, (NOT, λx : X.NOT (unsealXx)))K)

)
∈ V∼J∃νX.X× ((X → X)× (X → Bool))Kγδ



10.7 parametricity and free theorems 353

The relation we pick is R = {(w′, true, false) ∈ Atom[Bool, Bool]} ∪
{(w′, false, true) ∈ Atom[Bool, Bool]} Then we need to show for any
future w′ w w and w′ � (σl , σr, bRcw′.j), that(

w′,
(force (thunk λcX : Case X.J(sealXtrue, (NOT, λx : X.unsealXx))K) σl),

(force thunk λcX : Case X.J(sealXtrue, (NOT, λx : X.NOT (unsealXx)))K σr)

)
∈ E∼JX× ((X → X)× (X → Bool))Kγ′δ′

where

γ′ = γ, cX 7→ (σl , σr)

δ′ = δ, X 7→ (Bool, Bool, R)

And after applying anti-reduction, by monadic bind, we need to show
the following 3 things:

(w′, true, false) ∈ V∼JXKγ′δ′

(w′, JNOTK[γ′l ][δ
′
l ], JNOT[γ′r][δ

′
r]K) ∈ E∼JX → XKγ′δ′

(w′, Jλx : X.unsealXxK, Jλx : X.NOT (unsealXx)K) ∈ E∼JX → BoolKγ′δ′

1. First, (w′, true, false) ∈ V∼JXKγ′δ′ follows directly from the
definition of δR(X) = R.

2. Second, let w′′ w w′ and (w′′, Vl , Vr) ∈ V∼JXKγ′δ′. Then we need
to show

(w′′, force VNOT[γ
′
l ][δ
′
l ]Vl , force VNOT[γ

′
r][δ
′
r]Vr) ∈ E∼JXKγ′δ′

where JNOTK = ret VNOT. There are two cases: either Vl = true

and Vr = false or vice-versa. In either case, NOT swaps the two
values and the result holds.

3. Finally, let w′′ w w′ and (w′′, Vl , Vr) ∈ V∼JXKγ′δ′. Then we need
to show,

(w′′, force Vf l Vl , force Vf r Vr) ∈ E∼JBoolKγ′δ′

where Jλx : X.unsealXxK = ret Vf l and Jλx : X.NOT (unsealXx)K =
ret Vf r. By definition of R, either Vl = true and Vr = false or
vice-versa. In either case, both sides evaluate to ret Vl , and we
need to show

(w′′, Vl , Vl) ∈ V∼JBoolKγ′δ′

which follows by definition.



354 graduality and parametricity : together again for the first time

10.7.2 Free Theorems with Dynamic Typing

Next, to give a flavor of what kind of relational reasoning is possible
in the presence of the dynamic type, we consider what free theorems
are derivable for functions of type ∀X.? → X. A good intuition for
this type is that the only possible outputs of the function are sealed
values that are contained within the dynamically typed input. It is
difficult to summarize this in a single statement, so instead we give
the following three examples:

Theorem 276 (∀νX.?→ X Free Theorems). Let · ` M : ∀νX.?→ X

1. For any · ` V : ?, then let f = M{X ∼= A}; unseal f V either
diverges or errors.

2. For any · ` V : A and · ` V ′ : B,

let f = M{X ∼= A};
unsealX( f sealXV)

≈ctx
let f = M{X ∼= A};
let y = (unsealX( f sealXV ′));

V

3. For any · ` V : A, · ` V ′ : B, · ` Vd : ?,

let f = M{X ∼= A};
unsealX( f (sealXV, Vd))

≈ctx
let f = M{X ∼= B};
let y = unsealX( f (sealXV ′, Vd));

V

The first example passes in a value V that does not use the seal X,
so we know that the function cannot possibly return a value of type
X. The second example mimics the identity function’s free theorem. It
passes in a sealed value V and the equivalence shows that V ′’s effects
do not depend on what V was sealed and the only value that V ′ can
return is the one that was passed in. The third example illustrates that
there are complicated ways in which sealed values might be passed
as a part of a dynamically typed value, but the principle remains the
same: since there is only one sealed value that’s part of the larger
dynamically typed value, it is the only possible return value, and the
effects cannot depend on its actual value. The proof of the first case
uses the relational interpretation that X is empty. The latter two use
the interpretation that X includes a single value.

Compare this reasoning to what is available in GSF, where the poly-
morphic function determines which inputs are sealed and which are
not, rather than the caller. Because of this, Toro, Labrada, and Tanter
[85] only prove “cheap” theorems involving ? where the polymorphic
function is known to be a literal Λ function and not a casted function.
As an example, for arbitrary M : ∀X.?→ X, consider the application
M [Bool](true, false). The continuation of this call has no way of



10.7 parametricity and free theorems 355

knowing if neither, one or both booleans are members of the abstract
type X. The following examples of possible terms for M illustrate
these three cases:

1. M1 = (ΛX.λx : Bool× Bool.if or x then f else Ω) :: ∀X.? →
X

2. M2 = (ΛX.λx : X × Bool.if snd x then fst x else Ω) :: ∀X.? →
X

3. M3 = (ΛX.λx : X× X.snd x) :: ∀X.?→ X

If M = M1, both booleans are concrete so X is empty, but from the
inputs the function can determine whether to diverge or error. If
M = M2, the first boolean is abstract and the second is concrete, so
only the first can inhabit X, but the second can be used to determine
whether to return a value or not. Finally if M = M3, both booleans
are abstract so the function cannot inspect them, but either can be
returned. It is unclear what reasoning the continuation has here:
it must anticipate every possible way in which the function might
decide which values to seal, and so has to consider every dynamically
typed value of the instantiating type as possibly abstract and possibly
concrete. Most of the free theorems are stated in terms of contextual
equivalence. We define contextual equivalence of PolyGν terms to
mean contextual equivalence of their elaborations into PolyCν terms.
By Lemma 267, we can prove a contextual equivalence M1 ≈ctx M2 by
proving contextual error approximation both ways (M1 vctx M2 and
M2 vctx M1). We can prove contextual error approximation by proving
logical relatedness by soundness of the logical relation for open terms
(Lemma 270), which is defined in terms of the two logical relations
v≺,v�, giving us technically 4 things to prove: v≺,v�,�w and
≺w. However, these cases are all very similar so we show only one
case and the other cases follow by essentially symmetric arguments.

Now we give formal proofs of the three cases.

Theorem 277. Let M f : ∀νX.? → X and · ` A and · ` Md : ? and
Ml , Mr : B, be closed well-typed terms and define

Ni = let f = M f {X ∼= A}; let y = f Md; Mi

Then

N1 ≈ctx N2

And therefore, for any Mi, Ni ⇑ or Ni 7→∗ f.

