
1

From Call-by-push-value to Stack-Based TAL?
Max S. New

Northeastern University

Abstract—We draw an analogy between Stack-based typed
assembly language and Call-by-push-value, in particular that
STAL stack types are the dual view on CBPV’s computation
types. This leads to a factorization of much of the translation
of call-by-value languages into STAL, in particular the CPS-like
interpretation of function types can be expressed in CBPV as
the combination of the call-by-value translation and the Church-
encoding of the F type using the U type. The gaps in the analogy
lead to new questions for both sides. Finally, we report on work-
in-progress on designing an assembly language directly based on
CBPV structure.

I. COMPUTATION TYPES AND STACK TYPES

Call-by-push-value (CBPV) [4] is a calculus introduced by
Levy as a “subsuming paradigm” for effectful computation,
supporting fully complete embeddings of Call-by-value and
Call-by-name λ calculus. Semantically, CBPV is based on the
decomposition of a strong monad into a strong adjunction,
generalizing Moggi’s monadic semantics of effects [5]. CBPV
has a simple equational theory that make it sound and complete
for this categorical semantics. The key to its generality is
the introduction of a distinction between value types and
computation types.

Stack-based Typed Assembly Language (STAL) [6] was
introduced to give a typed operational view of a clean but
still realistic assembly language, extending the earlier TAL
to account for stack-based allocation and calling conventions.
To do this, two kinds of types are introduced: ordinary types
which classify word-sized data, and stack types which classify
the structure of the stack.

While approaching the problem from two different per-
spectives on typed languages, STAL and CBPV introduce
essentially the same distinction, but with dual presentation:
STAL’s stack types can be seen as classifying the stack
that a corresponding CBPV computation runs against 1. In
particular, the STAL stack constructor τ :: σ, the type of
stacks consisting of a word classified by τ followed by a stack
classified by σ corresponds to the CBPV computation type
Aτ → Bσ that classifies computations that pop an Aτ off the
stack and proceed as Bσ . Clearly a precondition on such a
computation is that the stack consist of an Aτ and a stack for
Bσ . Next, ignoring registers besides the stack-pointer, STAL’s
code pointer type ∀[∆].{sp : σ} corresponds to a combination
of polymorphism with CBPV’s thunk type: U(∀∆.Bσ)2.

Notably missing from STAL is a connective corresponding
to CBPV’s FA type, which classifies computations that per-

1this duality is explored further in work on the Enriched Effect Calculus
[8]

2technically the U type corresponds to a closure in STAL, but correctly
handling this does have to change any of the type translations we show in
this abstract

form effects and (possibly) return A values. However, in the
presence of parametric polymorphism, it is possible to Church-
encode the F type using the U type [7]:

FA ∼= ∀Y.U(A→ Y)→ Y

Then we see that the elaboration of the CBV function type,
when combined with this Church-encoding and a harmless
move of a quantifier:

A→cbv A
′ = U(A→ FA′) ∼= U(∀Y.A→ U(A′ → Y)→ Y)

corresponds to a simple stack-based calling convention ex-
pressible in STAL:

∀[ρ]{sp : σ :: ∀[]{sp : σ′ :: ρ} :: ρ}

Notably, both cases easily extend to multi-argument functions.
While these similarities are promising, both languages in-

clude connectives missing from the other. On the one hand,
CBPV also includes a computation product which we write as
B&B′ that acts like a lazy pair. The corresponding stack type
would be a tagged sum of stacks σ ⊕ σ′, a stack consisting
of a tag that indicates which case it is and a stack with type
corresponding to that tag. Furthermore, CBPV can naturally
be extended recursive computation types, which can be used to
model calling conventions where stack frames have unbounded
size, such as variable-arity functions.

On the other hand, STAL includes compound stacks σ@σ′

that classifies stacks which consist of a σ stack followed by
a σ′ stack. This suggests making CBPV computation types
monoidal, which would then make them equivalent to the
linear types in Linear-non-linear Logic [3], however the use
of compound stacks in STAL is somewhat restricted, and so
we do not consider them as compelling as other features. A
bigger difference is that STAL includes registers, which are
suggestive of a kind of function type in CBPV with named
arguments.