Proof. First, note that the contextual equivalence is clearly false if Ni
reduces to a value since we can pick Ml = true and Mr = false, so
Ni must diverge or error.

The sketch of the proof is as follows. We use the empty relational
interpretation for X. Md is well-behaved with this interpretation since



356 graduality and parametricity : together again for the first time

X is not used (weakening). So if we pass Md’s value to M we get a
well-behaved X term out, but there are no terminating well-behaved
X terms since the interpretation of X is empty. Therefore the Ml , Mr

are dead code and the terms are equivalent.
Now to the in-depth formal proof. By symmetry it is sufficient to

prove for any (w, γ, δ) ∈ G∼JΓpK that (w, JN+
l K[γl ][δl ], JN+

r K[γl ][δl ]) ∈
E∼JBKγδ.

Expanding definitions, define

M′f i = JM+
f K[γi][δi]

M′di = JM+
d K[γi][δi]

M′i = JM+
i K[γi][δi]

A′i = JAK[δi]

N′i =
fp ← M′f i; newcaseA′i

cX; f ← force fp [A′i] cX;

y← ( f ← ret f ; x ← M′di; force f x); M′i

Then in these terms, our goal is to show (w, N′l , N′r) ∈ E∼JBKγδ. First,
(w0, M f l′ , M′f r) ∈ V∼J∀νX.?→ XKγδ, so we can apply monadic bind.
Let w1 w w0 and (w1, V ′f l , V ′f r) ∈ V∼JBKγδ. Then, define

N′i1 =
newcaseA′i

cX; f ← force V ′f i [A
′
i] cX;

y← ( f ← ret f ; x ← M′di; force f x); M′i

And we need to show (w1, N′l1, N′l2) ∈ E∼JBKγδ. Define

R∅ = ∅

w2 = (w1.j, (w1.Σl , A′l), (w1.Σr, A′r), (w1.η� (Al , Ar, bR∅cw1.j)))

σXi = w1.Σi.size

γ′ = γ, cX 7→ (σl , σr)

δ′ = δ, X 7→ (Bool, Bool, R)

Then both sides reduce, allocating a fresh tag. Define

N′i2 =
f ← force V ′f i [A

′
i] σi;

y← ( f ← ret f ; x ← M′di; force f x); M′i

Then it is sufficient to prove (w2, N′l2, N′r2) ∈ E∼JBKγδ. Note that by
weakening, E∼JBKγδ = E∼JBKγ′δ′, so we will prove (w2, N′l2, N′r2) ∈
E∼JBKγδ.

Next, by definition of the logical relation (w2, force V ′f l [A
′
l ] σl , force V ′f r [A

′
r] σr) ∈

V∼J?→ XKγ′δ′, so we can again use monadic bind. Let w3 w w2 and
(w3, V ′′f l , V ′′f r) ∈ V∼J?→ XKγ′δ′. Reducing we get

N′i3 = y← (x ← M′di; force V ′′f i x); M′i



10.7 parametricity and free theorems 357

And the goal is to prove (w3, N′l3, N′r3) ∈ E∼JBKγ′δ′.
To apply monadic bind, we need to show that (w3, M′dl , M′dr) ∈
V∼J?Kγ′δ′, which follows by the fundamental property So we apply Note that it is key

here that X is free
in Md, otherwise
we would not get
that these terms
are related with X
interpreted as R∅,
but only X
interpreted as
V∼JAK.

monadic bind again, and get w4 w w3 and (w4, V ′dl , V ′dr) ∈ V∼J?Kγ′δ′.
Reducing, define

N′i4 = y← (force V ′′f i V ′di); M′i

And we need to show (w4, N′l4, N′r4) ∈ E∼JBKγ′δ′. By definition,

(w4, (force V ′′f l V ′dl), (force V ′′f r V ′dr)) ∈ E∼JXKγ′δ′

, so we can apply monadic bind. We get w5 w w4 and (w5, VXl , VXr) ∈
V∼JXKγ′δ′. The goal at this point is irrelevant since V∼JXKγ′δ′ = R∅,
and so we have a contradiction.

Theorem 278. For any M f : ∀νX.?→ X · ` A, B and VA : A and VB : B,

let f = M f {X ∼= A};
let y = ( f sealXVA);

unsealXy

≈ctx
let f = M f {X ∼= B};
let y = ( f sealXVB);

VA

Proof. The sketch of the proof is as follows. As the relational inter-
pretation of X we pick the singleton relation relating V and V ′. Then
sealXV and sealXV ′ are related values at the dynamic type ?. Then by
parametricity of M : ∀νX.? → X, if M returns, it will return sealXV
in the left term and the sealXV ′ in the right term.

We show one direction of the 4 cases, the others are analogous. Let
(w0, γ, δ) ∈ G∼JΓpK. Define

Nl =

fp ← M f l ; newcaseAl cX; f ← force fp [Al ] cX;

y← f ← ret fp; x ← (a← MVAl ; ret injcX
a); (force f a);

ret y

Nr =

fp ← M f r; newcaseBr cX; f ← force fp [Br] cX;

y← f ← ret fp; x ← (a← MVBr; ret injcX
a); (force f a);

MVAr

M f i = JM+
f K[γi][δi]

MVAi = JV+
A K[γi][δi]

MVBi = JV+
B K[γi][δi]

Ai = JAK[δi]

Bi = JBK[δi]

And we need to show (w0, Nl , Nr) ∈ E∼JAKγδ.
First, by Lemmas 204 and 194, note that we know MVAi 7→0 ret VAi

and MVBi 7→0 ret VBi, with (w0, VAl , VAr) ∈ V∼JAKγδ and (w0, VBl , VBr) ∈
V∼JAKγδ. Then define

RX = {(w, Vl , Vr) |Vl = VAl ∧Vr = VAr ∧ w w w0}



358 graduality and parametricity : together again for the first time

Then we proceed as in the previous proof. Getting some w1 w w0 that
uses RX as the interpretation of X. Define

Nl1 =
y← (force Vf l (injσl

VAl));

ret y

Nl1 =
y← (force Vf r (injσr VBr));

MVAr

Where (w1, Vf l , Vf r) ∈ V∼J?→ XKγ′δ′ and γ′, δ′, σi are defined analo-
gously to the previous proof. By weakening our goal is equivalent to
(w1, Nl1, Nr1) ∈ E∼JAKγ′δ′. Next, we can prove

(w1, force Vf l (injσl
VAl), force Vf r (injσr VBr)) ∈ E∼JXKγ′δ′

if we can show that (w1, injσl
VAl , injσr VBr) ∈ V∼J?Kγ′δ′. By def-

inition of σl , σr this follows because (w1, VAl , VBr) ∈ V∼JXKγ′δ′ =

RX. So we can apply monadic bind, getting some w2 w w1 and
(w2, V ′Al , V ′Br) ∈ V∼JXKγ′δ′. Note that necessarily by definition of RX,
that V ′Al = VAl and V ′Br = VBr. So our goal then becomes to show (after
anti-reduction) that

(w2, ret VAl , VAr) ∈ E∼JAKγ′δ′

Which follows by weakening and the fundamental property.

Theorem 279. For any · ` A, B, M : ∀νX.? → X and VA : A, VB : B, · `
Vd : ?,

let f = M{X ∼= A}; unsealX( f (sealXVA, Vd)) ≈ctx let f = M{X ∼=

B}; let y = f (sealXVB, Vd); VA

Proof. Similar to the previous theorem, using the same relational in-
terpretation. The key is to show that

(w′, injcase(?×?) (injσl
VAl , Vdl), (injcase(?×?) (injσr VBr), Vdr)) ∈ V∼J?Kγ′δ′

where the relational interpretation of X in (w′, γ′, δ′) is the singleton
relating VAl and VBr. This follows by weakening and the rest of the
argument follows by similar argument to the previous proof.

10.8 discussion and related work

dynamically typed PolyGν
and design alternatives Most

gradually typed languages are based on adding types to an existing
dynamically typed language, with the static types capturing some
feature already existing in the dynamic language that can be migrated



10.8 discussion and related work 359

to use static typing. PolyGν was designed as a proof-of-concept stan-
dalone gradual language, so it might not be clear what dynamic typing
features it supports migration of. In particular, since all sealing is ex-
plicit, PolyGν does not model migration from programming without
seals entirely to programming with them, so its types are relevant to
languages that include some kind of nominal data type generation,
along the lines of Dynamically typed PolyGν.

The existential types of dynamically typed PolyGν have some ana-
logues in other languages. For example, in Racket structs can be used
to make fresh nominal types and units provide first-class modules.
It would be interesting future work to see if our logical relation can
usefully be adapted to Typed Racket’s typed units [83].

Our fresh polymorphic types are more exotic than the fresh exis-
tentials, and don’t clearly correspond to any existing programming
features, but they model abstraction over nominal datatypes where
the datatype is guaranteed to be freshly generated.

Our use of abstract and known type variables was directly inspired
by Neis, Dreyer, and Rossberg [55], who present a language with a
fresh type creation mechanism which they show enables parametric
reasoning though the language overall does not satisfy a traditional
parametricity theorem. This suggests an alternative language design,
where ∀ and ∃ behave normally and we add a newtype facility, analo-
gous to that feature of Haskell, where newtype allocates a new case of
the open sum type for each type it creates.

tag checking Siek et al. [75] claim that graduality demands that
tag-checking functions like our is(Bool)? form must error when
applied to sealed values, and used this as a criticism of the design
of Typed Racket. However, in our language, is(Bool)? will simply
return false, which matches Typed Racket’s behavior. This is desir-
able if we are adding types to an existing dynamic language, because
typically a runtime tag check should be a safe operation in a dynami-
cally typed language. Explicit sealing avoids this graduality issue, an
advantage over previous work.

logical relations Our use of explicit sealing eliminates much
of the complexity of prior logical relations [5, 85]. To accommodate
dynamic conversion and evidence insertion, those relations adopted
complex value relations for universal types that in turn restricted the
ways in which they could treat type variables. Additionally, we are
the first to give a logical relation for fresh existential types, and it is
not clear how to adapt the non-standard relation for universals to
existentials [5, 85].

Next, while we argue that our logical relation more fully captures
parametricity than previous work on gradual polymorphism, this is
not a fully formal claim. To formalize it, in future work we could



360 graduality and parametricity : together again for the first time

show that PolyGν is a model of an effectful variant of an axiomatic
parametricity formulation such as Dunphy [19], Ma and Reynolds [48],
and Plotkin and Abadi [63].

noninterference Toro, Garcia, and Tanter [84] prove termination-
insensitive noninterference, for a language with gradual security via a
logical relations argument. Analogous to Toro, Labrada, and Tanter
[85], applying the AGT approach produces a language that satisfies
graduality but not noninterference, so they tweak the language to sat-
isfy noninterference but not graduality and make similar conjectures
that the combination of graduality and noninterference is impossible.

Later, after the publication of the paper this chapter is based on, a
system was developed that provides non-interference and graduality,
[6]. Their solution, developed independently, bears similarities to our
approach: they separate the effect of gradual type ascriptions from the
confidentiality of data, similar to how PolyGν separates sealing and
unsealing from gradual enforcement.



Part IV

C O N C L U S I O N S





11
D I S C U S S I O N A N D F U T U R E W O R K S

11.1 implementation and optimization

In this dissertation, I have focused on the semantics of gradual typing.
However, the most pressing issue with gradual typing is performance,
specifically the high runtime space and time overheads of casts, as
demonstrated in [35, 78]. While out of scope for this dissertation, it
is of great interest to see if our approach will provide insights into
gradual typing implementations.

I hope that our analysis in Chapter 5 on different cast semantics
helps elucidate the tradeoff that is being made by attempts to make
gradual typing more efficient by using alternative cast semantics
such as transient [87] and amnesic [34] semantics. These semantics
sacrifice the η laws to get more efficient implementations of their
higher-order casts. By showing the deep connection between η laws
and the wrapping semantics, I hope that we have shown why the goal
of improving the performance of wrapping semantics in particular is
a valuable pursuit.

As to what insights might lead to improved implementations, most
directly relevant would be the thunkability of upcasts and linearity
of downcasts that we identified in Chapter 5. These two properties
are really the most important properties for an optimizer to know.
Thunkability means a computation can be treated as a value, and so
can be freely inlined, duplicated, de-duplicated, hoisted, etc. Simi-
larly, linearity means strictness of a computation, which is crucial to
optimization of lazy languages because it can justify the use of more
efficient call-by-value calling-conventions.

11.2 what do type and term precision mean?

Throughout this dissertation, we have approached the semantic study
of gradual typing in a few concrete presentations, all roughly equiv-
alent and all based on the idea that upcasts and downcasts form
embedding projection pairs.

• In Chapter 3, we present a semantic interpretation saying that
type precision A v B holds when there exists an embedding-
projection pair between A and B that factorizes the ep pair that
each canonically has with the dynamic type. Then term precision
is defined by first defining a homogeneous error approximation
relation, which is made heterogeneous by the insertion of casts.