II. TOWARDS A CBPV TAL

CBPV and STAL both have their advantages. STAL is low-
level enough that code generation is nearly trivial, and its
support for registers means it can describe a wide variety of
calling conventions. CBPV on the other hand has a simple,
canonical equational theory with full completeness results for
CBV and CBN. This naturally leads us to the question of how
to make a more low-level version of CBPV, but maintaining
the nice semantic properties of the original CBPV. Such a
language could serve as a common low level target language
supporting fully abstract compilation from a variety of source
languages, as envisioned in [2].

2

A ::= i64 |A×A |UB | · · ·
B ::= A→ B | ∀Y.B | · · ·
i ::= add |mult |cons |uncons

|pushx |pushn |pushT
M ::= i;M |λx.M |ΛX.M |jmp

Γ |B ` i : B′

Γ `M : B

Fig. 1. Linearized CBPV

In Figure 1, we present a fragment of a version of CBPV
that is lower level in that it has a notion of instruction and
construction of compound values has to be compiled to a
sequence of instruction statements. CBPV computations are
typed as usual as Γ `M : B, but we also include a form for
instructions, which are typed as Γ |B ` i : B′, and can be
prepended to a computation with a semi-colon:

Γ `M : B Γ |B ` i : B′

Γ ` i;M : B′

The judgmental structure for instructions is the same as that
of stack terms in CBPV and this sequential composition
corresponds to the admissible rule of stack “piling” in CBPV
[4].

In CBPV the only way compound values appear in compu-
tations are in function application and return statements. We
Church-encode the F type and so do not have a primitive
return statement, and so only need to compile the function
application form, which is the titular push value form. In our
linearized CBPV, we restrict the push value form to only push
variables and 64-bit integer literals. All other manipulation of
values is performed through adding instructions. For instance,
to add value pair introduction and elimination we can simply
add instructions that construct and deconstruct tuples at the
top of the stack:

(A1 ×A2)→ B ` cons : A1 → A2 → B

A1 → A2 → B ` uncons : (A1 ×A2)→ B

We can similarly add operations of addition and multiplication
of integer values.

All computations end in a jump, which we make stack-
oriented as well by requiring the destination to be the first
operand on the stack:

Γ ` jmp : UB → B

Which corresponds precisely to the co-unit of the adjunction
between F and U .

Then we can define a simple operational semantics on
abstract machine states 〈M | γ |S〉 where Γ ` M : B is the
current computation, γ : Γ is the current environment and
B ` S is the state of the stack.

Compilation from CBPV to the linearized form is simple,
but includes arbitrary choices of evaluation order for construc-
tion of compound values. We are working on an equational
theory that would prove that any order is equivalent, which
we can design based on the obvious back-translation from

linearized form to ordinary CBPV. There should also be a
simulation theorem between the operational semantics of the
two languages.

Our next steps are to consider extensions of both linearized
and ordinary CBPV with registers. We expect that the cor-
respondence between stack forms and instructions will still
hold in this extension. We are also interested in considering
dependently typed extensions of these languages, based on
recent work [1], [9], and making a formal connection to
dependently typed TAL [10].

REFERENCES

[1] Daniel Ahman, Neil Ghani, and Gordon D. Plotkin. Dependent Types
and Fibred Computational Effects. 2016.

[2] Amal Ahmed. Verified Compilers for a Multi-Language World. In
Thomas Ball, Rastislav Bodik, Shriram Krishnamurthi, Benjamin S.
Lerner, and Greg Morrisett, editors, 1st Summit on Advances in Pro-
gramming Languages (SNAPL 2015), volume 32 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 15–31, 2015.

[3] P. N. Benton. A mixed linear and non-linear logic: Proofs, terms and
models (extended abstract). In Selected Papers from the 8th International
Workshop on Computer Science Logic, pages 121–135, 1995.

[4] Paul Blain Levy. Call-by-Push-Value. Ph. D. dissertation, Queen Mary,
University of London, London, UK, March 2001.

[5] Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93(1):55–92, 1991.

[6] Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-
based typed assembly language. Journal of Functional Programming,
12(1):43–88, 2002.

[7] Rasmus Ejlers Mgelberg and Alex Simpson. Relational Parametricity for
Computational Effects. Logical Methods in Computer Science, Volume
5, Issue 3, 2009.

[8] Rasmus Ejlers Mgelberg and Sam Staton. Linear usage of state. Logical
Methods in Computer Science, Volume 10, Issue 1, 2014.

[9] Matthijs Vákár. In search of effectful dependent types. CoRR, 2017.
[10] Hongwei Xi and Robert Harper. Dependently typed assembly language.

In ICFP, pages 169–180, September 2001.