363



364 discussion and future works

• In Chapter 5, we axiomatize type and term precision as abstract
relations, with the key property that each type precision A v B
implies the existence of pure upcasts (for call-by-value) and
linear downcasts (for call-by-name). When restricting to one
evaluation order, we recover the adjointness of the casts, and un-
der mild assumptions about base casts we recover the retraction
property as well. In this setting, the behavior of casts is fully
characterized by their relation to the (abstractly axiomatized)
heterogeneous term precision relation. We then provide a model
of our axiomatic system in the style of the previous chapter: we
define a homogeneous error approximation relation and then
extend it to a heterogeneous relation by the insertion of casts.

• In Chapter 10, we take the heterogeneous term precision as
primary: the logical relation is indexed by term precision deriva-
tions, showing that we can define first a semantic ordering on
terms, and then show that the casts satisfy the canonical rela-
tionship axiomatized by the lub/glb properties of Chapter 5.

So we have two constructive interpretations of type precision deriva-
tions A v B

1. As an embedding-projection pair from A to B.

2. As a relation between terms of type A and terms of type B.

These interpretations are closely related.

• Given the embedding-projection pair interpretation of c : A v B,
we can define a relation vc between A and B by (roughly)

VA vc VB iff Ee,cVA verr VB iff VA verr Ep,cVB

This is the approach taken in Chapter 3.

• Given the relational interpretation vc of a precision judgment
c : A v B, we have a specification for the embedding projection
pairs. They should be terms such that the embedding satisfies

Ee,cVA verr VB iff VA vc VB

and the projection must satisfy

VA verr Ep,cVB iff VA vc VB

This is essentially how GTT (Chapter 5) axiomatizes the behavior
of ep pairs, by first axiomatizing the heterogeneous relations
vc and then axiomatizing the ep pairs with this property. In
Chapter 10, we define the logical relation and the embedding-
projection pairs by recursion on the derivations and this property
is central to the graduality proof.



11.3 blame 365

This relationship between embedding-projection pairs and hetero-
geneous ordering relations is well known in category theory where
the embedding-projection pairs are generalized to adjunctions and the
relations are generalized to profunctors. This might serve as a source of
inspiration for generalizations of the GTT approach, perhaps to more
general notions of interoperability than gradual typing.

11.3 blame

We have not used a notion of blame in any of our semantics, despite
its prevalence in contract and gradual typing literature. Blame can be
seen as a further refinement of gradual typing cast semantics where
instead of there being only one, uninformative generic “dynamic
type error”, the error references a specific piece of code, or specific
boundary between two program components, which is “blamed” for
the violation. This is intuitively very helpful for tracing errors back
to their point of origin, since for function and object types, the error
may arise in execution of a completely different portion of code than
where the type was written.

Introducing blame into our analysis of casts as embedding-projection
pairs does introduce some subtleties into the definition of the error
ordering. Throughout this dissertation, we have used a single error,
which is the least element of the error ordering. To accommodate for
multiple errors, we have two choices.

First, for the purposes of the graduality theorem, we should have
an ordering where multiple errors are allowed, but each of them is a
“bottom” element of the ordering, and so as a consequence every error
is equivalent in the ordering. Since the errors are considered different,
this means the ordering is a true preorder rather than a partial order,
since it does not satisfy anti-symmetry. This is the correct ordering
for stating the graduality theorem though, since the addition of casts
can change what component is blamed. Furthermore, this means
that we cannot use order-equivalence wv in place of observational
equivalence, which for convenience we have done throughout the
development.

Alternatively, we can have a parameterized ordering vl that is an
error ordering indexed by a blame label or perhaps a set of blame
labels, where the labels in the index are considered to be a least
element of the ordering and blame using any other labels are only less
than themselves. Then the casts should be parameterized by a blame
label as well, and then casts using the label l will form embedding
projection pairs with respect to the ordering vl . This is a refinement
over the approach of making all blame labels least elements, and so in
particular should imply the graduality theorem using that ordering.



366 discussion and future works

11.4 limitations of the theory

The theory of embedding-projection pairs and error approximation
ordering relations explains much of the semantics of gradually typed
languages that satisfy the graduality theorem. However, this disser-
tation is far from complete in explaining the multitude of gradual
language designs that arise in practice.

11.4.1 Subtyping

One very common feature of gradual languages that we have not
explored in this dissertation is subtyping and the closely related notions
of union and intersection types, which are used extensively to capture
the natural, set-like reasoning that programmers employ when using
dynamically typed languages. In particular our intrinsically typed
approach to semantics does not lend itself directly to a notion of
subtyping. Here I will speculate on what might be a reasonable notion.

First, we argue that the interpretation of a subtyping judgment
A ≤ B as a coercion should be the same as that of a cast, i.e, to cast
from A up to ? and then back down to B.

〈B � ?〉〈?� A〉

Intuitively this makes sense because we think of the dynamic type as
giving us a universal type that should give a ground truth semantics
to all values. We then could define subtying A ≤ B to hold when
this cast is particularly well-behaved. In particular we certainly do
not want a subtyping coercion to ever error. But note that because of
higher-order types, it is not sufficient to say that for all values VA : A
that 〈B � ?〉〈?� A〉VA reduces to some VB. For instance given any
two disjoint types, say Int and Bool× Bool, the cast

〈Bool→ Int � ?〉〈?� Bool→ (Bool× Bool)〉V

will always reduce to a value, but if that value is ever applied to a
boolean, the resulting function can never return a value because the
output will be of the wrong type.

An alternative would be to say that the cast 〈B � ?〉〈?� A〉 must
be hereditarily pure, it runs to a value without error and when given
hereditarily pure inputs it returns hereditarily pure outputs, etc. This
definition should clearly be reflexive and transitive, and seems like it
should also satisfy the expected rules for function types.

It should then be easy to define the specification for unions and
intersections of types as least upper bounds and greatest lower bounds
with respect to this ordering. However, this will not lead directly to
an algorithm for computing unions and intersections of types, or
determining if they exist. Instead, this is a correctness condition on a
syntactic algorithm.



11.5 generality of ep pairs 367

11.4.2 Consistency and Abstracting Gradual Typing

Another common syntactic notion in fine-grained gradually typed
languages is consistency in its guises of consistent equality and consis-
tent subtyping. These notions have been elegantly explained by the
Abstracting Gradual Typing framework, based on a Galois connection
between gradual types and sets of “static types” in a language. How-
ever, this approach is fundamentally based on a static type checker
for an untyped language, whereas our semantic approach is based on
an intrinsically typed semantics, so it might not be possible to give a
satisfactory explanation of these notions of consistency in terms of our
semantics. That is to say, perhaps we shouldn’t think of consistency
as a semantic notion at all, but rather a way to power the “smooth
transition” from dynamic to static typing, with the graduality prop-
erty ensuring that the precise details of where casts are placed is not
essential to reasoning about gradually typed programs.

11.5 generality of ep pairs

We have only detailed a very traditional kind of gradual typing: we
have a dynamic type and all types have an embedding-projection pair
into it. However one avenue of gradual typing research has been to
apply the same language design to other things such as adding effect
typing or security typing to a simply typed language. These languages
might not have a dynamic type in the traditional sense but instead a
“dynamic effect” for example or “dynamic label”.

To give some idea of how ep pairs might apply in this case, I’ll
sketch an approach to dynamic effect typing. Let’s say the language
features a family of types Eff ε A where A is a type of values and ε

describes effects. For instance ∅ might be empty meaning no tracked
effects, or stdin for reading from an input stream, stdout for printing
to an output stream, etc. Then say we have a dynamic effect type ?ε

that should correspond to programming in an effectful language.
This can be modeled as follows. Rather than having each type have

an ep pair to the dynamic type, each effect type will come equipped
with a parametric ep pair between Eff ε A / Eff ?ε A. To accommodate
the possibility of runtime errors, even the “empty” effect would need
to allow for the possibility of runtime errors. Then we would expect
similar properties like factorization of embedding-projection pairs etc.
Semantically these would likely be modeled as homomorphisms of
monads that support a notion of error.





B I B L I O G R A P H Y

[1] Daniel Ahman, Neil Ghani, and Gordon D. Plotkin. “Dependent
Types and Fibred Computational Effects.” In: Foundations of
Software Science and Computation Structures. 2016. doi: 10.1007/
978-3-662-49630-5_3.

[2] Amal Ahmed. “Step-Indexed Syntactic Logical Relations for
Recursive and Quantified Types.” In: European Symposium on
Programming (ESOP). Vienna, Austria, Mar. 2006, pp. 69–83.

[3] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. “State-
Dependent Representation Independence.” In: ACM Symposium
on Principles of Programming Languages (POPL), Savannah, Georgia.
Jan. 2009.

[4] Amal Ahmed, Robert Bruce Findler, Jeremy Siek, and Philip
Wadler. “Blame for All.” In: ACM Symposium on Principles of
Programming Languages (POPL), Austin, Texas. Jan. 2011, pp. 201–
214.

[5] Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler.
“Theorems for Free for Free: Parametricity, With and Without
Types.” In: International Conference on Functional Programming
(ICFP), Oxford, United Kingdom. 2017.

[6] Arthur Azevedo de Amorim, Matt Fredrikson, and Limin Jia.
“Reconciling Noninterference and Gradual Typing.” In: IEEE
Symposium on Logic in Computer Science (LICS), Saarbruecken, Ger-
many. 2020.

[7] Jean-Marc Andreoli. “Logic programming with focusing proofs
in linear logic.” In: Journal of Logic and Computation 2.3 (1992),
pp. 297–347.

[8] Andrej Bauer and Matija Pretnar. “An Effect System for Alge-
braic Effects and Handlers.” In: Algebra and Coalgebra in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 1–16.

[9] Nick Benton. “Embedded Interpreters.” In: Journal of Functional
Programming 15.04 (2005), pp. 503–542.

[10] Gavin Bierman, Martín Abadi, and Mads Torgersen. “Under-
standing TypeScript.” English. In: ECOOP 2014 – Object-Oriented
Programming. Ed. by Richard Jones. Vol. 8586. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2014, pp. 257–
281.

369

https://doi.org/10.1007/978-3-662-49630-5_3
https://doi.org/10.1007/978-3-662-49630-5_3


370 bibliography

[11] John Boyland. “The Problem of Structural Type Tests in a Gradually-
Typed Language.” In: 21st Workshop on Foundations of Object-
Oriented Languages. 2014.

[12] Giuseppe Castagna and Victor Lanvin. “Gradual Typing with
Union and Intersection Types.” In: Proc. ACM Program. Lang.
1.ICFP (Aug. 2017), 41:1–41:28. issn: 2475-1421. doi: 10.1145/
3110285. url: http://doi.acm.org/10.1145/3110285.

[13] Matteo Cimini and Jeremy G. Siek. “The Gradualizer: A Method-
ology and Algorithm for Generating Gradual Type Systems.”
In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages. POPL ’16. 2016.

[14] Matteo Cimini and Jeremy G. Siek. “Automatically Generating
the Dynamic Semantics of Gradually Typed Languages.” In:
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages. POPL 2017. 2017, pp. 789–803.

[15] Pierre-Evariste Dagand, Nicolas Tabareau, and Éric Tanter. “Par-
tial Type Equivalences for Verified Dependent Interoperability.”
In: International Conference on Functional Programming (ICFP).
Nara, Japan, 2016.

[16] Pierre-Évariste Dagand, Nicolas Tabareau, and Éric Tanter. “Foun-
dations of dependent interoperability.” In: Journal of Functional
Programming 28 (2018), e9. doi: 10.1017/S0956796818000011.

[17] Markus Degen, Peter Thiemann, and Stefan Wehr. “The inter-
action of contracts and laziness.” In: Higher-Order and Symbolic
Computation 25 (2012), pp. 85–125.

[18] Tim Disney and Cormac Flanagan. “Gradual Information Flow
Typing.” In: Workshop on Script-to-Program Evolution (STOP).
2011.

[19] Brian Patrick Dunphy. “Parametricity As a Notion of Unifor-
mity in Reflexive Graphs.” PhD thesis. Champaign, IL, USA:
University of Illinois at Urbana-Champaign, 2002.

[20] Joseph Eremondi, Èric Tanter, and Ronald Garcia. “Approximate
Normalization for Dependent Gradual Types.” In: International
Conference on Functional Programming (ICFP), Berlin, Germany.
2019.

[21] Keun-Bang Hou (Favonia), Nick Benton, and Robert Harper.
“Correctness of compiling polymorphism to dynamic typing.”
In: Journal of Functional Programming 27 (2017).

[22] Matthias Felleisen. “On the expressive power of programming
languages.” In: ESOP’90 (1990).

[23] Luminous Fennell and Peter Thiemann. “Gradual Security Typ-
ing with References.” In: CSF. IEEE Computer Society, 2013,
pp. 224–239.

https://doi.org/10.1145/3110285
https://doi.org/10.1145/3110285
http://doi.acm.org/10.1145/3110285
https://doi.org/10.1017/S0956796818000011


bibliography 371

[24] Robby Findler and Matthias Blume. “Contracts as Pairs of Pro-
jections.” In: International Symposium on Functional and Logic
Programming (FLOPS). Apr. 2006.

[25] Robert Bruce Findler and Matthias Felleisen. “Contracts for
higher-order functions.” In: International Conference on Functional
Programming (ICFP). Sept. 2002, pp. 48–59.

[26] Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen. “Se-
mantic Casts: Contracts and Structural Subtyping in a Nominal
World.” In: European Conference on Object-Oriented Programming
(ECOOP). 2004.

[27] Carsten Führmann. “Direct models of the computational lambda-
calculus.” In: Electronic Notes in Theoretical Computer Science 20

(1999), pp. 245–292.

[28] Ronald Garcia and Matteo Cimini. “Principal Type Schemes for
Gradual Programs.” In: POPL ’15. 2015.

[29] Ronald Garcia, Alison M. Clark, and Éric Tanter. “Abstracting
Gradual Typing.” In: ACM Symposium on Principles of Program-
ming Languages (POPL). 2016.

[30] Jean-Yves Girard. “Locus Solum: From the rules of logic to the
logic of rules.” In: Mathematical Structures in Computer Science
11.3 (2001), 301–506.

[31] Michael Greenberg. “Space-Efficient Manifest Contracts.” In:
ACM Symposium on Principles of Programming Languages (POPL).
Mumbai, India, 2015, pp. 181–194.

[32] Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich.
“Contracts Made Manifest.” In: ACM Symposium on Principles of
Programming Languages (POPL), Madrid, Spain. 2010.

[33] Ben Greenman and Matthias Felleisen. “A Spectrum of Type
Soundness and Performance.” In: International Conference on
Functional Programming (ICFP), St. Louis, Missouri. 2018.

[34] Ben Greenman, Matthias Felleisen, and Christos Dimoulas. “Com-
plete Monitors for Gradual Types.” In: PACMPL 3.OOPSLA
(2019), 122:1–122:29. doi: https://doi.org/10.1145/3360548.

[35] Ben Greenman, Asumu Takikawa, Max S. New, Daniel Feltey,
Robert Bruce Findler, Jan Vitek, and Matthias Felleisen. “How to
evaluate the performance of gradual type systems.” In: Journal of
Functional Programming 29.04 (2005). doi: 10.1017/S0956796818000217.

[36] Robert Harper. Dynamic Languages are Static Languages. 2011.
url: https://existentialtype.wordpress.com/2011/03/19/
dynamic-languages-are-static-languages/.

[37] Anders Hejlsberg. Introducing TypeScript. Microsoft Channel 9

Blog. 2012.

https://doi.org/https://doi.org/10.1145/3360548
https://doi.org/10.1017/S0956796818000217
https://existentialtype.wordpress.com/2011/03/19/dynamic-languages-are-static-languages/
https://existentialtype.wordpress.com/2011/03/19/dynamic-languages-are-static-languages/


372 bibliography

[38] Fritz Henglein. “Dynamic Typing: Syntax and Proof Theory.”
In: Science of Computer Programming 22.3 (1994), pp. 197–230.

[39] David Herman, Aaron Tomb, and Cormac Flanagan. “Space-
efficient gradual typing.” In: Higher-Order and Symbolic Computa-
tion (2010).

[40] Ralf Hinze, Johan Jeuring, and Andres Löh. “Typed Contracts
for Functional Programming.” In: International Symposium on
Functional and Logic Programming (FLOPS). 2006.

[41] Atsushi Igarashi, Peter Thiemann, Vasco Vasconcelos, and Philip
Wadler. “Gradual Session Types.” In: International Conference on
Functional Programming (ICFP). 2017.

[42] Yuu Igarashi, Taro Sekiyama, and Atsushi Igarashi. “On Poly-
morphic Gradual Typing.” In: International Conference on Func-
tional Programming (ICFP), Oxford, United Kingdom. 2017.

[43] Lintaro Ina and Atsushi Igarashi. “Gradual typing for generics.”
In: Proceedings of the 2011 ACM international conference on Object
oriented programming systems languages and applications. OOPSLA
’11. 2011.

[44] Nico Lehmann and Éric Tanter. “Gradual Refinement Types.” In:
ACM Symposium on Principles of Programming Languages (POPL).
2017.

[45] Paul Blain Levy. Call-By-Push-Value: A Functional/Imperative Syn-
thesis. Springer, 2003.

[46] Paul Blain Levy. “Contextual Isomorphisms.” In: ACM Sympo-
sium on Principles of Programming Languages (POPL). 2017.

[47] Sam Lindley, Conor McBride, and Craig McLaughlin. “Do Be
Do Be Do.” In: Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages. POPL 2017. Paris, France:
ACM, 2017, pp. 500–514.

[48] QingMing Ma and John C. Reynolds. “Types, Abstractions, and
Parametric Polymorphism, Part 2.” In: Mathematical Foundations
of Programming Semantics, 7th International Conference, Pittsburgh,
PA, USA. 1991.

[49] Jacob Matthews and Robert Bruce Findler. “Operational Se-
mantics for Multi-Language Programs.” In: ACM Symposium on
Principles of Programming Languages (POPL), Nice, France. 2007.

[50] John C. Mitchell and Gordon D. Plotkin. “Abstract types have ex-
istential type.” In: ACM Symposium on Principles of Programming
Languages (POPL), New Orleans, Louisiana. 1985.

[51] Eugenio Moggi. “Notions of computation and monads.” In:
Inform. And Computation 93.1 (1991).



bibliography 373

[52] James H. Morris. “Types Are Not Sets.” In: ACM Symposium on
Principles of Programming Languages (POPL), Boston, Massachusetts.
1973.

[53] Guillaume Munch-Maccagnoni. “Models of a Non-associative
Composition.” In: Foundations of Software Science and Computation
Structures. 2014, pp. 396–410.

[54] Hiroshi Nakano. “A modality for recursion.” In: IEEE Symposium
on Logic in Computer Science (LICS), Santa Barbara, California. 2000.

[55] Georg Neis, Derek Dreyer, and Andreas Rossberg. “Non-Parametric
Parametricity.” In: International Conference on Functional Program-
ming (ICFP). Sept. 2009, pp. 135–148.

[56] Max S. New and Amal Ahmed. “Graduality from Embedding-
Projection Pairs.” In: International Conference on Functional Pro-
gramming (ICFP), St. Louis, Missouri. 2018.

[57] Max S. New, Dustin Jamner, and Amal Ahmed. “Graduality
and Parametricity: Together Again for the First Time.” In: ACM
Symposium on Principles of Programming Languages (POPL), New
Orleans, Louisiana. 2020.

[58] Max S. New and Daniel R. Licata. “Call-by-name Gradual Type
Theory.” In: FSCD (2018).

[59] Max S. New and Daniel R. Licata. “Call-by-name Gradual Type
Theory.” In: Logical Methods in Computer Science 16.1 (Jan. 2020).

[60] Max S. New, Daniel R. Licata, and Amal Ahmed. “Gradual Type
Theory.” In: POPL ’19. 2019.

[61] Pierre-Marie Pédrot and Nicolas Tabareau. “The Fire Trian-
gle: How to Mix Substitution, Dependent Elimination, and Ef-
fects.” In: ACM Symposium on Principles of Programming Languages
(POPL), New Orleans, Louisiana. 2020.

[62] Frank Pfenning and Dennis Griffith. “Polarized Substructural
Session Types (invited talk).” In: International Conference on Foun-
dations of Software Science and Computation Structures (FoSSaCS).
2015.

[63] Gordon Plotkin and Martín Abadi. “A logic for parametric
polymorphism.” In: Typed Lambda Calculi and Applications (1993),
pp. 361–375.

[64] John C. Reynolds. “Types, Abstraction and Parametric Polymor-
phism.” In: Information Processing 83, Proceedings of the IFIP 9th
World Computer Congress, Paris, France. 1983.

[65] Amr Sabry and Matthias Felleisen. “Reasoning about Programs
in Continuation-Passing Style.” In: Conf. on LISP and functional
programming, LFP ’92. 1992.



374 bibliography

[66] Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. “A
Theory of Gradual Effect Systems.” In: Proceedings of the 19th
ACM SIGPLAN International Conference on Functional Program-
ming. ICFP ’14. Gothenburg, Sweden, 2014, pp. 283–295.

[67] Dana Scott. “Continuous lattices.” In: Toposes, algebraic geometry
and logic. 1972, pp. 97–136.

[68] Ilya Sergey and Dave Clarke. “Gradual Ownership Types.” In:
ESOP. Vol. 7211. Lecture Notes in Computer Science. Springer,
2012, pp. 579–599.

[69] Jeremy G. Siek and Walid Taha. “Gradual Typing for Functional
Languages.” In: Scheme and Functional Programming Workshop
(Scheme). Sept. 2006, pp. 81–92.

[70] Jeremy G. Siek and Walid Taha. “Gradual Typing for Objects.”
In: European Conference on Object-Oriented Programming (ECOOP).
2007.

[71] Jeremy G. Siek and Philip Wadler. “Threesomes, with and With-
out Blame.” In: ACM Symposium on Principles of Programming
Languages (POPL). Madrid, Spain: ACM, 2010, pp. 365–376.

[72] Jeremy G. Siek and Philip Wadler. “Threesomes, with and with-
out blame.” In: ACM Symposium on Principles of Programming
Languages (POPL). 2010, pp. 365–376.

[73] Jeremy Siek, Ronald Garcia, and Walid Taha. “Exploring the
Design Space of Higher-Order Casts.” In: European Symposium
on Programming (ESOP). York, UK: Springer-Verlag, 2009, pp. 17–
31.

[74] Jeremy Siek and Sam Tobin-Hochstadt. “The recursive union of
some gradual types.” In: A List of Successes That Can Change the
World: Essays Dedicated to Philip Wadler on the Occasion of His 60th
Birthday (Springer LNCS) volume 9600 (2016).

[75] Jeremy Siek, Micahel Vitousek, Matteo Cimini, and John Tang
Boyland. “Refined Criteria for Gradual Typing.” In: 1st Summit
on Advances in Programming Languages. 2015.

[76] T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Find-
ler, and Matthew Flatt. “Chaperones and Impersonators: Run-
time Support for Reasonable Interposition.” In: ACM Symposium
on Object Oriented Programming: Systems, Languages, and Applica-
tions (OOPSLA), Tucson, Arizona, USA. 2012.

[77] Eijiro Sumii and Benjamin C. Pierce. “A Bisimulation for Dy-
namic Sealing.” In: ACM Symposium on Principles of Programming
Languages (POPL), Venice, Italy. 2004.



bibliography 375

[78] Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New,
Jan Vitek, and Matthias Felleisen. “Is Sound Gradual Typing
Dead?” In: ACM Symposium on Principles of Programming Lan-
guages (POPL), St. Petersburg, Florida. 2016.

[79] Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas,
Sam Tobin-Hochstadt, and Matthias Felleisen. “Gradual typing
for first-class classes.” In: ACM Symposium on Object Oriented
Programming: Systems, Languages, and Applications (OOP-
SLA). 2012.

[80] Satish Thatte. “Quasi-static typing.” In: ACM Symposium on
Principles of Programming Languages (POPL). 1990, pp. 367–381.

[81] Sam Tobin-Hochstadt and Matthias Felleisen. “Interlanguage
Migration: From Scripts to Programs.” In: Dynamic Languages
Symposium (DLS). Oct. 2006, pp. 964–974.

[82] Sam Tobin-Hochstadt and Matthias Felleisen. “The Design and
Implementation of Typed Scheme.” In: ACM Symposium on Prin-
ciples of Programming Languages (POPL), San Francisco, California.
2008.

[83] Sam Tobin-Hochstadt, Vincent St-Amour, Eric Dobson, and
Asumu Takikawa. Typed Racket Reference. Accessed: 2019-10-30.
url: https://docs.racket-lang.org/ts-reference/Typed_
Units.html.

[84] Matías Toro, Ronald Garcia, and Éric Tanter. “Type-Driven Grad-
ual Security with References.” In: ACM Transactions on Pro-
gramming Languages and Systems 40.4 (Dec. 2018). url: http:
//doi.acm.org/10.1145/3229061.

[85] Matías Toro, Elizabeth Labrada, and Éric Tanter. “Gradual Para-
metricity, Revisited.” In: (2019).

[86] Julien Verlaguet. “Facebook: Analyzing PHP statically.” In: Com-
mercial Users of Functional Programming (CUFP). 2013.

[87] Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. “Big
Types in Little Runtime: Open-world Soundness and Collabora-
tive Blame for Gradual Type Systems.” In: ACM Symposium on
Principles of Programming Languages (POPL), Paris, France. 2017.

[88] Philip Wadler and Robert Bruce Findler. “Well-typed programs
can’t be blamed.” In: European Symposium on Programming (ESOP).
York, UK, Mar. 2009, pp. 1–16.

[89] Roger Wolff, Ronald Garcia, Éric Tanter, and Jonathan Aldrich.
“Gradual Typestate.” In: Proceedings of the 25th European Confer-
ence on Object-oriented Programming. ECOOP’11. 2011.

https://docs.racket-lang.org/ts-reference/Typed_Units.html
https://docs.racket-lang.org/ts-reference/Typed_Units.html
http://doi.acm.org/10.1145/3229061
http://doi.acm.org/10.1145/3229061


376 bibliography

[90] Ningning Xie, Xuan Bi, and Bruno C. d. S. Oliveira. “Consistent
Subtyping for All.” In: Programming Languages and Systems. Ed.
by Amal Ahmed. Cham: Springer International Publishing, 2018,
pp. 3–30. isbn: 978-3-319-89884-1.

[91] Dana N. Xu, Simon Peyton Jones, and Koen Claessen. “Static
Contract Checking for Haskell.” In: ACM Symposium on Principles
of Programming Languages (POPL), Savannah, Georgia. 2009.

[92] Noam Zeilberger. “The Logical Basis of Evaluation Order and
Pattern-Matching.” PhD thesis. Carnegie Mellon University,
2009.



D E C L A R AT I O N

Put your declaration here.

Boston, 2020

Max Stewart New





colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede and Ivo Pletikosić. The
style was inspired by Robert Bringhurst’s seminal book on typography
“The Elements of Typographic Style”. classicthesis is available for both
LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Final Version as of April 22, 2021 (classicthesis v4.6).

https://bitbucket.org/amiede/classicthesis/

	Dedication
	Abstract
	Acknowledgments
	Support
	Contents
	List of Figures
	 Gradual Typing and Embedding-Projection Pairs
	1 Statically, Dynamically and Gradually Typed Programming Languages
	1.1 Static and Dynamic Typing
	1.2 Dynamically Typed Languages
	1.2.1 Migrating from Dynamic to Static Typing

	1.3 Gradual Typing
	1.4 Reasoning About Programs
	1.5 Thesis
	1.6 Contributions and Structure of Thesis

	2 Syntax and Semantics of Gradually Typed Languages and Cast Calculi
	2.0.1 Multilanguage Gradual Typing
	2.0.2 Fine-Grained Gradual Typing
	2.0.3 Multi-language vs Fine-Grained Gradual Typing
	2.1 Cast Calculus
	2.1.1 Elaborating Surface Calculi

	2.2 Reasoning about Gradually Typed Programs
	2.2.1 Reasoning about Equality
	2.2.2 Precision and Graduality
	2.2.3 Reducing Surface Reasoning to Cast Calculus Reasoning


	3 Graduality from Embedding Projection Pairs
	3.1 A Typed Metalanguage
	3.2 Translating Gradual Typing
	3.2.1 Constructive Type Precision
	3.2.2 Translations
	3.2.3 Direct Semantics is Adequate

	3.3 Reasoning about Equivalence and Error Approximation
	3.3.1 Logical Relation
	3.3.2 Approximation and Equivalence Lemmas

	3.4 Casts from Embedding-Projection Pairs
	3.4.1 Embedding-Projection Pairs
	3.4.2 Type Precision Semantics produce Coherent EP Pairs
	3.4.3 Casts Factorize into EP Pairs

	3.5 Soundness of  Equality
	3.6 Graduality from EP Pairs
	3.7 Related Work and Discussion


	 Gradual Type Theory: Axiomatizing Gradual Typing
	4 Introduction to Part II
	5 Gradual Type Theory
	5.1 Goals
	5.1.1 Exploring the Design Space
	5.1.2 An Axiomatic Approach to Gradual Typing
	5.1.3 Technical Overview of GTT
	5.1.4 Contributions.

	5.2 Axiomatic Gradual Type Theory
	5.2.1 Background: Call-by-Push-Value
	5.2.2 Gradual Typing in GTT

	5.3 Theorems in Gradual Type Theory
	5.3.1 Derived Cast Rules
	5.3.2 Type-Generic Properties of Casts
	5.3.3 Deriving Behavior of Casts
	5.3.4 Proof of Theorem 75
	5.3.5 Upcasts must be Values, Downcasts must be Stacks
	5.3.6 Equiprecision and Isomorphism
	5.3.7 Most Precise Types

	5.4 Discussion and Related Work

	6 From GTT to Evaluation Orders
	6.1 Call-by-value
	6.1.1 From CBV to GTT

	6.2 Call-by-name
	6.3 Lazy

	7 Models
	7.1 Call-by-Push-Value
	7.2 Elaborating GTT
	7.2.1 Natural Dynamic Type Interpretation
	7.2.2 Scheme-Like Dynamic Type Interpretation
	7.2.3 Contract Translation

	7.3 Complex Value/Stack Elimination
	7.4 Operational Model of GTT
	7.4.1 Call-by-Push-Value Operational Semantics
	7.4.2 Observational Equivalence and Approximation
	7.4.3 CBPV Step Indexed Logical Relation



	 Gradual Typing and Parametric Polymorphism
	8 Introduction to Part III
	9 Gradual Typing & Curry Style Polymorphism
	9.1 Informal Proof
	9.2 Formalizing the Assumptions of the Proof
	9.3 Consequences

	10 Graduality and Parametricity: Together Again for the First Time
	10.1 Graduality and Parametricity, Friends or Enemies?
	10.1.1 ``Naïve'' Attempt
	10.1.2 Type-directed Sealing
	10.1.3 To Seal, or not to Seal
	10.1.4 Resolution: Explicit Sealing

	10.2 PolyG: A Gradual Language with Polymorphism and Sealing
	10.2.1 PolyG Informally
	10.2.2 PolyG Formal Syntax and Semantics

	10.3 A Dynamically Typed Variant of PolyG
	10.4 PolyC: Cast Calculus
	10.4.1 PolyC Type Precision
	10.4.2 PolyC Type System
	10.4.3 Elaboration from PolyG to PolyC
	10.4.4 PolyC Operational Semantics

	10.5 Typed Interpretation of the Cast Calculus
	10.5.1 Typed Metalanguage
	10.5.2 Static and Dynamic Semantics
	10.5.3 Translation
	10.5.4 Adequacy

	10.6 Graduality and Parametricity
	10.6.1 Term Precision
	10.6.2 Graduality Theorem
	10.6.3 Logical Relation

	10.7 Parametricity and Free Theorems
	10.7.1 Standard Free Theorems
	10.7.2 Free Theorems with Dynamic Typing

	10.8 Discussion and Related Work


	 Conclusions
	11 Discussion and Future Works
	11.1 Implementation and Optimization
	11.2 What do Type and Term Precision Mean?
	11.3 Blame
	11.4 Limitations of the Theory
	11.4.1 Subtyping
	11.4.2 Consistency and Abstracting Gradual Typing

	11.5 Generality of EP Pairs

	 Bibliography
	Declaration
	Colophon


